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Abstract

Designing novel biological sequences with desired proper-
ties is a significant challenge in biological science because
of the extra large search space. The traditional design pro-
cess usually involves multiple rounds of costly wet lab evalu-
ations. To reduce the need for expensive wet lab experiments,
machine learning methods are used to aid in designing bi-
ological sequences. However, the limited availability of bi-
ological sequences with known properties hinders the train-
ing of machine learning models, significantly restricting their
applicability and performance. To fill this gap, we present
ERLBioSeq, an Evolutionary Reinforcement Learning algo-
rithm for BIOlogical SEQuence design. ERLBioSeq lever-
ages the capability of reinforcement learning to learn without
prior knowledge and the potential of evolutionary algorithms
to enhance the exploration of reinforcement learning in the
large search space of biological sequences. Additionally, to
enhance the efficiency of biological sequence design, we de-
veloped a predictor for sequence screening in the biological
sequence design process, which incorporates both the local
and global sequence information. We evaluated the proposed
method on three main types of biological sequence design
tasks, including the design of DNA, RNA, and protein. The
results demonstrate that the proposed method achieves signif-
icant improvement compared to the existing state-of-the-art
methods.

Introduction
Designing biological sequences with desired properties is of
great significance for both biology and chemistry (Bennett
et al. 2023; Silva et al. 2019; Song and Li 2023; Wang et al.
2020). However, designing novel biological sequences with
desired properties, such as binding affinity (Tinberg et al.
2013), antimicrobial activity (Torres et al. 2021), or stabil-
ity (Mourtada et al. 2019), poses challenges due to the re-
quirement of exploring a discrete and extensive search space
(Jain et al. 2022). Artificial intelligence (AI) can assist hu-
mans in efficiently designing biological sequences, thus ac-
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celerating scientific discovery (Zrimec et al. 2022; Repecka
et al. 2021). However, the deployment of AI may fail due to a
lack of prior knowledge (Dama et al. 2023). Unfortunately,
designing biological sequences without prior knowledge is
valuable in diverse domains, such as designing regulatory
DNA to control gene expression (Zrimec et al. 2022) and
designing proteins to catalyze desired chemical reactions
(Repecka et al. 2021). Therefore, it is important to develop
a method for novel biological sequence design without prior
knowledge.

Reinforcement learning (RL) can start without prior
knowledge (Schrittwieser et al. 2020; Silver et al. 2018).
Through training the agent with rewards, it becomes possi-
ble to devise a strategy capable of surpassing even a world-
champion human player (Silver et al. 2021). In the field
of biological science, under the constraint of limited data
availability, Dama et al. (2023) employs RL in the mapping
of microbial metabolism without prior knowledge. More-
over, RL has also been applied in the domain of biological
sequence design (Angermueller et al. 2019). However, RL
agents must balance known rewards with unfamiliar data,
resulting in limited exploration of the biological sequence
space and difficulty in finding the ideal sequence. As a result,
applying RL to designing biological sequences with desired
properties within a vast sequence space is not straightfor-
ward.

Evolutionary algorithms (EAs) are the more common ap-
proach for biological sequence design, recognized as the
gold standard in this field (Arnold 1998). They have risen
as formidable competitors for biological sequence design
owing to their broad applicability (Sinai et al. 2020; Ren
et al. 2022). However, the EAs focus on exploring the local
space (Auger and Hansen 2005). The inefficient utilization
of evolutionary directional information results in lower ef-
ficient searches for biological sequences that satisfy desired
properties.

In biological sequence design, multiple rounds of exper-
imentation are often needed (Jain et al. 2022). Directly ap-
plying generated sequences to wet experiments can be time-
consuming and labor-intensive. To address the problem, cre-
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ating a fitness prediction model for screening can signif-
icantly reduce the burden of wet experiments (Ren et al.
2022). Sinai et al. (2020) included an ensemble convolu-
tional neural network in their robust evolutionary greedy al-
gorithm. Additionally, Ren et al. (2022) proposed a Muta-
tion Factorization Network architecture for sequence selec-
tion. However, these approaches either focus on particular
situations or demand integration with existing models, ig-
noring the optimization of feature extraction from biolog-
ical sequences for predictive models. The process of fea-
ture extraction is critical to the success of machine learning
(Storcheus, Rostamizadeh, and Kumar 2015). Furthermore,
the incorporation of more comprehensive features bears the
capacity to enhance the precision of result predictions (Li
et al. 2023).

In this work, we propose a novel framework called ERL-
BioSeq for the effective design of biological sequences with-
out prior knowledge. We integrate the strengths of RL and
evolutionary algorithm (EA) to design biological sequences.
Specifically, to address the challenge of RL’s limited explo-
ration in complex sequence environments, we suggest em-
ploying EA to explore biological sequences produced by
RL. This will enhance RL’s exploratory capacity. Mean-
while, RL has the capability to incorporate populations of
biological sequences as direction information into EA. This
addresses the issue of EA’s inefficient utilization of evolu-
tionary directional information. We leverage these charac-
teristics to facilitate mutual enhancement between the two
algorithms. Additionally, we design a predictor that utilizes
local and global information extracted from biological se-
quences as features for predicting sequence fitness. The pre-
dictor facilitates sequence screening in the biological se-
quence design process through the extraction of more com-
prehensive features. To the best of our knowledge, this is the
first evolutionary reinforcement learning-based method for
designing novel biological sequences. The major contribu-
tions of our work are outlined as follows:

• We introduce a methodology that combines the advan-
tages of EA and RL, for the design of biological se-
quences.

• We propose a predictor that utilizes both local and global
information derived from biological sequences as fea-
tures to predict sequence fitness.

• The evaluation results demonstrate that ERLBioSeq out-
performs state-of-the-art methods in discovering high-
scoring candidates with fewer rounds of experimentation.
By harnessing local and global information extracted
from biological sequences, the predictor can enhance the
performance of designing biological sequences.

Related Work
Evolutionary Algorithms. EAs are employed in design-
ing biological sequences through iterative generation and
evolution. This process is guided by fitness criteria to op-
timize the desired function. In detail, Directed Evolution,
acknowledged with a Nobel Prize in 2018, currently stands
as the esteemed gold standard for biomolecular design and
employs a randomized local search approach (Arnold 1998).

Sinai et al. (2020) presents a new algorithm called AdaLead,
which is a simple and robust way of finding biological
sequences for a given function. The algorithm employs
a model to predict the function of a sequence, acting as
an oracle. It then selects the suitable sequence based on
the feedback from this oracle. Ren et al. (2022) present a
new method for designing protein sequences. The method
uses a model-guided exploration strategy that starts from
a known sequence and iteratively modifies it by sampling
from a distribution of proximal sequences. However, evolu-
tionary algorithm-based methods exhibit limitations in terms
of search efficiency within the expansive exponential search
space, rendering them inadequate to fulfill the efficiency re-
quirements associated with biological sequence design.

Generative Models. Generative models possess the ca-
pacity to simulate data distributions and create entirely novel
biological sequences through sampling from these distribu-
tions. Gupta and Zou (2019) introduced feedback GAN (FB-
GAN), a new type of generative model that uses a feedback
loop to adjust the generated sequences based on an exter-
nal function analyzer. Brookes, Park, and Listgarten (2019)
introduced a model-based adaptive sampling method that es-
timates a distribution over the design space based on desired
properties. This method prevents the exploration algorithm
from becoming trapped in regions of poor model generaliza-
tion. Jain et al. (2022) applied an active learning algorithm
that uses GFlowNets, which is a generative model to pro-
duce diverse and novel candidates. The method also incor-
porates existing labeled data to speed up learning. However,
generative models exhibit a significant reliance on data, re-
sulting in limited availability for designing novel biological
sequences.

Reinforcement Learning. RL can learn biological se-
quence design without prior knowledge of biological se-
quences. Angermueller et al. (2019) proposed Dynappo, a
model-based RL method that uses a proximal-policy opti-
mization (PPO) (Schulman et al. 2017) algorithm to train
a generative sequence model that can produce diverse and
high-quality sequences. To improve sample efficiency, Dy-
nappo also uses a surrogate model that approximates the ex-
perimental function based on previous observations. How-
ever, general RL lacks the exploration of the environment,
resulting in low search efficiency.

Problem Formulation and Method
In this section, we first formulate the biological sequence
design problem. After that, we will introduce the key com-
ponents of the ERLBioSeq framework in detail.

Problem Formulation
The primary challenge in biological sequence design is to
create a sequence x ∈ V T with the desired properties, where
V is the set of amino acids (|V | = 20), DNA nucleotides
(|V | = 4), or RNA nucleotides (|V | = 4), and T is the
length of the sequence. The ultimate goal is to maximize the
fitness of the sequence through the fitness landscape f(x),
where the fitness landscape characterizes the mapping be-
tween biological sequences and their functional levels. The
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Figure 1: The main workflow of ERLBioSeq. (A) This figure shows how ERLBioSeq combines EA and RL in biological
sequence design. (B) This diagram illustrates the process of employing RL for the design of biological sequences. (C) The
architecture of fitness predictor.

design process encompasses N iterations. In each iteration i
(where i ∈ {1, 2, ..., N}), a collection of sequences labeled
as Xi is generated, where Xi =

{
x1
i , x

2
i , ..., x

B
i

}
. The num-

ber of queries of the fitness landscape f(x) in each round is
denoted as B.

Subsequently, the fitness of these sequences is determined
by applying the fitness landscape f(x) to each of the se-
quences, resulting in a collection of fitness values denoted
as Yi =

{
y1i , y

2
i , ..., y

B
i

}
. These fitness values play a crucial

role in constructing distinct datasets referred to asDi, which
are individually generated in each design round. Formally,
Di is represented as

{
(x1

i , y
1
i ), (x

2
i , y

2
i ), ..., (x

B
i , y

B
i )

}
. As

the design process advances, the cumulative dataset Xall,
Yall, Dall is formed by merging the various sets Xi, Yi, Di,
respectively. One of our goals is to maximize the best score
in Xall, which can be formalized as:

Top(Xall) = argmax
x∈Xall

f(x). (1)

Beyond achieving the highest score, we also contem-
plate the mean value of the top-k biological sequences, be-
cause the sequence with the highest score might not align
with practical requirements, necessitating additional candi-
date sequences for comprehensive testing.

Overview of ERLBioSeq
We first introduce the main workflow of our framework
ERLBioSeq, as shown in Figure 1, we utilize the design
of DNA sequences to describe our model’s process. Fig-
ure 1A shows the algorithm how to combine EA and RL
in biological sequence design, in each round of design, se-
quences obtained from both the EA and RL are merged.
New sequences are generated by the EA through selection,
crossover, and mutation mechanisms. Following that, the

novel sequences are evaluated and filtered according to fit-
ness predictor scores. Concurrently, RL will generate bio-
logical sequences with desired properties. These sequences
were subsequently integrated into sequence populations for
the next optimization round. Figure 1B illustrates the pro-
cess of employing RL for the design of biological sequences.
For DNA sequences, the agent performs an action at given
the present state st, gains a reward rt, and iterates the sub-
sequent state update until the designated sequence length is
attained. Figure 1C is a biological sequence fitness predictor
that utilizes both local and global features, to augment the
filtration of sequences proposed by the EA. Specifically, we
extract local features from biological sequences using CNN,
and global features using BI-LSTM, to facilitate the predic-
tion of biological sequence fitness. Next, we will introduce
each module in detail.

Combining Evolutionary and Reinforcement
Learning for Biological Sequence Design
In this section, we introduce how to combine EA and RL
in biological sequence design. RL can learn online without
prior knowledge but lacks exploration of the environment.
Classical EA relies on random mutation and a combination
of populations, which have wide applicability and stability
but they suffer from low sample efficiency and a weaker
ability to harness evolutionary directional information. We
consider combining EA and RL algorithms for the design of
biological sequences, where RL can supply directional in-
formation through population sequences for EA, and EA can
enhance the exploration ability of RL and help RL search
and find better sequences in local space, RL and EA mutu-
ally enhance performance.

Reinforcement Learning to Design Biological Sequences.
The process of designing a sequence using RL can be for-
mulated as a Markov decision process (MDP) like M =
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⟨S,A,P,R, γ⟩, where S represents the set of states, while
A denotes the set of actions, P refers to the transition func-
tion, R represents the set of rewards associated with being
in a particular state and taking a specific action, γ ∈ [0, 1) is
the discount factor. A policy π ∈ P (A)|S| defines the distri-
bution over all action for each state. The goal of RL is to find
an optimal policy π∗ that maximizes the expected long-term
discounted return.

For biological sequence design issues, a sequence is gen-
erated sequentially from left to right. At time step t, state
equation st = {a0, a1, ..., at−1}, and action at ∈ A is exe-
cuted to reach the next state, where at is an amino acid or a
nucleotides. The transition function P (st+1|st) is determin-
istic, so at is directly added to the original sequence. Except
for the reward in the last step, the reward in the other steps is
0, and the reward is related to f(sT ). The discounted return
can be formalized as:

G(τ) =
T−1∑
t=0

γtrt+1. (2)

Where τ represents a trajectory where a complete sequence
is generated, we trained a policy πθ to optimize the total
expected rewards:

J (θ) = Eτ∼pθ(τ)[G(τ)] = Eτ∼pθ(τ)

[
T−1∑
t=0

γtrt+1

]
. (3)

The policy takes as input the current state st and outputs
an action at that maximizes the expected reward overall fu-
ture time steps. The workflow of RL to design biological
sequences is shown in Figure 1B. We use a one-hot vector
encoding state, if there is no amino acid or nucleotides at
this position, then the encoding vector of this position is all
0.

Evolutionary Algorithm for Designing Biological Se-
quences. The evolutionary algorithm starts with a random
initial set of sequences, denoted as Xrandom. During the i-th
(i > 1) design round, a subset of high-performing sequences
was chosen from Dall based on their fitness scores. This pro-
cess can be defined as follows:

R =

{
x|f(x) ≥ max

y∈Yall

y · (1− κ), ∀x ∈ Xall

}
. (4)

Here, κ serves as the threshold governing the fraction of
screened sequences. These sequences undergo recombina-
tion and mutation processes to produce novel mutants. These
mutants are then assessed using a fitness predictor de-
noted as f ′(x), which quantifies their quality. Following ex-
perimental validation of sequences filtered by their fitness
scores, a novel dataset Di is obtained. These sequences are
preserved within the candidate library Dall for subsequent
exploration. This procedure generally involves several iter-
ations of optimization, each designed to iteratively enhance
the population sequence.

Combining Evolutionary Algorithms and Reinforcement
Learning. To utilize the benefits of both methods, we pro-
pose the ERLBioSeq framework, which combines RL and

Algorithm 1: ERLBioSeq
Input: experiment rounds N , fitness model f ′, batch B,
threshold κ, scaling factor v, RL policy πθ, bufferDrl,Devo,
Dall, mutants M , random sequences Xrandom

Initialize : Dall ← ∅
1: for i = 1, 2, 3...N do
2: Let Drl ← ∅, Devo ← ∅, M ← ∅
3: if i > 1 then
4: Form sets Xall and Yall from the x-values and y-

values in Dall, respectively
5: R = {x|f(x) ≥ maxy∈Yall

y · (1− κ), ∀x ∈ Xall}
6: else
7: R = Xrandom

8: end if
9: while |M | < v ·B do

10: M = M ∪MutationAndCrossover(R)
11: end while
12: Use f ′ to select S, the top B/2 sequence from M
13: for x ∈ S do
14: Devo = Devo ∪ {x, f(x)}
15: end for
16: while |Drl| < B/2 do
17: Collect samples Drl = {x, f(x)} using policy πθ

18: end while
19: Dall = Dall ∪ Drl ∪ Devo

20: Train f ′ with data from Dall

21: Train policy πθ on Drl

22: end for

EA to generate new sequences that meet the desired prop-
erties. The biological sequences obtained from both algo-
rithms are integrated into the sequence population for fur-
ther optimization. Algorithm 1 summarizes the overall pro-
cedure of our algorithm. To generate the candidate batch, we
use a design algorithm that combines EA and RL. Specifi-
cally, with the exception of the initial design round that em-
ployed random sequences Xrandom, in subsequent rounds
we extract a subset of sequences from Dall, and then apply
MutationAndCrossover (detail in Appendix A.11) opera-
tions to these sequences to produce v ·B new sequences M ,
where v is used to adjust the number of biological sequences
generated by each round of EA.

Then, we use the fitness model f ′ to select the best B/2
sequences to S from M and measured their fitness using fit-
ness landscape f(x) to get Devo. We also use the RL policy
πθ to generate B/2 sequences forDrl. We add the sequences
from Devo and Drl to Dall, and use Dall to train the fitness
model f ′ and Drl to train the RL policy πθ. It consists of N
rounds of interactions for continued iteration.

Fitness Model Design. In the framework of ERLBioSeq,
we have a fitness model f ′ for screening sequences, this is
a challenge in designing biological sequences (Ren et al.
2022). Existing studies such as ensemble CNN (Sinai et al.
2020), Mutation Factorization Network (Ren et al. 2022),
etc., either focus on specific scenarios or need to be inte-

1https://github.com/reset001/ERLBioSeqappendix.
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Figure 2: Comparison of methods on RNA design task. (a) and (e) are the relationship between the cumulative maximum value
of the objective function f(x) and the iteration round for RNAs of length 14 and 50, respectively, the shaded area is the standard
deviation. (b-d) and (f-h) show the boxplots with data scatter distribution of RNA sequences with lengths of 14 and 50 in the
top 10, 50, and 100 biological sequences, respectively. More experimental results on RNA design are in Appendix B.1.

grated with existing models. They ignore optimizing fea-
ture extraction for predictive models, a crucial process for
successful machine learning (Storcheus, Rostamizadeh, and
Kumar 2015). Moreover, integrating more comprehensive
features can boost the accuracy of result predictions (Li et al.
2023). To address the challenge of inadequate feature extrac-
tion, we have developed a model, named Local Global Fea-
ture Extraction Network (LGFEN), which utilizes local and
global biological sequence information in features to glean
more comprehensive insights to predict the fitness score of
biological sequences.

Figure 1C illustrates the structure of LGFEN. When pro-
vided with a biological sequence, our first step involves rep-
resenting it through one-hot encoding. Inspired by the mul-
tiple windows scanning techniques in convolutional neural
networks proposed by Ho, Le, and Ou (2022), we apply
convolutional filters with varying window sizes to the input
feature matrix, acquiring feature representations for diverse
neighborhoods within the biological sequence. Currently,
CNN has been employed to encode the feature vector of the
biological sequence as V = {v1, v2, . . . vT }, enhancing the
localized information at each position t within the sequence.
Nevertheless, vt does not encompass the global information
of the sequence. Long short-term memory networks (LSTM)
(Hochreiter and Schmidhuber 1997) have been devised to
capture long-range dependencies and encode sequential in-
formation. At time step t, the forward LSTM produces a
vector

−→
ht , while the backward LSTM generates a vector

←−
ht .

Through concatenating the outcomes of the left and right
LSTM, we derive the BI-LSTM output Ht = [

−→
ht ,
←−
ht ]. Sub-

sequently, a fully connected neural network is utilized to
map the feature vector onto the fitness score y. The model is
trained to employ the mean squared error loss as the objec-

tive function.

Experiments
In this section, we show experimental results from a range
of biologically relevant sequence design tasks to demon-
strate the effectiveness of our proposed ERLBioSeq algo-
rithm. Additionally, we conduct ablation studies to explore
the contribution of each individual design component.

Tasks and Evaluation Criteria
Following prior works, we choose some energy models and
datasets to simulate the fitness landscape.

RNA Binding Task. This task aims to optimize RNA se-
quences to achieve the highest binding energy with nu-
cleotide targets of lengths 14 and 50. The ViennaRNA pack-
age is utilized to compute the binding energy of RNA se-
quences (Lorenz et al. 2011). We follow the design task pre-
sented by Sinai et al. (2020). The size of search space is 414
and 450.

Protein Design Task. We evaluate the algorithms in
the context of protein design tasks, employing PyRosetta
(Chaudhury, Lyskov, and Gray 2010) as the objective func-
tion. The objective function provides a scaled estimation of
folding energy, reflecting the likelihood of sequence fold-
ing into the intended structure (Kuhlman et al. 2003). Ad-
hering to the experimental configuration outlined in (Sinai
et al. 2020), we optimize the structure of 3MSI, a 66-amino-
acid antifreeze protein naturally occurring in oceanic envi-
ronments (DeLuca et al. 1998). The size of the search space
is 2066.
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Figure 3: Comparison of methods on a protein design task. (a) is the relationship between the cumulative maximum value of
the objective function f(x) and the iteration round, the shaded area is the standard deviation. (b-d) show the boxplots with data
scatter distribution in the top 10, 50, and 100. More experimental results on protein design are in Appendix B.2.

ERLBioSeq Adalead Bo Cbas Cmaes Dynappo GflowNet

Top10 mean 0.989±0.006 0.984±0.007 0.958±0.021 0.974±0.013 0.967±0.022 0.937±0.026 0.870±0.071
Top50 mean 0.970±0.013 0.963±0.016 0.878±0.060 0.928±0.034 0.882±0.066 0.863±0.052 0.735±0.113
Top100 mean 0.953±0.022 0.941±0.026 0.801±0.094 0.886±0.053 0.786±0.116 0.800±0.079 0.629±0.159

Table 1: Mean binding activity of top 10, 50, and 100 DNA and transcription factor targets.

TF Bind 8 Task. This task aims to find DNA sequences of
length 8 that have high binding activity to human transcrip-
tion factors. We use the same data as in Barrera et al. (2016)
and follow the experimental setup of Trabucco et al. (2022).
The search space size is 48. Although the problem features a
small search space, it is ideal for computer benchmarks due
to its exhaustiveness, eliminating the need for estimating the
missing f(x).

Baselines
• GflowNet (Jain et al. 2022) is a generative model for

diverse and novel biological sequences (e.g., proteins,
DNA) with desired properties. It employs flows to cap-
ture complex dependencies and constraints of these se-
quences.

• AdaLead (Sinai et al. 2020) implements model-guided
evolution, performing hill-climbing on high-fitness query
sequences in each batch round.

• Dynappo (Angermueller et al. 2019) treats biological
sequence design as a sequential decision problem, us-
ing model-based RL with proximal policy optimization
(Schulman et al. 2017) to learn search strategies.

• Cbas (Brookes, Park, and Listgarten 2019) confines the
sampling distribution, resulting in a trust region search
with the learned model.

• Cmaes (Hansen 2006), an established evolutionary
search algorithm, adapts search strategies using covari-
ance matrix estimation for the next generation.

• Bayesian Optimization (Bo) (Močkus 1975) is a classi-
cal approach to sequence design problems. We used the
implementation developed by (Sinai et al. 2020).

Performance Comparison
We evaluated the performance of ERLBioSeq on problems
involving DNA, RNA, and proteins. To enhance the robust-

ness of our evaluation, each of our experimental outcomes
represents 10 independent runs. Further experimental details
are provided in Appendix A.2. Figures 2 (a), 2 (e) and 3
(a) depict the relationship between the cumulative maximum
value of the objective function f(x) and the iteration round
for RNAs and protein 3MSI. Figures 2 (b-d), 2 (f-h) and 3
(b-d) are the box plots with data scatter distribution depict-
ing the distribution of the top 10, 50, and 100 sequences of
RNA and protein generated by various algorithms. Because
the DNA binding design problem is relatively easy to opti-
mize, the gap between various algorithms is not very large,
so we use the top-k average method to compare various al-
gorithms. Table 1 provides a summary of the outcomes de-
rived from this comparison. Based on all the results, it is ev-
ident that ERLBioSeq outperforms the baseline algorithm.
As Adalead is classified as EA and Dynappo is classified as
RL, our implementation encompasses both algorithms. Con-
sequently, our algorithm can be readily compared with these
methodologies to conduct ablation experiments focusing on
the components of EA and RL. Compared to the indepen-
dent EA method Adalead and the RL method Dynappo, our
results demonstrate that the combination of EA and RL out-
performs any single algorithm. Implementation specifics of
ERLBioSeq are provided in Appendix A.1.

Effectiveness of LGFEN
The effectiveness of biological sequence design is also in-
fluenced by the fitness prediction model’s quality. To con-
duct an ablation study of the model, we explored four ad-
ditional model architectures: CNN, MLP, LSTM, and BI-
LSTM. The diverse model structures were applied to DNA,
RNA, and protein design tasks. The corresponding experi-
mental outcomes are presented in Table 2. The assessment
scores represent the average performance scores of the top
10, 50, and 100 sequences produced by varying model struc-
tures. The outcomes demonstrate that LGFEN outperforms
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LGFEN MLP CNN LSTM BI-LSTM

Top10 mean

DNA 0.989 ± 0.006 0.981 ± 0.008 0.987 ± 0.007 0.970 ± 0.009 0.973 ± 0.007
RNA14 0.976 ± 0.043 0.969 ± 0.038 0.942 ± 0.054 0.931 ± 0.057 0.964 ± 0.056
RNA50 0.805 ± 0.043 0.728 ± 0.028 0.713 ± 0.040 0.736 ± 0.045 0.749 ± 0.042
Protein 14.621±2.218 13.124±1.331 14.064±2.429 12.477±1.829 13.124±1.663

Top50 mean

DNA 0.970 ± 0.013 0.957 ± 0.019 0.965 ± 0.017 0.926± 0.033 0.939 ± 0.027
RNA14 0.927 ± 0.045 0.915 ± 0.047 0.893 ± 0.057 0.872± 0.054 0.900 ± 0.059
RNA50 0.768 ± 0.048 0.688 ± 0.035 0.677 ± 0.043 0.689± 0.052 0.704 ± 0.046
Protein 14.239±2.206 12.767±1.285 13.679±2.418 12.089±1.789 12.691±1.658

Top100 mean

DNA 0.953 ± 0.022 0.932 ± 0.030 0.943 ± 0.028 0.889± 0.047 0.904 ± 0.043
RNA14 0.899 ± 0.049 0.886 ± 0.051 0.868 ± 0.058 0.837± 0.058 0.866 ± 0.063
RNA50 0.737 ± 0.055 0.660 ± 0.041 0.650 ± 0.048 0.656± 0.058 0.670 ± 0.053
Protein 14.020±2.204 12.583±1.282 13.449±2.410 11.868±1.770 12.466±1.647

Table 2: Comparison of mean values of top 10, 50, and 100 biological sequences with different predictors in DNA, RNA, and
protein design tasks.

ERLBioSeq EVOBo EVOCmaes EVOCbas EVOGflowNet

Top10 mean

DNA 0.989 ± 0.006 0.986 ± 0.006 0.987 ± 0.008 0.987 ± 0.007 0.988 ± 0.007
RNA14 0.976 ± 0.043 0.943 ± 0.054 0.930 ± 0.058 0.902 ± 0.066 0.968 ± 0.041
RNA50 0.805 ± 0.043 0.796 ± 0.04 0.762 ± 0.048 0.804 ± 0.038 0.784 ± 0.050
Protein 14.621±2.218 12.294±1.007 11.821±1.296 11.907±1.294 12.976±1.077

Top50 mean

DNA 0.970 ± 0.013 0.966 ± 0.015 0.968 ± 0.016 0.967 ± 0.015 0.967 ± 0.016
RNA14 0.927 ± 0.045 0.897 ± 0.053 0.880 ± 0.059 0.860 ± 0.064 0.922 ± 0.041
RNA50 0.768 ± 0.048 0.753 ± 0.050 0.730 ± 0.050 0.774 ± 0.042 0.754 ± 0.054
Protein 14.239±2.206 11.943±1.006 11.449±1.236 11.563±1.277 12.570±1.041

Top100 mean

DNA 0.953 ± 0.022 0.944 ± 0.027 0.950 ± 0.024 0.947 ± 0.026 0.948 ± 0.025
RNA14 0.899 ± 0.049 0.869 ± 0.057 0.847 ± 0.063 0.835 ± 0.064 0.898 ± 0.044
RNA50 0.737 ± 0.055 0.716 ± 0.060 0.695 ± 0.061 0.743 ± 0.051 0.727 ± 0.060
Protein 14.020±2.204 11.754±1.002 11.241±1.213 11.363±1.267 12.358±1.027

Table 3: Different algorithm combinations with EA in the DNA, RNA, and protein design tasks, the mean value comparison of
the top 10, 50, and 100 biological sequences.

other predictors across diverse sequence design tasks. This
affirms LGFEN’s exceptional performance and its suitability
for varied design challenges. The experiment that does not
use LGFEN but uses CNN as a predictor to compare with
baselines like Ren et al. (2022) can be viewed in Appendix
B.3, the results show that LGFEN significantly enhances the
efficiency of biological sequences. Appendix A.1 contains
the implementation specifics of LGFEN.

Effect of Reinforcement Learning
The preceding experiments establish the superiority of the
proposed ERLBioSeq algorithm. To assess the efficiency of
RL in biological sequence design relative to other models,
we conducted additional ablation studies. These studies in-
volved substituting the RL module with alternative modules
to ascertain the benefits of RL. We explored the integration
of alternative comparative models within the evolutionary
process, encompassing Bo, Cmaes, Cbas, and Gflownet. We
also evaluated these models on tasks involving DNA, RNA,
and protein design tasks. The results of diverse model archi-
tectures are presented in Table 3. The evaluation scores rep-
resent the average performance scores of the top 10, 50, and

100 sequences generated by distinct model structures. Our
approach largely outperforms all other methods, substantiat-
ing the exceptional performance resulting from the fusion of
EA and RL.

Conclusion and Future Work
In this paper, we introduce a novel biological sequence de-
sign approach, termed ERLBioSeq, which does not rely on
prior knowledge. Our approach combines the EA and RL,
harnessing their respective strengths. Subsequently, we de-
vise a biological scoring predictor LGFEN within the evolu-
tionary process by integrating both local and global informa-
tion of biological sequences. To assess the efficacy of ERL-
BioSeq, we compare it with state-of-the-art methods. The
evaluation covering DNA, RNA, and protein design shows
ERLBioSeq’s superiority over alternative state-of-the-art
methods. Concurrently, it is established that LGFEN signifi-
cantly enhances the efficiency of biological sequences. Fur-
thermore, we assessed the impact of various models on the
EA. The findings indicate that RL provides the most sub-
stantial contribution to the EA. In the future, we intend to
undertake targeted optimizations for more specific domains.
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