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Abstract

Cell type identification plays a vital role in single-cell RNA
sequencing (scRNA-seq) data analysis. Although many deep
embedded methods to cluster scRNA-seq data have been pro-
posed, they still fail in elucidating the intrinsic properties of
cells and genes. Here, we present a novel end-to-end deep
graph clustering model for single-cell transcriptomics data
based on unsupervised Gene-Cell collective representation
learning and Optimal Transport (scGCOT) which integrates
both cell and gene correlations. Specifically, scGCOT learns
the latent embedding of cells and genes simultaneously and
reconstructs the cell graph, the gene graph, and the gene
expression count matrix. A zero-inflated negative binomial
(ZINB) model is estimated via the reconstructed count ma-
trix to capture the essential properties of scRNA-seq data.
By leveraging the optimal transport-based joint representa-
tion alignment, scGCOT learns the clustering process and the
latent representations through a mutually supervised self op-
timization strategy. Extensive experiments with 14 compet-
ing methods on 15 real scRNA-seq datasets demonstrate the
competitive edges of scGCOT.

Introduction
Single-cell RNA-sequencing (scRNA-seq) technology can
characterize individual cellular states in a high-throughput
manner (Simmons et al. 2023), which enables researchers to
elucidate the heterogenity among individual cells. Over the
past years, scRNA-seq has become an important tool as the
robustness and accessibility of scRNA-seq assays are im-
proved continuously. Cell type identification has become a
vital task in scRNA-seq data analysis, as it can imply dif-
ferent biological processes, such as cellular differentiation,
lineage commitment, and gene regulation (Wan, Chen, and
Deng 2022). Based on the transcriptome similarity, clus-
tering has been proved to be an effect leverage to define
cell types in an unbiased way (Kiselev, Andrews, and Hem-
berg 2019). However, although many classical clustering al-
gorithms are robust and universal for tabular data, cluster
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analysis of scRNA-seq data remains a domain-specific chal-
lenge, owing to its unique high dimensionality characteris-
tics (Kiselev, Andrews, and Hemberg 2019).

Essentially, scRNA-seq data is very sparse and has a large
number of zero elements (Grün, Kester, and Van Oudenaar-
den 2014; Kulkarni et al. 2019). An intuitive way to alle-
viate the problem is to leverage a transformation to learn
a latent representation on the original scRNA-seq data, and
conduct clustering in the latent space. Therefore, multiple
approaches are proposed (Butler et al. 2018; Žurauskienė
and Yau 2016; Wang et al. 2018). However, linear transfor-
mation methods, such as PCA, suffer from the noise in the
scRNA-seq data; and are difficult to capture the cell-cell re-
lationships. Classical non-linear techniques also have limi-
tations; their parameters are required to be manually defined
by user and can strongly affect the downstream tasks (Kise-
lev, Andrews, and Hemberg 2019).

In recent years, with the advent of deep learning, deep
embedded clustering methods have been developed to avoid
the shortcomings of the conventional methods and to facili-
tate cell type identification in scRNA-seq data (Lopez et al.
2018; Wang and Gu 2018; Chen et al. 2020; Tian et al. 2019;
Tran et al. 2021). These methods basically utilize an autoen-
coder to learn the latent representation of scRNA-seq data.
Among those methods, one of the most representative one is
scDeepCluster (Tian et al. 2019); it is a model-based deep
autoencoder, combining the model of DCA (Eraslan et al.
2019) and the clustering algorithm of DEC (Xie, Girshick,
and Farhadi 2016) together by means of Kullback–Leibler
divergence to realize cell type identification in an end-to-end
manner. However, these autoencoder-based algorithms focus
only on studying the data itself, neglecting the relationships
between cells, thus learns representations ineffectively. To
cover this shortage, some graph neural network-based meth-
ods, such as GraphSCC (Zeng et al. 2020), scGAE (Luo
et al. 2021), scDSC (Gan et al. 2022), scGNN (Wang et al.
2021), are developed to capture the cell relations and topo-
logical structure information. These methods integrate graph
neural nework and autoencoder to simultaneously capture
the complex relationship among cells and the intrinsic prop-
erties of cells. However, they only models the cell correla-
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Figure 1: Overview of scGCOT. The overall model consists
of two graph autoencoders to learn the latent representa-
tions of cells and genes, a ZINB-based decoder using the re-
constructed count matrix to learn the inherent structure and
properties of scRNA-seq data, and adopts OT to optimize
the clustering process.

tions and may lack the latent representations of genes.
Given the drawbacks of the previous works, we pro-

pose a deep graph clustering algorithm based on unsuper-
vised gene-cell collective representation learning and op-
timal transport (OT) theory, named scGCOT, as shown in
Fig. 1. scGCOT learns cell correlations and gene correla-
tions by attention-based graph autoencoders simultaneously,
and learns to reconstruct the original gene expression count
matrix. Subsequently, a ZINB model is formed in a seamless
way via the reconstructed count matrix to capture the essen-
tial properties of scRNA-seq data, by estimating three main
parameters of the ZINB distribution and maximizing its log
likelihood. Then, a mutually supervised self-optimization
learning strategy is leveraged to conduct the joint represen-
tation alignment, where the OT theory is used to align the
clustering distribution and the auxiliary distribution.

The main contributions of our work are listed as follows:

• A deep graph embedded model named scGCOT is pro-
posed for cell type identification on scRNA-seq data.

• Gene correlations are also taken into consideration in
scGCOT. To the best of our knowledge, scGCOT is the
first architecture that combines gene correlations and cell
correlations together.

• The ZINB distribution is estimated in a seamless way to
capture the essential properties of the data.

• The optimal transport theory is used for joint represen-
tation alignment, which can optimize the cluster assign-
ment continuously.

• scGCOT is compared with a dozen of competing meth-
ods on 15 real scRNA-seq datasets. The experiment re-
sults demonstrate that scGCOT outperforms all of the
other baselines.

Related Works
Deep embedded clustering methods ususally levearge a deep
autoencoder to learn a feature representation in the la-
tent space via minimizing the mean square error (MSE)

of the raw data and the reconstructed data. For example,
scDeepCluster combines DCA (Eraslan et al. 2019) and
DEC (Xie, Girshick, and Farhadi 2016) to learn the la-
tent feature representation and cluster assignment simulta-
neously. scVI (Lopez et al. 2018) uses stochastic optimiza-
tion in a deep autoencoder to aggregate information and
to approximate the distributions that underlies the observed
expression values. scziDesk (Chen et al. 2020) adopts a
weighted soft K-means algorithm for data points in the latent
space to achieve high quality cell clustering. DESC (Li et al.
2020) leverages a deep autoencoder to learn the nonlinear
mapping from the original feature space to the low dimen-
sional feature space iteratively. Generally, these methods in-
tegrates feature representation learning and cluster assign-
ment to enhance the final clustering performance. However,
they only consider the gene expression information, with-
out explicitly characterizing the relationship and structural
information among cells.

To this end, multiple deep graph embedded clustering
methods are proposed to learn the structural information and
correlations between cells. For instance, scGNN (Wang et al.
2021) inserts a Gaussian mixture model into the graph neural
networks to capture various heterogeneous gene expression
patterns. To better learn the cell topology, scTAG (Yu et al.
2022) adopts the topological adaptive graph convolutional
networks (Du et al. 2017) to extract the structural informa-
tion of scRNA-seq data at different scales. scDFC (Hu et al.
2023) applies the graph attention network (Veličković et al.
2017) to reduce the noise effect brought in to the cell graph.
As a novel approach, contrastive learning is introduced for
cell clustering by scNAME (Wan, Chen, and Deng 2022)
and scDCCA (Wang et al. 2023a). Overall, existing state-of-
the-art graph embedded clustering methods extract the cell
correlations to realize a better understanding of gene expres-
sion.

Methodology
Pre-processing
We take the original scRNA-seq gene expression count ma-
trix Xo ∈ RM×N as the input, where M and N are the
numbers of cells and genes. We first filter out the genes that
are not expressed in cells. Considering the different range of
count values for each cell, we normalize the expression for
each cell to transform the discrete value to continuous using
the following equation:

M
(
Xo

ij

)
= ln

(
median(Xo)

Xo
ij∑N

n=1 X
o
in

)
, (1)

where median(Xo) is the median of the filtered gene ex-
pression matrix. We normalize the expression for Xo

ij using
the sum of N genes expressions for cell i. Then we adopt
the scannpy package (Wolf, Angerer, and Theis 2018) to
rank the top n highly-variable genes using the normalized
dispersion values to get the final processed scRNA-seq gene
expression matrix. For datasets with less than one thousand
cells, we follow scGAC (Cheng and Ma 2022) to conduct a
network enhancement technique to reduce the noise.
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Cell and Gene Graphs
Previous deep learning methods for scRNA-seq data clus-
tering only leverages the cell correlations without consider-
ing the gene correlations. Therefore, we try to extract gene
correlation representations along with the ordinary cell cor-
relation representations. Given the preprocessed scRNA-seq
gene expression data X ∈ RM×n, where Xij denotes the
expression count of j-th highly-variable gene in i-th cell,
we first construct the cell correlation graph. Similar to pre-
vious works, the KNN algorithm is employed to construct
the cell graph Gc and each node in the graph represents a
cell. Specifically, an edge between node a and node b exists
if a is b’s neighbor within top-K shortest distance. Subse-
quently, we use the same method to construct the gene cor-
relation graph Gg based on XT, where (XT)ij represents
the expression count of i-th gene in the j cell. The reason to
construct a gene correlation graph on XT is biologically in-
tuitive: some genes may be expressed across multiple types
of cells and some may not, and thus XT can be treated as a
cell expression profile for each gene.

Attention-based Graph Autoencoders
Since scRNA-seq data are inherently noisy (Grün, Kester,
and Van Oudenaarden 2014), it is reasoned that many edges
in the correlation graphs may be incorrectly connected.
Therefore, an attention mechanism is needed to ensure that
accurate information of the graph structure is obtained. To
capture the precise intrinsic structure and node features in
the cell graph and the gene graph, we develop two graph at-
tention autoencoders based on Graph Transformer (Shi et al.
2020) for cell and gene representation learning. The gene
expression matrix X and the cell expression profile XT, to-
gether with their corresponding adjacency matrices, Ac and
Ag , are used as inputs.

For cell graph autoencoder learning, considering the
graph encoder has L layers, we assume each node has a hid-
den dimension of dl, which means the input data of the l-th
hidden layer is x

(l)
i ∈ Rdl . Then the cell graph encoding

process is defined as follows:

y
(l)
i = W1x

(l)
i +

∑
j∈N (i)

αi,jW2x
(l)
j , (2)

where y
(l)
i represents the l-th output feature map of the cell

graph encoder; W1 and W2 are the learnable weights of the
encoder layer; and the attention coefficient αij is computed
via dot product attention:

αi,j = softmax

(
(W3x

(l)
i )T(W4x

(l)
j )

√
dl

)
, (3)

where W3 and W4 are learnable weights of the attention
calculation. After each graph attention calculation, a nonlin-
ear activation function is applied to the output y(l)

i :

x
(l+1)
i = σ(y

(l)
i ), (4)

where σ(·) = max(0, x) denotes the ReLU function. To
simplify the equations, we abbreviate the cell graph encoder
calculation as:

Zc = f1
E(X). (5)

Ideally, the intrinsic correlations of cells are preserved in
the latent embedding space, therefore, we define the decoder
part by simply combining a fully-connected layer and a self
inner product, as formulated below:

Ẑc = WcZc + bc, (6)

Âc = ϕ(ẐT
c Ẑc), (7)

where Âc is the reconstructed adjacency matrix of the cell
correlation graph; ϕ(·) is the sigmoid activation function. To
constrain the learning process, the MSE loss between the re-
constructed adjacency matrix Âc and the original adjacency
matrix of the cell graph Ac is calculated as the reconstruc-
tion loss:

Lc = ||Ac − Âc||22. (8)
Similarly, we deploy another gene graph autoencoder with
the same structure as the cell graph autoencoder for gene
representation learning, denoted as f2

E . Then the gene latent
space given by the autoencoder is formulated as:

Zg = f2
E(X

T). (9)

And the reconstructed adjacency matrix of the gene correla-
tion graph is obtained in the same way as the cell decoder:

Ẑg = WgZg + bg, (10)

Âg = ϕ(ẐT
g Ẑg). (11)

Then the reconstruction loss of the gene autoencoder is cal-
culated to constrain the learning process:

Lg = ||Ag − Âg||22. (12)

ZINB-based Gene-Cell Collective Representation
Learning Decoder
In order to capture the global structure of the gene-cell ex-
pression count matrix X, we integrate a decoder in scGCOT
using the latent feature embedding Zg and Zc collectively
to better obtain the structure of scRNA-seq data. We first let
the latent representation Zg and Zc reconstruct the original
gene expression matrix X collectively by their inner product
and compute the reconstruction loss:

X̂ = ZT
c Zg, (13)

Lr = ||X− X̂||22. (14)

scRNA-seq gene expression count matrix basically con-
forms to three characteristics: 1) discrete; 2) variance greater
than the mean; 3) many entries have a zero value. These
characteristics can be modeled as a zero-inflated negative bi-
nomial (ZINB) distribution. Formally, ZINB is formulated
with a mean value µ and a dispersion parameter θ of the
negative binomial distribution, along with an additional co-
efficient π that represents the weight of the probability of the
dropout events in scRNA-seq data:

ZINB(X|π, µ, θ) = πδ0(X) + (1− π)× Γ(X+ θ)

X!Γ(θ)

×
(

θ

θ + µ

)θ

×
(

µ

θ + µ

)X

,

(15)
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where µ and θ represent the mean and dispersion in the nega-
tive binomial distribution, respectively; π denotes the weight
of the zero components. To capture the characteristics of
scRNA-seq data, we assume the reconstructed X̂ also fol-
lows a ZINB distribution. The three parameters µ, θ, and π
of the ZINB distribution is estimated by constructing three
parallel output fully-connected layers:

π̂ = sigmoid(WπX̂), (16)

θ̂ = exp(WθX̂), (17)

µ̂ = exp(WµX̂), (18)

where Wπ , Wθ, and Wµ are the corresponding weight of
the three parameter estimators; and the selection of the ac-
tivation function depends on the range and the definition of
the three parameters: since π denotes the weight of the point
mass at zero, which is in the range of [0, 1], sigmoid is cho-
sen for π̂ estimation; given the non-negative essence of the
paramter µ and θ, we use the exponential function. Subse-
quently, the loss function of the ZINB parameter estimation
is defined as the negative log-likelihood of the ZINB distri-
bution:

Lz = − log(ZINB(X|π̂, θ̂, µ̂)). (19)

OT-based Joint Representation Alignment
To enhance the representation of cluster assignment, we in-
troduce a novel approach, named mutually supervised self-
optimization strategy, which takes the advantage of OT.
This strategy aligns the cluster distribution and the auxiliary
distribution continuously, thereby optimizing the clustering
process. In our framework, we consider the clustering distri-
bution as Q and the auxiliary distribution as P same as (Xie,
Girshick, and Farhadi 2016). To quantify the clustering dis-
tribution of the latent embedding Zc, we define qiu, an ele-
ment in Q, as:

qiu =

(
1 + ∥zi − µu∥2

)−1

∑
r

(
1 + ∥zi − µr∥2

)−1 , (20)

In our approach, each cell i is represented by its latent rep-
resentation zi, while µu represents the cluster centroid rep-
resentation obtained from the pseudo-labels generated by
spectral clustering, given the cluster number r. To ensure
the prominence of high-confidence data points, an auxiliary
distribution P is introduced based on qiu, which is defined
as follows:

piu =
q2iu/

∑
i qiu∑

r (q
2
ir/
∑

i qir)
. (21)

Additionally, we denote the divergence between the distri-
butions Q and P as an entropically regularized OT problem,
formulated as follows:

OT (M,Q,P)ϵ = min
γ

⟨γ,M⟩F + ϵ ·
∑
i,j

γi,j log (γi,j) ,

subject to γ1 = Q; γT1 = P; γ ≥ 0,
(22)

Dataset Cell Gene Types Ref.
p3cl 2609 17561 3 (Dong et al. 2021)
Muraro 2122 19046 9 (Muraro et al. 2016)
Qx L. M. 3909 23341 6 (Schaum et al. 2018)
Qs Diaph. 870 23341 5 (Schaum et al. 2018)
Qs Heart 4365 23341 8 (Schaum et al. 2018)
Qs L. M. 1090 23341 6 (Schaum et al. 2018)
Qs Lung 1676 23341 11 (Schaum et al. 2018)
Young 5685 28205 11 (Young et al. 2018)
Adam 3660 23797 8 (Adam, Potter, and Potter 2017)
Plasschaert 6977 14561 8 (Plasschaert et al. 2018)
Chen 12089 23284 46 (Chen et al. 2017)
Xin 1601 39851 4 (Xin et al. 2016)
Pollen 301 21721 11 (Pollen et al. 2014)
Guo 272 8772 7 (Guo et al. 2015)
Human 1289 8772 5 (Petropoulos et al. 2016)

Table 1: Summary of the fifteen datasets used in this study

where M denotes the transport cost matrix from the distribu-
tion Q to P, defined here simply as the Euclidean distance,
and the amount of transport from Q to P is γ; ϵ is the reg-
ularization parameter that controls the entropic regulariza-
tion term. OT aims to minimize the expected transport cost
subject to the marginal constraints. Finally, we utilize the
Sinkhorn divergence (Genevay, Peyré, and Cuturi 2018) to
align the two finite discrete distributions. The Sinkhorn di-
vergence, denoted as Ls, is defined as follows:

Ls = Sϵ(Q,P) := OT (M,Q,P)ϵ−
1

2
(OT (M,Q,Q)ϵ +OT (M,P,P)ϵ) .

(23)

Here, the auxiliary distribution P is based on Q, and Q is
expected to be aligned with P to prioritize high-confidence
data points. We continuously optimize this alignment until
maximum number of iterations.

Overall Training Process
The overall training process of scGCOT contains two stages,
namely, embedding learning stage, and representation align-
ment and cluster assignment stage. In the embedding learn-
ing stage, the loss function for training is defined as:

L1 = λ1Lc + λ2(Lg + Lr) + λ3Lz, (24)
where λ1, λ2, λ3 are the weight coefficients for each
loss. After scGCOT learns the latent embedding for certain
epochs, it turns to the representation alignment and cluster
assignment stage, in which the loss functions are combined
following (Kendall, Gal, and Cipolla 2018):

L2 = λ
′

1Lc +
1

2σ2
1

Lz +
1

2σ2
2

Ls + log σ1σ2, (25)

where σ1 and σ2 are two parameters to balance the loss Lz

and Ls.

Experiments and Results
Data Source and Baselines
As shown in Table 1, 15 real datasets are selected for eval-
uation. These datasets range in size from hundreds to thou-
sands and come from different platforms. Meanwhile, the
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NMI↑

Methods Muraro Human Qs Diaph. Qs Heart Chen Qs Lung Young Adam Plass. Qx L. M. Qs L. M. p3cl
K-means**** 0.3683 0.5916 0.1669 0.2645 0.4512 0.2346 0.1780 0.1326 0.3897 0.2821 0.1256 0.5338
Spectral*** 0.8266 0.5995 0.3380 0.4647 0.6319 0.4136 0.3671 0.1000 0.5412 0.8442 0.3337 0.9350
DCA**** 0.7301 0.5146 0.6358 0.5840 0.7182 0.6708 0.6643 0.7261 0.4921 0.7262 0.6173 0.4797
scDeepCluster**** 0.7356 0.4695 0.7864 0.6667 0.6774 0.6840 0.5953 0.6493 0.5916 0.8022 0.7061 0.9397
GraphSCC**** 0.6326 0.5951 0.7100 0.8321 0.7167 0.6872 0.6377 0.6429 0.7747 0.8177 0.9287 0.9544
scziDesk**** 0.7806 0.6082 0.9051 0.8545 0.6899 0.8068 0.7325 0.8164 0.6469 0.9239 0.9520 0.9653
scGAE**** 0.5789 0.4271 0.3526 0.3094 - 0.3971 0.2986 0.0795 0.2902 0.4909 0.1279 0.3350
scDSC**** 0.7707 0.5644 0.9363 0.8700 0.6594 0.7124 0.5705 0.3100 0.7333 0.7994 0.8647 0.8541
scGAC**** 0.5519 0.5577 0.9355 0.9058 - 0.7872 0.4822 0.2880 0.7344 0.9670 0.9407 0.9342
scNAME** 0.8783 0.6163 0.9570 0.8868 0.7454 0.8003 0.7653 0.8459 0.7453 0.9505 0.9584 0.9677
CAPKM++2.0*** 0.7467 0.5978 0.9334 0.8319 0.7598 0.7722 0.7630 0.6891 0.8590 0.8867 0.7294 0.9609
scDFC**** 0.5261 0.5086 0.8280 0.7365 - 0.6613 0.4664 0.3736 - 0.7968 0.7240 0.9333
scBGEDA**** 0.8315 0.5864 0.9412 0.8964 0.6089 0.7773 0.7355 0.8492 0.6409 0.9631 0.9446 0.9651
scDCCA**** 0.7524 0.5124 0.2135 0.4261 0.6858 0.3770 0.4946 0.2822 0.6426 0.8475 0.2250 0.8436
scGCOT (Ours) 0.8428 0.6265 0.9613 0.9216 0.7661 0.8326 0.7888 0.8513 0.8325 0.9693 0.9493 0.9685

ARI↑

Methods Muraro Human Qs Diaph. Qs Heart Chen Qs Lung Young Adam Plass. Qx L. M. Qs L. M. p3cl
K-means**** 0.1786 0.5034 0.0794 0.1477 0.2771 0.0913 0.0584 0.0177 0.2508 0.1130 0.0457 0.3840
Spectral**** 0.6436 0.4315 0.2773 0.3345 0.2630 0.2493 0.2253 0.0368 0.3541 0.8976 0.2409 0.9603
DCA**** 0.4579 0.1863 0.2866 0.2113 0.4801 0.2623 0.3774 0.5530 0.1939 0.4094 0.2647 0.1523
scDeepCluster**** 0.6371 0.3238 0.7174 0.5125 0.3280 0.4504 0.4749 0.5595 0.3918 0.7202 0.5545 0.9705
GraphSCC**** 0.4506 0.4641 0.5661 0.8874 0.6805 0.5027 0.4352 0.4257 0.8305 0.7870 0.9608 0.9791
scziDesk*** 0.7037 0.4650 0.9272 0.8323 0.2935 0.7112 0.6371 0.7884 0.4867 0.9541 0.9745 0.9841
scGAE**** 0.1578 0.1526 0.1067 0.0351 - 0.1092 0.0422 0.0100 0.0231 0.0925 0.0291 0.0388
scDSC*** 0.7491 0.4750 0.9704 0.9360 0.5916 0.6994 0.3796 0.0000 0.7903 0.6839 0.9228 0.9279
scGAC**** 0.3481 0.3734 0.9648 0.9403 - 0.6342 0.2788 0.1149 0.8317 0.9836 0.9600 0.9645
scNAME** 0.8962 0.4650 0.9772 0.8681 0.4908 0.6757 0.6130 0.8306 0.7315 0.9469 0.9782 0.9852
CAPKM++2.0*** 0.6567 0.4581 0.9547 0.8476 0.6744 0.6612 0.6334 0.5168 0.8974 0.8862 0.5357 0.9824
scDFC**** 0.3304 0.2695 0.9022 0.7077 - 0.6146 0.3203 0.2224 - 0.7493 0.6410 0.9641
scBGEDA*** 0.8897 0.4747 0.9667 0.9399 0.3096 0.7277 0.6522 0.8202 0.6761 0.9753 0.9715 0.9846
scDCCA**** 0.5550 0.3762 0.2138 0.3803 0.3947 0.2852 0.3709 0.1578 0.5150 0.7580 0.1660 0.9102
scGCOT (Ours) 0.8811 0.4685 0.9812 0.9581 0.7066 0.7887 0.7191 0.8475 0.8659 0.9865 0.9707 0.9855

Table 2: The NMI and ARI comparison of scGCOT and 14 other baseline methods. The bold font indicates the best performance
on one specific dataset, and the italic font indicates the second best performance. The significance levels are obtained using one-
sided Wilcoxon signed-rank test. - indicates the algorithm cannot be run on a single RTX 4090 with 24 GB GPU memory (out
of memory). The performance results on 3 other datasets are shown in Table 3.

number of cell types in the datasets are also various, ranging
from 3 to 46. The annotation of cell types from the original
publications is used as the ground truth. We select 14 other
methods for comparison, among them 12 are the state-of-
the-art methods, as listed below:
• Deep Graph Embedded Methods: scDCCA (Wang

et al. 2023a), scBGEDA (Wang et al. 2023b), scDFC (Hu
et al. 2023), scNAME (Wan, Chen, and Deng 2022), sc-
GAC (Cheng and Ma 2022), scDSC (Gan et al. 2022),
scGAE (Luo et al. 2021), GraphSCC (Zeng et al. 2020).

• Deep Embedded Methods: scziDesk (Chen et al. 2020),
scDeepCluster (Tian et al. 2019), DCA (Eraslan et al.
2019)

• Non-Deep Learning Methods: CAPKM++2.0 (Li and
Wang 2023), K-means, Spectral Clustering.

Implementation Details
All experiments are conducted on a Ubuntu 20.04 server
equipped with 128GB memory and two RTX 4090 GPUs.
The proposed scGCOT is constructed with PyTorch 2.0.0,

PyG 2.3.0, and Python 3.10.11. In the proposed scGCOT
method, the cell graph and gene graph are constructed using
KNN algorithm with the nearest neighbor parameter K =
15 and the number of highly variable genes n = 500. In the
graph autoencoders, f1

E and f2
E are both set as a two-layer

Graph Transformer network, with the hidden dimensions
of 128 and 15, respectively. The output dimension of the
fully-connected networks to obtain Ẑc and Ẑg are both set
to 32. Our algorithm consists of 300 epochs of embedding
learning and 100 epochs of representation alignment and
cluster assignment learning. The loss weights {λ1, λ2, λ3}
and {λ′

1,
1

2σ2
1
, 1
2σ2

2
} are set to {1, 0.3, 1} and {0.3, 1.5, 2},

respectively. Our model is optimized using equation (24)
and the Adam algorithm with the learning rate 5e-4 in em-
bedding learning stage. In the representation alignment and
cluster assignment stage, we use equation (25) to train the
model and let the learning rate increase from 1e-7 to 1e-4
linearly in the first half of total epochs and decrease linearly
to 1e-7 in the second half. The parameters of other baseline
methods remain as the default.
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NMI↑

Methods Xin Pollen Guo AVG
K-means**** 0.2228 0.7613 0.4050 0.3405
Spectral*** 0.7524 0.8833 0.3846 0.5610
DCA**** 0.3831 0.9229 0.4002 0.6177
scDeepCluster**** 0.3006 0.9049 0.4035 0.6609
GraphSCC**** 0.3402 0.9053 0.2884 0.6976
scziDesk**** 0.5739 0.9047 0.3448 0.7670
scGAE**** 0.3506 0.8091 0.3310 0.3452
scDSC**** 0.5690 0.6985 0.3237 0.6824
scGAC**** 0.3960 0.8004 0.3383 0.6413
scNAME** 0.5697 0.9132 0.2947 0.7930
CAPKM++2.0*** 0.6081 0.9219 0.3140 0.7583
scDFC**** 0.6219 0.8508 0.2381 0.5510
scBGEDA**** 0.5733 0.9083 0.3707 0.7728
scDCCA**** 0.5817 0.6639 0.2114 0.5173
scGCOT (Ours) 0.6088 0.9294 0.4896 0.8226

ARI↑

Methods Xin Pollen Guo AVG
K-means**** 0.1774 0.5435 0.2550 0.2082
Spectral**** 0.6298 0.7864 0.2241 0.4370
DCA**** 0.1406 0.8491 0.2296 0.3370
scDeepCluster**** 0.2770 0.8412 0.2723 0.5354
GraphSCC**** 0.3886 0.8894 0.0856 0.6222
scziDesk*** 0.6454 0.8663 0.2290 0.6999
scGAE**** 0.0682 0.5654 0.1598 0.1060
scDSC*** 0.7177 0.4179 0.1856 0.6298
scGAC**** 0.4483 0.6267 0.1513 0.5747
scNAME** 0.6079 0.8861 0.1212 0.7383
CAPKM++2.0*** 0.7107 0.9065 0.0988 0.6947
scDFC**** 0.7214 0.8770 0.1018 0.4948
scBGEDA*** 0.6987 0.8835 0.2737 0.7496
scDCCA**** 0.4510 0.5005 0.1066 0.4094
scGCOT (Ours) 0.7074 0.9184 0.3402 0.8084

Table 3: The NMI and ARI comparison of scGCOT and 14
other baseline methods on other datasets.

Clustering Performance

To evaluate the performance of scGCOT well, we adopt
two commonly-used metrics in clustering, namely, the Nor-
malised Mutual Information (NMI) and the Adjusted Rand
Index (ARI). The higher NMI and ARI indicate the clus-
tering performance is better. The clustering performance of
scGCOT with the comparision to the baseline methods on
15 scRNA-seq datasets is presented in Table 2 and Table 3.
We run all the methods for five times and take the average
performance. As shown in Table 2 and Table 3, compared
to the latest state-of-the-art methods, scGCOT obtains the
best NMI on 11 out of 15 datasets, and also obtains the best
ARI on 10 out of 15 datasets. Furthermore, considering the
second best NMI and ARI, scGCOT works very well on 13
out of 15 datasets for NMI, and on 11 out of 15 datasets for
ARI. The overall average NMI and ARI on the all datasets
of scGCOT are 0.8226 and 0.8084, respectively. Both the
NMI and ARI across the all datasets are the highest among
all the baselines, as shown in the “AVG” column in Table
3. Meanwhile, we notice that deep embedded methods, such
as DCA, scDeepCluster, and scziDesk cannot obtain a sta-
ble performance across different datasets. A possible reason
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Figure 2: Parameter analysis results. The p-values are ob-
tained via one-sided Wilcoxon signed-rank test. (A) The
boxplot depicting the clustering performance of scGCOT
given different numbers of n. (B) The line chart depicting
the clustering performance of scGCOT given different num-
bers of K.

may be that they are solely based on gene expression count
matrix and cannot fully capture the characteristics of the
highly sparse scRNA-seq data. Compared to other state-of-
the-art deep graph embedded methods, such as scDFC and
scDCCA, scGCOT can also generally get higher NMI and
ARI, demonstrating its competitive edges.

Parameter Analysis
In this section, we conduct an analysis on the number of
highly variable genes n and the K in the KNN algorithm,
due to the significance of these two parameters in single cell
data analysis. First, to explore the impact of the number of
the selected highly variable genes, we run scGCOT on all
the datasets described in Table 1 for five times with highly
variable genes ranging from 300 to 1500. Fig. 2A shows the
box plot of the average NMI and ARI on 15 datasets with
highly variable genes of 300, 500, 700, 1000, 1500. In terms
of NMI, scGCOT performs well when selecting 500, 1000,
and 1500 highly variable genes. However, when selecting
n = 500, the ARI given by scGCOT has statistically signif-
icant differences compared to other conditions. Therefore,
we choose n = 500. Subsequently, we explore the effect
of the K neighbor parameter in the KNN algorithm to con-
struct the cell graph and the gene graph, given the K in {5,
10, 15, 20, 25}. Fig. 2B shows that the two metrics first in-
crease fast from the condition K = 5 to K = 10, and reach
the peak performance with K = 15, then have a slight drop
with K larger than 15. Hence, we set K = 15 in scGCOT.

Ablation Study
To fully investigate the effect of the proposed components
in scGCOT, we conduct ablation experiments on it. In par-
ticular, we consider the following ablation conditions: 1) re-
move Lg; 2) remove the reconstruction loss Lr; 3) remove
Lz; 4) replace the graph transformer layers stated in eq. (2)
and (3) with graph convolutional layers; 5) remove Ls; the
NMI and ARI results are shown in Table 4. It is evident that
each component in scGCOT helps improve the clustering
performance. From Table 3 we observe that removing Lz in
the training process has the largest effect, where the ZINB
properties cannot be well-reserved. The deletion of Lg and
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Figure 3: An intuitive illustration depicting the changing process of the OT plan with clustering distribution density of Q
(shown on the top with the ground truth distribution) and P (shown on the left). To show the distribution density alignment
process clearly on Plasschaert, the density and OT plan of two large and easy to learn categories are not drawn.

Method NMI ARI
scGCOT w/o Lg 0.8104 0.7864
scGCOT w/o Lr 0.7990 0.7658
scGCOT w/o Lz 0.7733 0.7139
scGCOT w/o Ls 0.7976 0.7648
scGCOT w/o attention 0.7906 0.7544
scGCOT (Ours) 0.8226 0.8084

Table 4: Ablation study measured by NMI and ARI values

Lr also let the performance of scGCOT drop, which may re-
flect that Lg and Lr can help the ZINB estimation. The dele-
tion of attention mechanism and Ls also affects the overall
performance, verifying their importance.

OT Analysis and Visualization
To further illustrate the effect of the OT-based representa-
tion alignment, we choose two representative datasets Plass-
chaert and Adam, and draw a chart depicting the cluster den-
sity and the OT plan on them in the alignment process, as
shown in Fig. 3. At the begining, according to the OT plan,
the units to be transported is dense and most parts in the OT
plan are inter-cluster transport. This phenomenon is consis-
tent with the fact that the cluster distribution densities of P
and Q are not very close, especially in the Adam case. Mean-
while, the source distribution density Q is far away from the
ground truth. At epoch 30, the units to be transported be-
come relatively sparse, and there is not much cross-cluster
transport, because most parts of the distributions P and Q
have basically aligned to each other in a short period. Dur-
ing the training epoch 0 to epoch 30, most parts of the dis-
tribution Q are also aligned to the ground truth distribution.

Subsequently, from epoch 30 to epoch 60 and epoch 90, the
inter-cluster transport further reduces compared to previous
OT plans. Additionally, the parts that the distribution Q not
overlapped with the ground truth slightly move to real dis-
tribution in this period. Eventually, the OT plan becomes in-
clusive of a significant amount of intra-cluster transport and
a small amount of inter-cluster transport, where intra-cluster
transport is treated as an confidence enhancement. Above
observations support that the OT-based joint representation
alignment is necessary, for it is able to optimize the cluster
distribution to be approximately aligned with the real distri-
bution. Overall, the OT-based joint representation alignment
is reasonable and effective.

Conclusion
In this paper, we propose an unsupervised gene-cell collec-
tive representation learning and OT approach, named scG-
COT. scGCOT incorporates attention-based graph autoen-
coders to learn the cell correlations and gene correlations,
then performs the count matrix reconstruction and ZINB
model parameter estimation. Moreover, the OT theory is de-
vised for the joint representation alignment in clustering.
scGCOT can effectively capture the properties of scRNA-
seq data for accurate cell type identification, so as to facili-
tate other bioinformatics downstream tasks, e.g., predicting
the differentiation trajectories between cell types, gene reg-
ulatory network inference, and pathology analysis. On the
other hand, the introduction of OT with earth-mover dis-
tance not only addresses the drawbacks of KL-divergence
(e.g., zero truncation) but also improves efficiency. Exper-
imental results on 15 real scRNA-seq datasets indicate the
competitive edges of scGCOT.
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