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Abstract

Object detection in aerial imagery presents a significant chal-
lenge due to large scale variations among objects. This paper
proposes an evolutionary reinforcement learning agent, inte-
grated within a coarse-to-fine object detection framework, to
optimize the scale for more effective detection of objects in
such images. Specifically, a set of patches potentially contain-
ing objects are first generated. A set of rewards measuring the
localization accuracy, the accuracy of predicted labels, and
the scale consistency among nearby patches are designed in
the agent to guide the scale optimization. The proposed scale-
consistency reward ensures similar scales for neighboring ob-
jects of the same category. Furthermore, a spatial-semantic at-
tention mechanism is designed to exploit the spatial semantic
relations between patches. The agent employs the proximal
policy optimization strategy in conjunction with the evolu-
tionary strategy, effectively utilizing both the current patch
status and historical experience embedded in the agent. The
proposed model is compared with state-of-the-art methods
on two benchmark datasets for object detection on drone im-
agery. It significantly outperforms all the compared methods.
Code is available at https://github.com/UNNC-CV/EvOD/.

Introduction
Unmanned Aerial Vehicles have been widely used in var-
ious applications, e.g., surveillance (Yun et al. 2022), au-
tonomous detection (Ren and Jiang 2017, 2021), fleet nav-
igation (Alami et al. 2023) and agriculture (Tokekar et al.
2016). Object detection from drone-captured images has at-
tracted research attention recently (Xi et al. 2021, 2020;
Bouguettaya et al. 2022). Although object detection on nat-
ural images has progressed significantly (Ge et al. 2021),
detecting objects in aerial images remains challenging,
mainly stemming from small scales and extreme scale vari-
ations (Deng et al. 2021; Xu, Li, and Wang 2022).

Objects in aerial scenes often have large-scale variations,
e.g., distant objects occupy few pixels while nearby ob-
jects occupy thousands. To tackle the challenges of detect-
ing small objects and/or objects of different sizes, a common
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Figure 1: The number of objects (y-axis) that are optimally
detected using the scaling factor (x-axis) for ultra-small,
small, medium and large objects, respectively on the Vis-
Drone dataset. The optimal scales are significantly different
for different objects.

strategy is to divide an image into patches, scale the patches
containing small objects to a fixed size (Deng et al. 2021;
Xu, Li, and Wang 2022) or using one or more fixed scaling
factors (Huang, Chen, and Huang 2022), and then feed them
into an object detector. But the patch scalability is inherently
limited due to the potential image artifacts caused by exces-
sive scaling. Moreover, patches may encompass objects of
different sizes. While enlarging a patch improves detecting
small objects, it also enlarges large objects, potentially im-
peding their recognition. As shown in Fig. 1, the optimal
scales for different objects vary significantly. It is hence cru-
cial to determine the optimal scale of each patch.

However, there lacks ground-truth annotations for the op-
timal scales. To tackle this problem, an EVOlutionary Re-
inforcement Learning (EVORL) agent is designed to deter-
mine the most suitable scale for each patch, with the guid-
ance of a carefully designed reward function. This function
assesses the image patch by considering the localization ac-
curacy, the accuracy of predicted labels, and the scale con-
sistency among nearby patches. The first two are directly
related to the performance of object detection while the last
one regularizes the optimized scales. This scale consistency
stems from the inherent characteristics of drone imagery,
where nearby objects of the same category tend to exhibit a
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similar scale. By rewarding the scale consistency, the agent
is able to eliminate outliers influenced by incidental factors,
thereby contributing to an improved detection performance.

Simultaneously optimizing the three rewards may result
in potential conflicts, complicate the training convergence,
and limit the performance. To mitigate this issue, an evo-
lutionary strategy is integrated into the reinforcement learn-
ing framework. Specifically, the optimal scales of all patches
during training are combined with sampled historical solu-
tions to form an initial population. The proposed evolution-
ary algorithm refines the optimal scale determined by the
current patch status by evolving the solutions using muta-
tion and crossover, taking into account of the scale consis-
tency among nearby patches. By incorporating both the cur-
rent patch status and past experience stored in the agent’s
population, the proposed EVORL effectively determines the
optimal scale for precise object detection.

To further boost the detection performance, a spatial-
semantic attention is developed. Intuitively, spatially close
objects could not only exhibit the scale consistency, but
also provide the spatial-semantic attention to mutually en-
hance the patch features (He et al. 2023; Zhang et al. 2023).
Specifically, the proposed method models the spatial and se-
mantic attention by measuring the distances and the pair-
wise appearance correlations between adjacent objects, re-
spectively, and aggregates these two to obtain the spatial-
semantic attention. The proposed spatial-semantic attention
could effectively model the spatial and semantic dependen-
cies between objects, enhance the patch features and finally
help to better detect objects at a most appropriate scale.

The proposed method follows a coarse-to-fine object de-
tection pipeline (Bouguettaya et al. 2022). Specifically, a
YOLOX (Ge et al. 2021) variant is utilized to coarsely gen-
erate regions of interests. These regions are expanded to in-
clude the background context and merged to form cluster
regions as in (Huang, Chen, and Huang 2022). A feature
extractor with the proposed spatial-semantic attention is de-
signed to visually perceive the regions. The perceived infor-
mation is transmitted to the proposed EVORL agent to de-
termine the optimal scale for each region, with the guidance
of the three carefully designed rewards. Finally, the scaled
regions are fed back to the detector for fine detection.

Our contributions can be summarized as follows. 1) The
proposed EVORL agent is seamlessly integrated into a
coarse-to-fine object detection framework, and makes use
of both the current image patch and the past experience
embedded in the agent to determine the optimal scale to
accurately detect objects. 2) The designed reward function
well addresses the challenges of lacking ground-truth labels
for optimal scales, and provides supervision signals to train
the agent. The proposed scale-consistency reward considers
the scales of both the current object and nearby objects, to
eradicate outliers and enhance the detection performance. 3)
The proposed spatial-semantic attention exploits the spatial
and semantic relations between nearby patches, to enhance
the discriminant power of patch features. 4) The proposed
method significantly outperforms state-of-the-art methods
for object detection, improving the previous best average
precision from 24.6% to 28.0% on the UAVDT dataset, and

from 40.3% to 42.2% on the VisDrone dataset.

Related Work
Object Detection on Drone Imagery
In aerial images, there are a large number of small objects,
e.g., 26.5% of objects in the VisDrone dataset (Zhu et al.
2022) occupying fewer than 162 pixels. Researchers have
strove to improve small object detection on aerial imagery
by adapting general object detectors on natural images. For
example, Cheng et al. (2019) designed novel objective func-
tions for small object detection without altering existing
network architectures. Li et al. (2017) developed a super-
resolution technique to enlarge the image for better detect-
ing small objects. Bai et al. (2018) utilized a generative ad-
versarial network to obtain fine-grained features for small
blurred objects. Some researchers utilized the shallow lay-
ers of deep neural networks to alleviate the problems of low
resolution and detail loss caused by down-sampling oper-
ations (Bouguettaya et al. 2022), e.g., Sommer, Schuchert,
and Beyerer (2017) used high-resolution feature maps from
earlier layers to enhance detection performance.

Some researchers tackled the challenges of large scale
variations. Wang et al. (2019) introduced a Receptive Field
Expansion Block and a Spatial-Refinement Module to cap-
ture context information and refine solutions using multi-
scale pyramid features. Zhang et al. (2019) developed a
scale-adaptive proposal network, which consists of multi-
scale region proposal networks and multi-layer feature fu-
sion to better detect objects of different scales. The feature
pyramid network is often adopted to combine low-level fea-
tures from shallow layers with high-level features from deep
layers for multi-scale object detection (Zhou et al. 2019).

The coarse-to-fine pipeline is often utilized for detecting
objects in aerial images through extracting regions of in-
terests using a coarse detector, scaling the image patches,
and then detecting objects within them (Bouguettaya et al.
2022). Ozge Unel, Ozkalayci, and Cigla (2019) uniformly
divided the high-resolution image into patches of a fixed
size, and detected objects from patches. Yang et al. (2019)
designed a network to crop regions of dense objects and a
scale estimation network to resize the crops. Xu, Li, and
Wang (2022) developed a self-adaptive region selection al-
gorithm to focus on the dense regions, and leveraged super-
resolution to enlarge the focused regions to a fixed size be-
fore fine-grained detection. Huang, Chen, and Huang (2022)
first equalized the scales of all generated patches, and then
fed them into a unified mosaic for inference.

Although scaling is critical to object detection, existing
solutions often scale the patches to a fixed size (Xu, Li, and
Wang 2022) or using fixed scaling factors (Huang, Chen, and
Huang 2022). Optimal scaling has not been fully exploited.

General Object Detection
General object detectors are often adapted for drone im-
agery (Cai and Vasconcelos 2018). Depending on the way
of feature extraction, object detectors can be broadly di-
vided into traditional methods and deep learning methods.
Traditional methods often utilize handcrafted features such
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as local binary patterns (Ren, Jiang, and Yuan 2015), scale-
invariant key-points (Lowe 2004) and histograms of oriented
gradients (Dalal and Triggs 2005). These handcrafted fea-
tures are often task-specific, and ineffective in dealing with
complex real-world problems (Bouguettaya et al. 2022).

Numerous deep learning object detectors have been de-
veloped recently (Ren et al. 2017; Ge et al. 2021), and they
demonstrate superior performance thanks to the discrimi-
native deep learning features. These models could be fur-
ther categorized into two types: 1) Two-stage detectors, in
which regions of interests are first extracted using a region
proposal network, and objects are recognized within them.
Representative models include Regions with CNN features
(R-CNN) (Girshick et al. 2014), Faster R-CNN (Ren et al.
2017), and Mask R-CNN (He et al. 2017). 2) One-stage
detectors, which integrate the proposal generation and ob-
ject detection into one stage. YOLO-series (You Only Look
Once) (Redmon et al. 2016; Redmon and Farhadi 2017;
Ge et al. 2021), RetinaNet (Lin et al. 2020) and Efficient-
Det (Tan, Pang, and Le 2020) are the leading solutions.

General object detectors perform well on natural images,
but not on aerial images. Aerial images often have higher
image resolution but contain much more objects of various
sizes, which imposes great challenges for detecting them.

Proposed Method
Overview of Proposed Method
To tackle the challenges of determining the optimal scales,
an evolutionary reinforcement learning agent is proposed.
The agent is integrated into a coarse-to-fine object detec-
tion framework. The proposed framework mainly consists
of three modules, as shown in Fig. 2. 1) Coarse Patch Gen-
eration. CSPDarkNet (Wang, Bochkovskiy, and Liao 2021)
is utilized as the backbone to generate the feature pyramid.
In addition to the small, medium and large feature maps
PS ,PM ,PL used in YOLOX (Ge et al. 2021), an ultra-
small feature map PU is added, which contains low-level
fine details for better detecting small objects. These features
are then fed into the YOLOX decoupled heads to gener-
ate regions of interests B. 2) Cluster Region Generation.
The contextual information from both the background and
nearby objects has shown to be helpful in recognizing ob-
jects (Zhang et al. 2022, 2023). The coarsely detected re-
gions B are hence expanded by a factor of β to include the
background context as BE = FE (B;β), where FE and BE

represent the expansion function and the expanded regions,
respectively. The expanded regions are then clustered and
merged into a cluster region set C using the Foreground Re-
gion Generation (Huang, Chen, and Huang 2022). 3) Evolu-
tionary Reinforcement Learning. A visual perception net-
work is designed to visually perceive the regions, in which
a spatial-semantic attention is designed to capture the spa-
tial and semantic relations between nearby objects. Three re-
wards considering localization accuracy, label accuracy and
scale consistency are designed to guide training, which well
addresses the problem of lacking ground-truth annotations
of optimal scales. To balance these three rewards, the hybrid
algorithm combining the evolutionary strategy and Proximal

Policy Optimization (PPO) strategy is designed to determine
the optimal scales. The regions are then scaled accordingly,
packed into mosaics as in (Huang, Chen, and Huang 2022)
and fed back to the detector for fine detection. Finally, post-
processing techniques such as non-maximum suppression
are utilized to generate the final detection results.

Formulation of Reinforcement Learning
The scale optimization problem is formulated as a Markov
Decision Process, represented by the tuple (S,O,A,R, ps).
State S refers to the set of states of the environment, specif-
ically, the determined scaling factors of all the generated
cluster regions at a specific point in time.
Observation O encompasses the vital information about the
objects, e.g., spatial features, semantic features, patch at-
tributes and the attentive information from nearby objects.
Action A = {a1, . . . , aN} consists of a set of actions for
the N cluster regions, where each action ai corresponds to a
specific scaling action for the cluster region Ci ∈ C.
State transition probability ps is defined as ps(s

′|s, a) =
Pr{St+1 = s′|St = s,At = a}, indicating the likelihood of
transitioning from the current state s to a new state s′ under
the execution of action a.
Reward R assesses the current state based on the object
detection accuracy and the scale consistency among nearby
objects. More details are provided later on.

Visual Perception with Spatial-semantic Attention
The visual perception network takes the cluster regions C
as the input, and extracts the appearance features using a
patch encoder, ResNet-18 pre-trained on ImageNet. As each
region contains fewer objects than the whole image, the
ResNet-18 can well extract the appearance features while
keeping the network lightweight. Specifically, the appear-
ance features are derived as X = FP (C;θ), where FP rep-
resents the network, θ represents the network parameters,
and X denotes all extracted features packed together.

To capture the attentive information between nearby ob-
jects, a spatial-semantic attention is designed. Specifically,
the spatial attention S is explicitly modeled by the recipro-
cal of the distance between the centers of two objects, where
each element Sij = 1/FD(Ci,Cj), and FD calculates the
spatial distance between Ci and Cj . Intuitively, the smaller
the spatial distance, the greater the mutual spatial attention.

To model the semantic attention, the appearance fea-
tures X are firstly projected into three embedding spaces
as the query matrix Q = FQ(X,θQ), key matrix K =
FK(X,θK), and value matrix V = FV (X,θV ), where
FQ, FK and FV represent the transformation networks,
and θQ, θK and θV represent the learnable parameters of
these three networks, respectively. The semantic attention is
modeled as FS(Q,K) = Q·K⊤

√
d

, where d is the feature di-

mension, and
√
d ensures a stable gradient for the attention

map. The proposed semantic attention makes use of the self-
attention mechanism to exploit the attentive information be-
tween nearby objects, so that correlated objects are weighted
more to boost the discriminant power of the target object.
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Figure 2: Overview of the proposed model. A YOLOX variant is first utilized to generate regions of interests. The regions
are expanded to include the background context and merged to form cluster regions. An evolutionary reinforcement learning
(EVORL) agent with three rewards is designed to determine the optimal scale for each patch. The spatial-semantic attention is
designed to boost the patch features. After determining the optimal scales through the proposed EVORL, the regions are scaled
and consolidated into a mosaic image, and passed back to the detector for fine detection.

The spatial-semantic attention E of all clustered regions
is obtained through an aggregation network FA(·) by,

E = FA(FS(Q,K) · S) · V . (1)
The proposed spatial-semantic attention well leverages on
both spatial and semantic dependencies between nearby im-
age patches, and hence effectively boosts the discriminative
power of patch features with the support of nearby objects.

Reward Function
Three types of rewards are designed to provide feedback to
the agent regarding the quality of a specific scaling action.
1) Localization Reward rl, for accurately locating the ob-
jects. Specifically, rl calculates the average Intersection over
Union (IoU) between the detected bounding boxes and the
ground-truth ones, and it rewards the agent for accurately
locating the objects. 2) Labeling Reward rc, for correctly
classifying the objects. Specifically, rc is defined as the av-
erage classification accuracy for objects with an IoU of at
least 0.5. 3) Scale-consistency Reward rs. In aerial im-
ages, nearby objects of the same category tend to share a
similar scale. rs is designed to incentivize the scale con-
sistency. Specifically, denote the scaling factor for Ci as
λi. To ensure the scale consistency, for each cluster region
Ci, we minimize the differences between the scaling factor
λi and that of all its Ni nearby regions of the same class,
∆i =

1
Ni

∑Ni

j=1 |λi − λi
j |, where λi

j denotes the scaling fac-
tor of the j-th neighboring region that has the same class
label as Ci. The scale-consistency reward is defined as,

rs =
1

N

N∑
i=1

e−∆i/K , (2)

where K is a normalization factor. rs is large if the neigh-
boring cluster regions share similar scaling factors. Note that
this reward relies on not only the optimal scaling factor of
the current image patch, but also that of neighbors. Thus,
the decision-making process for the optimal scaling factor
of each patch becomes more complex.

The first two rewards rl and rc encourage the agent to
choose a scaling factor to accurately locate and recognize
the objects, and the last reward rs serves as a regularization
constraint to remove the outliers in scaling factors. The re-
ward functionR makes use of these three rewards as,

R = αlrl + αcrc + αsrs, (3)

where αl, αc and αs are the respective weighting factors.

Evolutionary Reinforcement Learning Strategy
The three designed rewards may conflict with each other.
Jiang et al. (2018) found that features that generated
good classification scores always generated rough bound-
ing boxes. Value-based Deep Q-Networks (Song et al. 2023)
or policy-based Proximal Policy Optimization (PPO) mod-
els (Yi, Qu, and Jiao 2023) may not well address the
challenges of simultaneously maximizing conflicting re-
wards (Bai, Cheng, and Jin 2023). Evolutionary strategies
have been designed to handle conflicting rewards in multi-
objective scheduling (Tu et al. 2023; Chen et al. 2022). In
this paper, an evolutionary strategy is integrated with a PPO
strategy, where the PPO strategy effectively makes use of
the appearance features to determine a suitable scaling ac-
tion under the guidance of the three rewards, and the evolu-
tionary strategy makes use of the past experience embedded
in the agent to refine the scaling action.
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The PPO agent consists of an actor model to choose
a proper action and a critic model to evaluate the action.
Specifically, the actor model takes the spatial-semantic at-
tended features as the input, estimates the probability distri-
bution of feasible actions by using a squeeze-and-excitation
network (Hu, Shen, and Sun 2018), and determines an ap-
propriate scaling action for each cluster region. An action
is sampled using the policy πϑ, at ∼ πϑ(a

t|st), and the
advantage function is calculated to evaluate the action as
A(st, at) = R(st, at) + γVφ

(
st+1

)
− Vφ (st), where γ is

the discount factor and Vφ(·) is the state value in a specific
state estimated by the critic model. The parameters ϑ of the
actor model are updated through the gradient descent as,

ϑ← ϑ+ ηϑ∇ϑ log πϑ(a
t|st)A(st, at), (4)

where ηϑ is the learning rate. The actor model performs an
efficient exploration to avoid a local optimum. The critic
model employs a network architecture analogous to the actor
network, which takes the observations from the current state
as the input and approximates the state-value function. Fol-
lowing the design in (Araslanov, Rothkopf, and Roth 2019),
the critic loss is defined as the squared error loss of estimated
state-value and discounted sum of rewards in the trajectory.
The critic model is updated with a learning rate of ηφ as,

φ← φ− ηφ∇φ(Vφ
(
st
)
−

T∑
i=t

γi−tRi)2. (5)

The proposed evolutionary strategy is designed to better
explore and exploit the feasible action space. Specifically,
denote λ = {λi}Ni=1 as the set of scaling factors for N
cluster regions. The scaling actions λt given by the actor
model at Step t, along with the W −1 best solutions HW−1

from the history actions H form the initial population of size
W . H contains effective solutions dominated by different
rewards in different scenarios. By applying evolution oper-
ators such as crossover and mutation, the newly generated
W offspring could explore and exploit solutions in multiple
scenarios, and balance the importance of different rewards.
Specifically, the crossover of scaling factors combines his-
torical solutions in different scenarios from more than one
parent, and the mutation of scaling factors allows broader
trials and escape from possible local optimums. Among W
parents and W generated offspring, the new population is
formed by W individuals with the largest scale-consistency
reward rs, as defined in Eqn. (2). The evolution stops if
rs ≥ δ, where δ is a predefined threshold. The best solu-
tion after evolution is applied to scale the cluster regions,
and simultaneously stored into H. Objects are detected on
the scaled regions, and the rewards are calculated to evalu-
ate the scaling actions and update the EVORL network as in
(Araslanov, Rothkopf, and Roth 2019).

The proposed evolutionary reinforcement learning for de-
termining the optimal scales is summarized in Algo. 1.

Experimental Results
Experimental Settings
Datasets The proposed model is compared with state-of-
the-art models on two benchmark drone imagery datasets.

Algorithm 1: Training procedures for the proposed EVORL
Input: The number of episodes P , the number of steps T ,
the number of evolution iterations I , the population size W
Output: Policy net π

1: for p← 1 to P do
2: Sample a batch of M images.
3: for t← 1 to T do
4: Derive the appearance features X from images for

N cluster regions as X = FP (C;θ).
5: Extract the spatial-semantic features as in Eqn. (1).
6: Obtain the scaling actions λt by using the actor.
7: Combine λt with HW−1 as the initial population.
8: for i← 1 to I do
9: Yield W offspring by crossover and mutation.

10: Evaluate each offspring and parents by Eqn. (2),
break if rs ≥ δ.

11: Choose best W individuals as new population.
12: end for
13: Select the best λt from population and add to H.
14: Update the state using the scaling factors λt.
15: Derive the reward asRt = αlrl + αcrc + αsrs.
16: Estimate the state-value Vφ (st).
17: Evaluate the advantage function A(st, at).
18: Update the actor model by using Eqn. (4).
19: Update the critic model by using Eqn. (5).
20: end for
21: end for

UAVDT dataset (Du et al. 2018) is a drone imagery dataset
for object detection, single-object tracking and multi-object
tracking. It contains 24,143 and 16,592 images for train-
ing and testing, respectively, with an average resolution of
1, 024 × 540 pixels. This dataset captures images in com-
plex scenarios and is commonly utilized for detecting vehi-
cles like cars, trucks, and buses.
VisDrone dataset (Zhu et al. 2022) is a large-scale bench-
mark collected by drone-mounted cameras, encompassing
10,209 aerial images of 10 different categories, with a size
of 2, 000 × 1, 500 pixels. The dataset is officially split into
training, testing and validation sets, with 6,471, 3,190 and
548 images, respectively. As ground-truth annotations of the
testing set are unavailable, following (Liu et al. 2021; Ge
et al. 2022), the validation set is used for evaluation.

Compared Methods The proposed method is compared
against nine state-of-the-art models. The results of compared
methods are taken directly from the original papers. Faster
R-CNN (Ren et al. 2017) serves as a baseline method. HRD-
Net adapts general object detectors on natural images for
detecting small objects in aerial images (Liu et al. 2021).
DMNet (Li et al. 2020a) adapts the Multi-Column CNN for
crowd counting to estimate an object density map and crops
patches for fine detection. Other models are grouped based
on the way of scaling patches in the coarse-to-fine pipeline.
Resized to a fixed size: SAIC-FPN utilizes super-resolution
techniques to up-sample the input image and performs
fine detection on cropped patches (Zhou et al. 2019).
GLSAN (Deng et al. 2021) roughly detects patches first, and
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then resizes these patches to a fixed size by super-resolution
methods. AdaZoom (Xu, Li, and Wang 2022) leverages a
reinforcement learning framework to determine the focused
regions, and resizes them to a certain scale for fine detection.
Resized with one or a few scaling factors: ClusDet (Yang
et al. 2019) utilizes two sub-networks, one for cropping re-
gions of dense objects and the other for adjusting the scales
of crops for fine detection. UFPMP-Det (Huang, Chen, and
Huang 2022) and Zoom&Reasoning Det (Ge et al. 2022)
both utilize the detector with Generalized Focal Loss (Li
et al. 2020b) for coarse detection. The former determines
the patch scale by measuring the average object size inside
the patch, and the latter incorporates a Foreground Zoom
strategy to determine the patch scales.

Implementation Details The stochastic gradient descent
strategy is employed with a weight decay rate of 0.0005, a
momentum rate of 0.9, and a dropout rate of 0.5. A cosine
learning rate scheduler is used with an initial learning rate
of 0.01. The same β = 1.5 is used as in (Huang, Chen, and
Huang 2022). For the EVORL agent, the weighting factors
αl, αc and αs are set to 1, the threshold δ = 0.5, the size of
the population W = 32, the number of evolution iterations
I = 10, the number of steps T = 50 for one mini-batch, and
the number of episodes P = 1000.

Comparison Results on UAVDT
The proposed method is compared to seven state-of-the-art
methods on the UAVDT dataset, using the evaluation met-
rics AP , AP50 and AP75 as in (Huang, Chen, and Huang
2022; Xu, Li, and Wang 2022). As shown in Table 1, the
proposed model significantly outperforms all previous so-
lutions, specifically surpassing UFPMP-Det (Huang, Chen,
and Huang 2022), the previous best performing method, by
3.4%, 5.1% and 3.5% in terms of AP , AP50 and AP75, re-
spectively. UFPMP-Det utilizes the average object size for
scaling factor selection (Huang, Chen, and Huang 2022),
which struggles with large scale variations. In contrast, the
proposed EVORL makes use of both the current image patch
and the past experience embedded in the agent to make in-
formed decisions, adaptively determining the optimal scale
for each patch. The spatial-semantic attention mechanism
exploits supportive cues between objects to enhance patch
features. Moreover, the Localization Reward and Labeling
Reward provide supervision signals to directly maximize de-
tection accuracy and the Scale-consistency Reward regular-
izes the agent to derive a more robust solution, leading to
significant performance improvements.

To further analyze the performance across objects of dif-
ferent sizes, APS , APM and APL, the average precision
for objects with an area smaller than 322 pixels, between
322 and 962 pixels, and larger than 962 pixels, respectively
on the UAVDT dataset, are summarized in Table 2. Some
methods in Table 1 did not report results for objects of dif-
ferent sizes. As shown in Table 2, the proposed method con-
sistently outperforms all the compared models across three
sizes, demonstrating its capability of detecting objects of
various scales. Specifically, compared to Zoom&Reasoning
Det (Ge et al. 2022), the performance gain is 6.5%, 7.7%

Method AP AP50 AP75

Faster R-CNN (TPAMI, 2017) 12.1 23.5 10.8
ClusDet (ICCV, 2019) 13.7 26.5 12.5
DMNet (CVPR Workshop, 2020) 14.7 24.6 16.3
GLSAN (TIP, 2021) 17.0 28.1 18.8
AdaZoom (TMM, 2022) 20.1 34.5 21.5
Zoom&Reasoning Det (SPL, 2022) 21.8 34.9 24.8
UFPMP-Det (AAAI, 2022) 24.6 38.7 28.0
Proposed Method 28.0 43.8 31.5

Table 1: Comparison with the state-of-the-art methods on
the UAVDT dataset. The proposed method consistently and
significantly outperforms all the compared methods.

Method APS APM APL

Faster R-CNN (TPAMI, 2017) 8.4 21.5 14.7
ClusDet (ICCV, 2019) 9.1 25.1 31.2
DMNet (CVPR Workshop, 2020) 9.3 26.2 35.2
AdaZoom (TMM, 2022) 14.2 29.2 28.4
Zoom&Reasoning Det (SPL, 2022) 15.3 32.7 30.8
Proposed Method 21.8 40.4 35.9

Table 2: Comparison with state-of-the-art methods on the
UAVDT dataset in terms of APS , APM and APL.

Method AP AP50 AP75

Faster R-CNN (TPAMI, 2017) 21.8 41.8 20.1
SAIC-FPN (Neurocomputing, 2019) 35.7 62.3 35.1
ClusDet (ICCV, 2019) 32.4 56.2 31.6
DMNet (CVPR Workshop, 2020) 29.4 49.3 30.6
GLSAN (TIP, 2021) 32.5 55.8 33.0
HRDNet (ICME, 2021) 35.5 62.0 35.1
Zoom&Reasoning Det (SPL, 2022) 39.0 66.5 39.7
UFPMP-Det (AAAI, 2022) 39.2 65.3 40.2
UFPMP-Det+MS (AAAI, 2022) 40.1 66.8 41.3
AdaZoom (TMM, 2022) 40.3 66.9 41.8
Proposed Method 42.2 66.0 44.5

Table 3: Comparisons with state-of-the-art methods on the
VisDrone dataset. The proposed method significantly out-
performs the compared methods in terms of AP and AP75.

and 5.1% for small, median and large objects, respectively.

Comparison Results on VisDrone
The comparison results with nine state-of-the-art methods
on the VisDrone dataset (Zhu et al. 2022) are summarized
in Table 3. Key observations are summarized as follows:
1) The proposed model significantly outperforms all com-
pared models in terms of the key evaluation metric AP .
Specifically, it achieves an AP of 42.2%, making an im-
provement of 1.9% over the previous best model, Ada-
Zoom (Xu, Li, and Wang 2022). AdaZoom resizes the
patches to a fixed scale, while the proposed method utilizes
the current image patch, the spatial-semantic attention, the
scale consistency, and the past experience embedded in the
agent to adaptively determine the most appropriate scale for
each patch, leading to better detection performance. 2) The
most significant performance gain is observed in AP75, with
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Figure 3: Visual comparison with UFPMP-Det (Huang, Chen, and Huang 2022) on the VisDrone dataset. The proposed method
correctly detects more objects than UFPMP-Det, as annotated in green.

YOLOX PPO SSA EVO AP AP50 AP75√
37.5 59.3 39.3√ √
39.1 61.9 41.1√ √ √
40.7 64.0 43.0√ √ √ √
42.2 66.0 44.5

Table 4: Ablation study of major components of the pro-
posed method on the VisDrone dataset.

a 2.7% improvement over AdaZoom, thanks to the Localiza-
tion Reward that enhances object localization. 3) The pro-
posed method yields a slightly lower AP50 than AdaZoom,
because many ultra-small objects in the VisDrone dataset
only contain a few pixels, while YOLOX faces challenges in
detecting these objects during coarse detection (Wang et al.
2023). 4) Note that the previous best methods on the two
datasets are different. Compared to the previous best method
on the VisDrone dataset, AdaZoom, the proposed method
achieves significant performance gains of 7.9%, 9.3%, and
10.0% in terms of AP , AP50 and AP75, respectively, on the
UAVDT dataset.

Ablation Study of Major Components

The ablation results for the proposed method on the Vis-
Drone dataset (Zhu et al. 2022) are summarized in Table 4.
1) Compared to the YOLOX baseline, by introducing the
PPO agent to determine the optimal scales based on the ap-
pearance feature extracted directly from the Patch Encoder,
the AP , AP50 and AP75 are improved by 1.6%, 2.6% and
1.8%, respectively. 2) By adding the spatial-semantic atten-
tion (SSA) into the visual perception module, the AP , AP50

and AP75 are further improved by 1.6%, 2.1% and 1.9%,
respectively. 3) By incorporating the evolutionary strategy
into the PPO agent, the AP , AP50 and AP75 are further
boosted by 1.5%, 2.0% and 1.5%, respectively. The pro-
posed EVORL makes good use of the past experience to re-
fine the derived scaling factors, so that it mitigates the outlier
scaling factors. These ablation results show the effectiveness
of the major components in the proposed method.

Visualization of Detection Results
The proposed method is visually compared to UFPMP-
Det (Huang, Chen, and Huang 2022) that yields the previ-
ous best results averaged across the two datasets. As shown
in Fig. 3, the proposed model better recognizes small ob-
jects that are easily neglected, e.g., the ‘car’ and ‘person’
objects at the lower left corner of the focused regions in the
first two columns, and the ‘tricycle’ objects in the third col-
umn. The ultra-small feature map encodes more low-level
but high-resolution features, partially reducing the loss of
details during feature pooling. Notably, UFPMP-Det selects
one of three predefined scaling factors based on the average
object size in a patch, while the proposed method adaptively
determines the optimal scale of each patch by utilizing both
the current patch and the agent’s past experience, and hence
better detects small objects. Moreover, as seen from the last
column of Fig. 3, UFPMP-Det wrongly classifies ‘van’ as
‘car’ whereas the proposed method can correctly classify
them, thanks to the proposed scale-consistency reward and
the spatial-semantic attention mechanism, which effectively
utilizes supportive information from nearby objects to better
distinguish challenging objects.

Conclusion
To tackle the challenges of detecting small objects and han-
dle the large scale variations in drone imagery, an evolution-
ary reinforcement learning framework has been proposed to
determine the optimal scale for object detection. The de-
signed agent combines the evolutionary strategy and the
proximal policy optimization strategy to make good use of
both the current patch status and the past experience embed-
ded in the agent’s population. The three designed rewards,
considering the localization accuracy, the accuracy of pre-
dicted labels, and the scale consistency, address the issue
of lacking ground-truth labels for optimal scales, and pro-
vide supervision signals for training the agent. Furthermore,
a spatial-semantic attention has been designed to capture
the mutual supportive information from nearby objects. The
proposed method has been compared with nine state-of-the-
art approaches on two benchmark datasets, UAVDT and Vis-
Drone. It significantly outperforms the compared solutions.
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