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Abstract

Deep neural networks (DNNs) have achieved significant ad-
vancements in click-through rate (CTR) prediction by demon-
strating strong generalization on training data. However, in
real-world scenarios, the assumption of independent and iden-
tically distributed (i.i.d.) conditions, which is fundamental to
this problem, is often violated due to temporal distribution
shifts. This violation can lead to suboptimal model perfor-
mance when optimizing empirical risk without access to future
data, resulting in overfitting on the training data and conver-
gence to a single sharp minimum. To address this challenge,
we propose a novel model updating framework called Slow
and Fast Trajectory Learning (SFTL) network. SFTL aims
to mitigate the discrepancy between past and future domains
while quickly adapting to recent changes in small temporal
drifts. This mechanism entails two interactions among three
complementary learners: (i) the Working Learner, which up-
dates model parameters using modern optimizers (e.g., Adam,
Adagrad) and serves as the primary learner in the recommen-
dation system, (ii) the Slow Learner, which is updated in each
temporal domain by directly assigning the model weights of
the working learner, and (iii) the Fast Learner, which is up-
dated in each iteration by assigning exponentially moving
average weights of the working learner. Additionally, we pro-
pose a novel rank-based trajectory loss to facilitate interaction
between the working learner and trajectory learner, aiming to
adapt to temporal drift and enhance performance in the current
domain compared to the past. We provide theoretical under-
standing and conduct extensive experiments on real-world
CTR prediction datasets to validate the effectiveness and effi-
ciency of SFTL in terms of both convergence speed and model
performance. The results demonstrate the superiority of SFTL
over existing approaches.

Introduction
CTR prediction plays a crucial role in both research and
industries, particularly in sectors such as recommendation
systems and online advertising. Significant efforts have been
made to develop better prediction models, with recent suc-
cess achieved by deep neural networks due to their impres-
sive capabilities in discovering personal behavior interests
and complex feature interactions (Zhu et al. 2020; Liu et al.
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2022a; Ivchenko et al. 2022; Liu et al. 2022b; Guo et al.
2017; Song et al. 2019; Zhu et al. 2023; Liu et al. 2023b; Zhu
et al. 2021; Liu et al. 2023a). However, most of these studies
primarily focus on the batch learning setting, assuming inde-
pendent and identically distributed (i.i.d.) data. In this setting,
neural models are trained on the entire dataset with the as-
sumption that the input-output relationship remains constant
throughout. However, this assumption is often unrealistic in
real-world applications where data arrives continuously, and
the input-output relationship can change over time (Gama
et al. 2014).

For instance, consider a scenario where a user searches for
the term ”drink” in a search bar. Depending on the time of day,
their intent to click on specific items may vary, such as choos-
ing milk in the morning and cola in the afternoon from the
list of available options. Another common case is when users
repeatedly browse the same item over time, their interest in
clicking on the item for further details may decline. These
examples demonstrate that the underlying data distribution
of personal interests and contextual information gradually
drifts over time. In such cases, re-training the model from
scratch can be time-consuming. Consequently, in practice, an
alternative approach known as ”online learning” or ”online
fine-tuning” (Rendle and Schmidt-Thieme 2008) is deployed
to fine-tune the neural model using recent data.

Despite the success of online fine-tuning in real-world
recommendation systems, its effectiveness relies on the as-
sumption that real-time user behavior reflects the changing
trend of personal interests. Recent learning theory has shown
that optimization methods for model parameters, such as
Adam (Kingma and Ba 2014) and Adagrad (Duchi, Hazan,
and Singer 2011), can quickly adapt on test data with training
data, even if they come from different domains (Ben-David
et al. 2010). However, generalizing deep prediction models
to future scenarios still remain challenging for several rea-
sons. Firstly, there is the issue of convergence difficulty in
online recommendation systems. Naively fine-tuning deep
neural networks on online data streams requires a substantial
number of samples and iteration to converge, which degrades
real-time performance. Although recent work (Zhang et al.
2022) has shown that training models for just one epoch per-
forms better than multiple epochs on sparse CTR datasets,
it remains unclear if such models can cope when the distri-
bution drifts. Secondly, there is the challenge of effectively
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Figure 1: Overview of the SFTL framework. Compared with
standard supervised learning strategy that take all of training
data of different temporal domains, SFTL sequentially trains
the backbone working learner and independently updates
slow learner and fast learner. To enhance generalization of
future domain, SFTL uses the trajectory loss to measure
ranking score between working learner and trajectory learner.

modeling the gradual evolution of data distribution and its
impact on the model. Despite the implicit representation pro-
vided by temporal information (e.g., day, hour), the future
distribution can be drastically different at various timestamps.
Ideally, if we could access the data distribution in the near fu-
ture, simply performing gradient descent with this data could
mitigate the domain generalization gap between recent and
future data. Thirdly, there is the need for efficient temporal
expressiveness for model evolution and its impact on the sys-
tem. In real-world applications, a cyclic training-and-serving
strategy is commonly used for the main traffic, involving com-
plex deep neural networks. However, recent solutions (Mi,
Lin, and Faltings 2020; Zhang et al. 2020; Peng et al. 2021)
that attempt to dynamically evolve parameter values with
recurrent and convolution networks, respectively, are often
time-consuming and unsuitable for complexity-constrained
conditions. Therefore, it is essential to develop an efficient
model that can track model evolution.

In this paper, we aim to address these challenges regard-
ing the temporal generalization failure of recent deep neural
networks in CTR prediction. To achieve this, our training
algorithm should be robust to different temporal distributions
and enable the decision boundary to extrapolate well when
facing temporal drifts. To this end, we introduce a novel and
efficient learning strategy called Slow and Fast Trajectory
Learning (SFTL) strategy that enhances the deep network via
utilizing the historical models’ outputs. Our intuition is that,
directly optimizing for future is impossible without future
data while looking backward past trajectories (e.g. changing
trend of model outputs) may instruct how to evolve towards
future domain, thus we need to focus on those trajectories
during learning. In practice, for each outputs of current inputs,
we only consider the recent models’ outputs from last tempo-
ral domain or last iteration that is mostly likely to reflect the
temporal drift in different extent.

The key of our approach is two novel and independent
neural network modules for ctr prediction named slow trajec-
tory learner (STL) and fast trajectory learner (FTL). These
two modules update themselves by utilizing model weights
from past training trajectory. As illustrated in Figure 1, for

every temporal domain in a sequential training strategy, the
slow trajectory learner updates model weights by directly as-
signing parameter values from working learner, which stores
past knowledge. For each training iteration, the fast trajec-
tory learner updates model weights by exponentially moving
averaging model parameter values from all of training tra-
jectories, which stores the recent temporal evolution. Then
we propose and apply a trajectory loss to improve the model
performance of working learner by aligning and promoting
the working learner’s outputs with those of STL and FTL
respectively. It measures the surrogate ranking loss for met-
ric scores. Though we additionally introduce two networks,
the training computation is efficient due to the only gradi-
ent computation of working learner. To fairly compare our
methods with other temporal generalization methods or con-
tinual learning methods, we only use the outputs of trajectory
learner for validation which showcase both the efficiency and
effectiveness of trajectory learning.

In summary, our work makes the following contributions:

• We formulate the learning of CTR prediction models as
a temporal generalization problem with gradual distribu-
tion shift. To overcome this, we propose a novel training
framework, slow and fast trajectory learning (SFTL), for
end-to-end adaptation to concept drift. This method allows
for robust feature learning of the main network by max-
imizing future performance in the next-time domain, as
well as efficient learning of the trajectory network through
the averaging of historical parameter values.

• In our experiments, we propose using sequential training to
adaptive learn the temporal drift instead of randomly shuf-
fling the entire dataset. Additionally, we provide a theoreti-
cal understanding of the generalization gap in our proposed
method. Through extensive experiments on real-world CTR
datasets, we demonstrate the efficacy and superiority of our
training framework.

Related Work
Temporal Domain Generalization Recent researches on
domain generalization (Wang et al. 2022) aim to mitigating
the domain gap by representation learning and data manip-
ulation methods. In this area, the problem assumes that the
training domain is different to test domain (i.e. image tex-
ture) while the label space is same. However, the discrete
domain gap does not meet the real-world setting where do-
main shifts temporally. CIDA (Wang, He, and Katabi 2020)
proposes to learning domain invariant feature for each tem-
poral domain via a minimax optimization. GI (Nasery et al.
2021) propose an adversarial gradient loss to regularize the
loss curvature within specific time window. This loss encour-
ages a model to capture shared information between different
timestamps. DRAIN (Bai, Ling, and Zhao 2023) proposes a
drift-aware dynamic neural network where network weights
are sequentially generated by a recurrent network with previ-
ous model parameters. Despite their success, none of these
work are validated on large-scale datasets and more complex
data distribution (e.g. recommendation system). To allevi-
ate generalization gap, recent researchers (Foret et al. 2020;
Izmailov et al. 2018) try to seek a robust and flat minima
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as a generalization baseline. Sharpness-aware minimization
(SAM)(Foret et al. 2020) proposes a novel training proce-
dure by simultaneously minimizing the loss value and loss
sharpness for the aim to lower down the training loss around
the neighborhood of model weight θ. SWA (Izmailov et al.
2018) introduces a method by averaging model weight every
several epochs which directly generate a flatter minima.

Continual Learning Continual learning is widely re-
searched for alleviating the problem named as catastrophic
forgetting. However, majority of those work on continual
learning mainly focus on backward transferring (Lopez-Paz
and Ranzato 2017; Buzzega et al. 2020; Rolnick et al. 2019;
Chaudhry et al. 2019; Parisi et al. 2019) which may hinder
the deployment on recommendation system. Recently, con-
tinual learning for CTR prediction has become a significant
research problem (Mi, Lin, and Faltings 2020; Zhang et al.
2020; Peng et al. 2021; Cai et al. 2022). ADER (Mi, Lin,
and Faltings 2020) employs a exemplar replay buffer with
knowledge distillation loss to prevent catastrophic forget-
ting. SML (Zhang et al. 2020) and ASMG (Peng et al. 2021)
both propose weight generation technique to improve incre-
mental learning performance by MLP and RNN respectively.
However, the large computation complexity hinder their de-
ployment on real-world application. CR (Zhu et al. 2023)
considers the difference between offline retraining and online
serving and then develops the practical surrogate losses for
maximizing the offline model performance towards online
deployment. However, none of these works have addressed
the problem of maximizing future performance.

Proposed Framework
Preliminaries and Problem Formulation
From the perspective of real-world application, the ctr pre-
diction pipeline can be decomposed into two training stages:

• Offline training: given old dataset Dold ≜ {Di}T1 that
consists of continuous data from T temporal domains with
corresponding input sample x and ground truth labels y,
a machine learning model f with parameters θ is trained
only once (Zhang et al. 2022) followed by online serving
due to the computation complexity. We note the output
logits with z ≜ h(x; θ) and the corresponding probability
with f(x; θ) ≜ sigmoid(h(x; θ)).

• Online Fine-tuning: In this stage, it requires online data
(Rendle and Schmidt-Thieme 2008) or batch data (Zhu et al.
2023) in a small time window ∆ (e.g. ∆=10 minutes) for
serving next-time traffic. As we get new arriving dataDnew,
we retrain previous deployed model fold to overcome the
challenge of inconsistency between Dold and Dnew.
The standard solution to optimize f on the D is to mini-

mize the average loss on training examples:

min
θ
LD(θ) ≜ E(x,y)∼D[ℓ(y, f(x; θ))]. (1)

Benefited from mitigation on distributional drift, the strat-
egy of online fine-tuning with recent data can efficiently
improve the generalization on the next serving stage (Zhu
et al. 2023; Rendle and Schmidt-Thieme 2008). In real-world

setting, we only care about the future performance on test
data Dnew. Formally, the goal of CTR prediction is to find a
model which minimize both LDold

and LDnew
by only mini-

mizing an empirical risk LDold
over past training data. From

the perspective of generalization into future, CTR prediction
can be seen as a special problem of temporal domain general-
ization which is ignored in previous works (Guo et al. 2017;
Lian et al. 2018).

Ideally, our goal is to promote future performance by max-
imizing the performance of current model on future data
which can be defined as:

min
θ

T∑
i=1

E(x,y)∼Di
[ℓ(y, f(x; θ))] (2)

s.t. θ = argmin
θ
LDT+1

(f(θ))− LDT+1
(f(θ∗)) (3)

where θ and θ∗ refer to model parameters trained on
datasets {D1, ...,DT } and best optimized on DT+1 respec-
tively. The objective assumes that we can directly acquire
test-time domain data with optimal parameter, which force θ
over-fitting on DT+1. This naive training scheme forces the
neural model to learn towards future-aware patterns, although
we never acquire test-domain data and cannot calculate the
optimal decision boundary.

A Bayes Perspective for CTR Prediction
From the perspective of real-world system, a CTR prediction
model is trained over all temporal domains with a cyclic
setting using ERM which can be seen as a state-space model
or recursive Bayes as described in Definition 1.
Definition 1 Given sequential domains D1,D2, . . . ,DT+1

and a initial model θ0, the latent weights and domain dynam-
ics on a cyclic train-and-serve setting is assumed to evolve
as: θt ∼ p(θt|θt−1, t) and Dt ∼ p(D|θt). Through using a
Bayes’ theorem, a state-space model can be defined as:

p(θt|D<t) =

∫
p(θt|θt−1, t)p(θt−1|D<t)dθt−1 (4)

Proposition 1 Given model functions f1, f2, . . . , fT and its
respective training domain in Definition 1. For any domain i
and j, ∀j > i, we have :

|ϵi(h)− ϵT (h)| ≤ |ϵj(h)− ϵT (h)| (5)

where h is a hypothesis and ϵs(h, fs) ≜ Ex∼Ds
[|h(x) −

f(x)|] for short ϵs(h),

From the perspective of domain adaption theory (Blitzer
et al. 2007), we cannot directly estimate the difference of di-
vergence between target domain and multiple source domains.
The key observation allowing for our proposed method to
facilitate the learning of each temporal domain in the Bayes
framework is the co-evolving situation where the parameter
trained on older temporal domain perform worse than recent
one (Proposition 1). We show the empirical evidence and
theoretical proof in the appendix.

A reasonable proposal to generalize better on future is
learning sequentially with the goal of maximizing the perfor-
mance on next training domain (Proposition 2).
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Figure 2: Illustration of slow and fast trajectory learning
framework.

Proposition 2 (Informal) Given sequential training and test
domain D1,D2, · · · ,Dt and Dt+1. For any two predictors
f : X→ R1 with different weights θi and θj , we have:

E[(RDi(θi)−RDt+1(θ
∗))2] ≤ E[V(RDj (θj)−RDt+1(θ

∗))]

+O(E[||RDj (θj)−RDt+1(θ
∗)||])2

(6)

where θi and θj are trained on Di and Dj and i < j, θ∗ is
the posterior estimate.

Trajectory Learning Mechanism
In this section, we bridge the gap between theoretical un-
derstanding and practical algorithm by introducing a novel
slow and fast trajectory learning mechanism into deep ctr
prediction model, enabling effective and efficient generaliza-
tion. Specifically, the proposed model consists of three neural
components: a working learner f , two trajectory learner: slow
and fast trajectory learner sharing same model architecture as
working learner, which are parameterized by θw, θs and θf ,
respectively. The slow learner maintains the historical seman-
tic knowledge of the encountered domains while fast learner
evolves towards recent decision boundary with maintaining
long-term knowledge. The working learner is interacted in
order to generalize toward future domain by aligning and
promoting its decision boundary with the trajectory learner.
SFTL’s overall design is illustrated in Fig. 2.

Slow Trajectory Learner The central idea of slow trajec-
tory learner (STL) is to maintain historical information which
accumulate and consolidate information over past temporal
domains. The main difference between the slow learner and
the working learner is that the slow learner is never updated
by gradient decent methods instead of a direct weights as-
signment of the working model as it sequentially learns on
different temporal domains:

θs ←− θtw (7)

where θtw is the parameter values sequentially trained onD<t.
The slow trajectory learner is updated only when temporal
domain drift (i.e. from Domain 1 to Domain 2).

Fast Trajectory Learner In the above assumption of slow
trajectory learner, gradual temporal drift occurs in each tem-
poral domain. However, in a real-world setting, the temporal
domain can be considered a short-term time window that is
more volatile. Therefore, learning short-term temporal drift
requires a robust training scheme. We proposes a continu-
ous model updating mechanism by introducing a fast trajec-
tory learner (FTL). Unlike STL, FTL updates the weights
of the fast learner using exponential moving average (EMA)
weights of the working learner:

θf ←− αθf + (1− α)θw (8)
Where α is the update coefficient, θw is the model weights

of the working learner. When α→ 1, the fast learner becomes
a replica of the working learner. When α→ 0, the fast learner
becomes a replica of the slow learner. The coefficient controls
the adaption capacity of the fast learner.

Trajectory Loss As we want to maximize the metric perfor-
mance of our working learner, we further design a trajectory
loss to force working learner to perform better than the trajec-
tory learner. To improve the bipartite ranking performance of
CTR prediction, we expect our optimization objective mea-
sures the difference of pairwise metric scores whose surrogate
function can be defined as 1

nm

∑n
i=1

∑m
j=1 I[(fθw(x

+
i ) −

fθw(x
−
j )) > (fθtra(x

+
i ) − fθtra(x

−
j ))] where x+

i and x−
j

are i-th positive sample and j-th negative sample. Thus, our
proposed trajectory loss can be defined as:

Ltra =
1

nm

n∑
i=1

m∑
j=1

log(1 + exp−(u−v)) (9)

where u and v are fθw(x
+
i ) − fθw(x

−
j ) and fθtra(x

+
i ) −

fθtra(x
−
j ) respectively, θw and θtra denote the model weights

of the working learner and trajectory learner. We only calcu-
late the gradients of the working learner.
Theorem 1 (Bias-Variance bound for trajectory loss)
Pick any convex loss ℓ. Suppose we have a teacher model
pt with corresponding empirical pairwise risk R̂(f) =
1
N

1
M

∑N
n=0

∑M
m=0 ℓ(d[f(x

+
n ), f(x

−
m)], d[ft(x

+
n ), ft(x

−
m)])

and population risk R(f) = Ex [ℓ(d[f(x
+
n ), f(x

−
m)])]

where ft(x) is the teacher output and x+, x− are positive
and negative samples respectively. For any predictor f :
X → RL,

E
[
(R̂(f)−R(f))2

]
≤ E

[
(R(ft))

2
]

(10)

The fidelity of the trajectory risk only depends on one factor:
how well the teacher model estimates approximate the true
pairwise disagreement in a logistic sense. The theorem 1 can
be proved by Jensen’s inequality. We have stated a statistical
perspective on trajectory loss, resting on the observation that
trajectory learning offers a bound that always approximates
Bayes probabilities based on the performance of the teacher
model. Although it may be loose and unstable for real-world
applications, this qualitative bound can still hold the majority
of conditions in practice.
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Algorithm 1: Training procedure of SFTL

1: Input: The working learner fθw with weights θw; the
slow learner fθs with weights θs; the fast learner fθf with
weights θf ; Training domains D1,D2, · · · ,DT ; Epochs
E; Fast alpha α; SFTL start domain/epoch sstart; Tra-
jectory loss coefficient λs and λf ; .

2: θs ← 0, θf ← 0, s← 0
3: for e = 1 to E do ▷ E = 1 for one-pass learning
4: for t = 1 to T do
5: s = t if E = 1 else e
6: while Dt is not completed do
7: sample mini-batch Dm

t from Dt

8: Compute Lce
Dm

t
(y, f(x; θw))

9: Ltra = 0
10: if s > sstart then computing trajectory loss
11: Lf

tra = Ls
Dm

t
(f(x; θw), f(x; θs))

12: Ls
tra = Lf

Dm
t
(f(x; θw), f(x; θf ))

13: Ltra = λsLs
tra + λfLf

tra
14: end if
15: L = Lce + Ltra

16: θw ← θw − η∇θwL ▷ WL updating
17: θf ← αθf + (1− α)θw ▷ FTL updating
18: end while
19: θs ← θw ▷ STL updating
20: end for
21: end for

Datasets Fields Feature size Instances

Avazu 22 2018012 40428967
Taobao 18 1760849 26557961
CIKM2019 9 7248478 58751493

Table 1: The statistic of CTR prediction datasets

Formulation SFTL involves training a working learner fθw
on a sequential data stream from D1 to from Dt with a non-
iid distribution. We first warm up the working learner and
trajectory learner without computing trajectory loss for sstart
previous temporal domains (epochs for standard supervised
learning). After that, we use the logit outputs of STL and
FTL to compute trajectory loss. Hence, the working learner
is updated with a combination of the binary cross-entropy
loss and the trajectory loss,

L = Lce + λsLs
tra + λfLf

tra (11)
We demonstrate more training details in Algorithm 1.

For inference, we use fast trajectory learner as it capture
more short-term temporal information, which shows effective
and efficient representation for temporal generalization.

Experiments
Experimental Setting
Datasets. We explore a wide range of click-through-rate
prediction datasets. Avazu1 is a display recommendation

1. https://www.kaggle.com/c/avazu-ctr-prediction

dataset released on Kaggle that contain 40428967 samples
with 22 feature fields. Taobao2 collects users’ click data from
a 8-days real-world traffic platform. Cikm20193 contains
62 million instances for purchase prediction. We construct
public datasets by split into training/validation/test set by
timestamp where the samples of last day is set for testing
and penultimate day’s data is set for validation and others
for training. We summarize the statistic on Table 1. For more
details, we refer readers to the appendix.

Baselines. (1) Feature-Interaction methods: Firstly, we
consider the feature-interaction architectures that capature
temporal information only from timestamps feature: Wid-
eDeep (Cheng et al. 2016), PNN (Qu et al. 2016), DCN
(Wang et al. 2017), DeepFM (Guo et al. 2017), xDeepFM
(Lian et al. 2018), DCN-Mix (Wang et al. 2020), AutoInt
(Song et al. 2019). (2) Temporal Domain Generalization:
We investigate a suite baselines of temporal generalization
and flatness-aware generalization methods: CIDA (Wang,
He, and Katabi 2020), GI (Nasery et al. 2021); SWA (Iz-
mailov et al. 2018), SAM (Foret et al. 2020). (3) Incremental
Learning methods: In the setting of incremental learning,
we include experience-replay methods: ADER (Mi, Lin,
and Faltings 2020) further enhanced by DER (Buzzega et al.
2020) in our implementation and dynamic architecture for
forward transferring: SML (Zhang et al. 2020) and ASMG
(Peng et al. 2021) that continuously generate model weights
with historical parameters based on convolution network and
recurrent network. The SML and ASMG can be also seen as
variants of DRAIN (Bai, Ling, and Zhao 2023) that employs a
dynamic neural network for temporal domain generalization.

Implementation Details. To evaluate our proposed
method, we followed the experimental setup of (Zhu et al.
2023) by conducting two various phase, i.e. one-pass con-
tinual learning and standard supervised training. The details
of configuration are summarized as follows. Standard su-
pervised phase: To imitate the offline retraining stage, all
of our baselines are trained on training set and early stop
until model converges on validation set. In this setting, we
evaluate the performance of feature-interaction baselines and
temporal domain generalization baselines. Continual learn-
ing phase: To imitate the online industrial system, we limit
the data access only once due to the computation efficiency.
Meanwhile, we sequentially train baselines along time and
evaluate results on the final day for comparing the general-
ization power which is different to the goal of vanilla CL. In
this setting, we adopt DCN-Mix as backbone of our method.

For all of methods, we share the same embedding rank
size (i.e. 16), MLP network (i.e. 1024-512-256), weight de-
cay ratio (i.e. 1e-5) and use the Adam optimizer (Kingma
and Ba 2014) to optimize the network. We search the best
hyper-parameters (e.g. batch size, layers of explicit feature-
interaction network, steps of adversarial training for GI and
etc.) for all of methods on variant datasets. We refer readers
to the appendix for more details due to the limited space.

2. https://tianchi.aliyun.com/dataset/56
3. https://goo.su/H5HlB
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Method Avazu Taobao CIKM2019
AUCstd Imp(%) AUCstd Imp(%) AUCstd Imp(%)

LR 0.7422(0.0002) ↓0.73% 0.5963(0.0001) ↓4.14% 0.7308(0.0000) ↓3.58%
WideDeep 0.7471(0.0017) ↓0.24% 0.6353(0.0003) ↓0.24% 0.7649(0.0014) ↓0.17%
DeepFM 0.7481(0.0018) ↓0.14% 0.6350(0.0004) ↓0.27% 0.7659(0.0007) ↓0.22%

DCN 0.7490(0.0009) ↓0.05% 0.6372(0.0002) ↓0.05% 0.7661(0.0009) ↓0.05%
PNN 0.7498(0.0009) ↑0.03% 0.6371(0.0003) ↓0.06% 0.7656(0.0005) ↓0.10%

xDeepFM 0.7461(0.0013) ↓0.34% 0.6346(0.0005) ↓0.31% 0.7645(0.0011) ↓0.21%
AutoInt++ 0.7495(0.0017) ↑0.00% 0.6311(0.0024) ↓0.66% 0.7624(0.0021) ↓0.42%

DCN-Mix 0.7495(0.0005) ↑0.00% 0.6377(0.0003) ↑0.00% 0.7666(0.0009) ↑0.00%

SAM 0.7517(0.0004) ↑0.22% 0.6377(0.0003) ↑0.00% 0.7681(0.0003) ↑0.15%
SWA 0.7512(0.0008) ↑0.17% 0.6378(0.0005) ↑0.01% 0.7678(0.0005) ↑0.12%
CIDA 0.7502(0.0017) ↑0.07% 0.6371(0.0004) ↓0.06% 0.7654(0.0009) ↓0.12%

GI 0.7508(0.0004) ↑0.13% 0.6372(0.0002) ↓0.05% 0.7618(0.0021) ↓0.48%

SFTL 0.7561(0.0006) ↑0.56% 0.6388(0.0003) ↑0.11% 0.7833(0.0005) ↑1.67%

Table 2: Comparison of final-day performance for Taobao, Avazu and Cikm2019 dataset on the standard supervised setting.

Method Avazu Taobao CIKM2019
AUCstd Imp(%) AUCstd Imp(%) AUCstd Imp(%)

IncFinetune 0.7437(0.0012) ↑0.00% 0.6206(0.0005) ↑0.00% 0.7503(0.0003) ↑0.00%

SAM 0.7443(0.0004) ↑0.06% 0.6241(0.0013) ↑0.35% 0.7508(0.0004) ↑0.05%
CIDA 0.7442(0.0017) ↑0.05% 0.6182(0.0014) ↓0.24% 0.7490(0.0007) ↓0.13%

GI 0.7451(0.0005) ↑0.22% 0.6225(0.0012) ↑0.19% 0.7497(0.0005) ↓0.06%

ADER++ 0.7468(0.0016) ↑0.29% 0.6208(0.0011) ↑0.02% 0.7517(0.0001) ↑0.14%
SMLmlp 0.7415(0.0023) ↓0.22% 0.6177(0.0009) ↓0.29% 0.7492(0.0005) ↓0.11%

ASMGmlp 0.7461(0.0005) ↑0.24% 0.6240(0.0006) ↑0.34% 0.7497(0.0004) ↓0.06%

SFTL 0.7510(0.0005) ↑0.73% 0.6320(0.0002) ↑1.14% 0.7633(0.0004) ↑1.30%

Table 3: Comparison of final-day performance on the one-pass continual learning setting.

Evaluation Metrics We used Area Under ROC (AUC) as
evaluation metrics. It is widely used for recommendation
and advertising. In addition, we use Imp metric to measure
absolute improvement over models. For ctr prediction, the
improvement over 0.1% is significant on large-scale datasets
(Wang et al. 2020; Wang et al. 2017; Lian et al. 2018).

Results on Supervised Learning Benchmarks
Table 2 reports the final-day performance of AUC and im-
provement for deep feature-interaction models and temporal
generalization methods. The reported numbers are averaged
over three runs. On all benchmarks, we sequentially train
models along time with multiple epochs. Firstly, we observe
that all of feature-interaction models are strong competitors
without explicitly modeling temporal drift. However, such
feature-interaction still cannot work well under gradual tem-
poral domain drift. To better compare our proposed method
with other baselines, we adopt DCN-Mix as backbone net-
work. We find flatness-aware generalization methods can
outperform the baselines on all of the datasets while the drift-
aware methods only work on Avazu. We conjecture that in
real-world application, personal interest varies in an unknown

trend and range over time zones of various length which ex-
acerbates the difficulty of modeling. The recent proposed
temporal generalization methods are only validated on small-
scale dataset with explicit domain drift. On the other hand,
Our proposed SFTL shows promising results on all datasets
and outperforms all of competing baselines in most cases.
Moreover, the significant improvements on the Cikm dataset
indicate SFTL’s ability to quickly adapt to the non-stationary
environment even without enough positive labels.

Results on One-Pass CL Benchmarks
In real-world ctr prediction scenarios, training deep predic-
tion networks with multiple epochs is unacceptable due to
large complexity and prone to over-fitting. Therefore, a prac-
tical recommendation system should be able to improve its
temporal generalization without accessing same instance
twice. Table 3 reports the evaluation metrics on three public
datasets, where we omit other feature-interaction methods’
performance on the one-pass continual learning setting since
we adopt the DCN-Mix as our backbone network. We ob-
serve that memory-enhanced ADER++ and sharpness-aware
minimization can work well on all datasets compared to the
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Figure 3: Domain Auc, prediction mean of negative and positive samples, sample margin on Taobao.

Method Taobao CIKM2019

Baseline 0.6206(0.0005) 0.7503(0.0003)
STLkl 0.6225(0.0008) 0.7561(0.0006)
STLtra 0.6310(0.0003) 0.7628(0.0003)
FTLkl 0.6243(0.0005) 0.7610(0.0003)
FTLtra 0.6317(0.0002) 0.7627(0.0004)

Table 4: Ablation study of different trajectory learner and
loss function on one-pass continual learning.

other baseline. Similar to the results of supervised learning
benchmark, we find the baselines of temporal domain gener-
alization perform worse on Cikm2019 dataset. We conjecture
that the temporal drift is hard to model due to the sparse
positive label in this dataset. In addition, we also observe the
dynamic architecture (SML, ASMG) even cannot compete
with the incremental fintune baseline. We conjecture that
reason has two fold: First, the main benefit in the original
implementation mainly from the feature embedding while
it can only work on dataset with small feature numbers due
to the issue of out-of-memory; Second, ASMG and SML
use coordinate-wise weight generation technique that can
only be used in small MLP network which limits generaliza-
tion capacity. On the other hand, our SFTL architecture can
efficiently and effectively leverage the long-term and short-
term historical knowledge to improve its performance and
outperforms other baselines. This result demonstrate SFTL’s
potential to work in a real-world recommendation system.

Qualitative and Sensitivity Analysis
Effectiveness of trajectory learner and loss function We
now study the effect of different trajectory learner and loss
function to the final performance of SFTL.

• Loss function: To make the working learner aware of
the past trajectory, we apply two variant loss to force
the working learner modeling the temporal dynamics. KL-
divergence regularizes the working learner’s outputs via
trajectory learner’s for preventing large deviation between
past domain and future domain while bipartite ranking loss
forces the working learner scoring better than trajectory
learner in different metrics. We report the results of differ-
ent loss function in Table 4. We find both loss functions on
different trajectory learner achieve significant improvement

Methods ERM SAM SFTL ASMG SML GI

Train 1.0x 1.5x 2.1x >8x >6x 1.8x
Serve 1.0x 1.0x 1.0x 1.0x 1.0x 1.5x

Table 5: Comparison of training speed on last domain with
same backbone whose MLP hidden layers are 1024-512-256.

over incremental fine-tuning baseline. However, bipartite
ranking loss always get better performance.

• Trajectory Learner: We independently investigate the
model performance of different trajectory learner. In Table
4, we find both learner can outperform the baseline. How-
ever, the FTL consistently yields better performance due
to the flat minima brought by self-ensemble model update
strategy. Overall, this result shows that our SFTL’s design
is general enough and can work well on the combination
of different temporal knowledge.

Convergence Visualization In Figure 3, we show how
AUC, sample margin, and prediction means the value of
positive and negative samples vary over different temporal
domain. The our proposed SFTL outperforms all the other
methods by a large margin. We can observe SFTL both de-
crease the negative mean and increases the positive mean
leading to the best bipartite ranking performance and fastest
converge speed among all baseline methods in Table 3.

Train/Serve speed In Table 5, we compare the training and
serve speed of different methods. Despite the additional two
network, the training speed of our method is only twice that
of the baseline method while the dynamic architectures suffer
from computation complexity.

Conclusion
This paper identify the key challenges of temporal domain
generalization in CTR prediction across continuously tem-
poral domains propose a novel model training strategy to
address it with a method that can achieve strong perfor-
mance without directly access future data. SFTL introduces
the trajectory-based learning to CTR prediction and propose
two novel neural modules to fast adapt on concept and do-
main drift with different extents, successfully improving the
capacity of forward transferring. The resulting method signif-
icantly outperforms the previous SOTA on temporal domain
generalization problems of CTR prediction.
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