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Abstract

With the rise of social media, the spread of fake news has be-
come a significant concern, potentially misleading public per-
ceptions and impacting social stability. Although deep learn-
ing methods like CNNs, RNNs, and Transformer-based mod-
els like BERT have enhanced fake news detection. However,
they primarily focus on content and do not consider social
context during news propagation. Graph-based techniques
have incorporated the social context but are limited by the
need for large labeled datasets. To address these challenges,
this paper introduces GAMC, an unsupervised fake news de-
tection technique using the Graph Autoencoder with Masking
and Contrastive learning. By leveraging both the context and
content of news propagation as self-supervised signals, our
method reduces the dependency on labeled datasets. Specif-
ically, GAMC begins by applying data augmentation to the
original news propagation graphs. Subsequently, these aug-
mented graphs are encoded using a graph encoder and subse-
quently reconstructed via a graph decoder. Finally, a compos-
ite loss function that encompasses both reconstruction error
and contrastive loss is designed. Firstly, it ensures the model
can effectively capture the latent features, based on minimiz-
ing the discrepancy between reconstructed and original graph
representations. Secondly, it aligns the representations of aug-
mented graphs that originate from the same source. Experi-
ments on the real-world dataset validate the effectiveness of
our method.

Introduction

The rapid development of social media has brought conve-
nience to people’s lives (Hou et al. 2023). However, it has
also served as a breeding ground for the widespread dissem-
ination of fake news (Wang et al. 2023). The proliferation
of fake news has become a major issue in the digital me-
dia era, as it could mislead public perception, affect social
stability, and even threaten national political security (Zhou
and Zafarani 2020). Therefore, the detection of fake news
has become a pressing issue that requires effective solutions
(Hua et al. 2023; Hou and Yin 2024).

To automatically identify the ever-growing fake news,
various approaches have been proposed. Traditional fake
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news detection methods primarily involve manually design-
ing rules to extract news features and then employing clas-
sifiers to categorize these features. However, manually de-
signing rules to extract valuable fake news features could be
labor-intensive, and may not always capture complex decep-
tive features (Zhou and Zafarani 2020).
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Figure 1: Difference between supervised and unsupervised
methods for fake news detection. (a) Existing methods
largely rely on manually labeled datasets. The process of
manually annotating data is time-consuming, expensive, and
often requires expert knowledge to ensure accurate labeling.
(b) In contrast, our proposed method, GAMC, is based on
unsupervised learning and can directly use unlabeled data
for fake news detection. This eliminates the need for costly
and time-consuming manual data annotation.

In recent years, deep learning has played an increasingly
important role in fake news detection, as it can automati-
cally learn and extract features from large amounts of data,
thereby improving the accuracy and efficiency of detection
mechanisms (Shu et al. 2017). For example, Convolutional
Neural Networks (CNN) and Recurrent Neural Networks
(RNN) are utilized to learn local and temporal dependen-
cies in text data respectively (Li et al. 2021b). Furthermore,
Transformer-based models, such as BERT, have been em-
ployed to understand the context and semantic relationships
in news articles better (Devlin et al. 2019). These models,
pre-trained on large corpora, have shown remarkable suc-
cess in capturing the complex linguistic characteristics of
fake news (Wu et al. 2023). However, these methods pri-
marily analyze the content of the news, and do not consider
the social context information in the process of news propa-
gation (Yuan et al. 2019).

Recognizing this oversight, researchers have proposed
graph-based methods that incorporate social context into the
detection process (Min et al. 2022). These methods model
the spread of news as a graph, capturing the intricate in-
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teractions and relationships among various entities involved
in news propagation. However, these supervised methods
necessitate large labeled datasets for training as Figure 1
(Fang et al. 2023). The collection and labeling of extensive
datasets can be a laborious and resource-intensive task, pos-
ing a significant challenge for real-world applications (He
et al. 2021).

To address these issues, this paper proposes an unsuper-
vised fake news detection method, GAMC, that employs a
Graph Autoencoder with Masking and Contrastive learning.
By employing the context and content of the news propaga-
tion process as the self-supervised signal, along with a fea-
ture reconstruction and contrasting task, this method circum-
vents the need for labeled datasets. In addition, the appli-
cation of data augmentations and contrastive ideas can im-
prove the robustness of the model. Specifically, first, data
augmentation is employed on the original news propaga-
tion graph, which includes random node feature masking
and edge dropping, as facilitates the subsequent proxy tasks
of feature reconstruction and contrastive. Then, the graph
encoder is employed to encode enhanced graphs, yielding
the latent representation vector. The latent vectors not only
capture the global characteristics of the graph but also con-
tain information about the news propagation process, both
its context and content. Once the model has been trained,
these latent representation vectors can be used for the task
of fake news detection. Next, the graph decoder is used to
map the latent representation vector back to the original in-
put, resulting in reconstructed graph vectors. This step is de-
signed to teach the model how to reconstruct the original
input from the latent representation vector, thus helping the
model to better learn the latent patterns of news propaga-
tion. Finally, a composite loss function is designed, com-
posed of reconstruction error loss and contrast loss. On the
one hand, the reconstruction error loss aims to minimize the
discrepancy between the reconstructed graph representation
and the original graph representation, enabling the graph au-
toencoder to better learn the latent features of the propaga-
tion graph. The contrast loss, on the other hand, ensures that
the representations of the two augmented graphs generated
from the same propagation graph are as similar as possi-
ble after reconstruction. Experiments on real datasets show
that our method GAMC outperforms existing unsupervised
methods. The code is available at https://github.com/cgao-
comp/GAMC.

The contribution of this paper can be summarized as fol-
lows:

 Self-supervised learning is introduced into the domain of
fake news detection, eliminating the dependence on la-
beled data, which makes the method more applicable to
real-world scenarios.

* We proposed a graph autoencoder with reconstruction er-
ror loss and contrast loss. The reconstruction error loss
aims to minimize the discrepancy between the recon-
structed and the original graph representations, while the
contrast loss ensures that the representations of two aug-
mented graphs, both derived from the same propagation
graph, are as similar as possible after reconstruction.
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* We conducted a series of experiments on real-world
datasets, demonstrating the effectiveness of the proposed
method.

Related Work

To provide a comprehensive understanding of the cur-
rent landscape of our work, we review two primary areas:
fake news detection methods and generative self-supervised
graph learning techniques.

Fake News Detection

The task of fake news detection can be viewed as a classifi-
cation problem. The classification process relies on various
factors such as the content of the news, the spread pattern,
user reactions, and other related data.

Recently, deep learning has been taking an increasingly
prominent role in fake news detection. Ma et al. developed
a novel recurrent neural network (RNN) based method for
rumor detection on microblogging platforms, which outper-
formed traditional models using hand-crafted features (Ma
et al. 2016). Considering the different events, EANN is pro-
posed to effectively extract event-invariant features from
multimedia content, thereby enhancing the detection of fake
news on newly arrived events (Wang et al. 2018). To in-
troduce extra knowledge for detecting fake news, Wang et
al. proposed a unified framework named KMGCN, using a
graph convolutional network to extract textual information,
knowledge concepts, and visual information (Wang et al.
2020). However, these methods primarily focus on the con-
tent of news, which may fall short in distinguishing ambigu-
ous fake news that is crafted to resemble real news.

Building on this, researchers begin to explore the poten-
tial of leveraging social context information in the process
of news propagation (Yang et al. 2022). Generally, the so-
cial context includes information such as forwarding rela-
tionships, comment content, and user preferences, which
can provide additional insight into how news spreads in
social networks. Bian et al. introduced the bi-directional
graph convolutional network that simultaneously captures
top-down propagation and bottom-up dispersion features on
social media, which enhances traditional deep learning ap-
proaches (Bian et al. 2020). To capture rich structural infor-
mation, GLAN models relationships among source tweets,
retweets, and users as a heterogeneous graph, then effec-
tively encodes both local semantic and global structural in-
formation for rumor detection (Yuan et al. 2019). Consid-
ering the influence of user preferences in news propaga-
tion, UPFD employs users’ historical posts as an endoge-
nous preference, and the news propagation graph as an ex-
ogenous context, integrating internal and external informa-
tion to better identify disinformation (Dou et al. 2021).

However, these supervised methods depend on large la-
beled datasets. The acquisition of these labeled datasets of-
ten requires considerable time, effort, and domain expertise.

Generative Self-Supervised Graph Learning

Generative self-supervised graph learning leverages the
richly structured data in graphs to learn meaningful repre-
sentations without the need for explicit labels (Wu et al.
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2021). To generate diverse and realistic graphs, Li et al. in-
troduced GraphRNN, a deep autoregressive model that ad-
dresses the challenges of graph generation and representa-
tion learning (You et al. 2018). Kipf et al. developed a novel
Graph Auto-Encoder (GAE) based method that learns to en-
code a graph into a lower-dimensional space and then de-
code it back into its original structure, outperforming tradi-
tional models using hand-crafted features (Kipf and Welling
2016). Considering that most GAEs lack the ability to recon-
struct node features, some work has been dedicated to recon-
structing masked features, thereby enhancing the efficiency
of self-supervised GAEs in graph representation learning for
classification tasks (Hou et al. 2022). Our work is inspired
by the graph mask autoencoder, and we developed a self-
supervised graph autoencoder to obtain representations of
news for the task of fake news detection.

Problem Definition

In this paper, the task of fake news detection is to design an
automatic discriminator that can learn latent features from
a set of unlabeled news. The learned features can then be
used to predict the reality of news instances. Specifically,
the news dataset can be defined as D = {Dy, Ds,..., Dy},
where each D, represents a single news instance in the
dataset. Each news instance D; can be modeled as a graph
based on its corresponding propagation process. We aim to
learn an unsupervised function, f, as defined below:

DY, (1)

where D represents the set of news instances with propaga-
tion process and Y € {F, R} (i.e. fake news or real news)
denotes the set of possible outcomes.

Method

In this section, we introduce the GAMC method for fake
news detection tasks, designed to capitalize on the inherent
context and content of the news propagation process to func-
tion as a self-supervised signal, thereby bypassing the need
for labeled datasets. As illustrated in Figure 2, the following
parts will detail the procedure of employing GAMC for fake
news detection, including data augmentation, graph encod-
ing, graph decoding, and the composite loss function.

Data Augmentation

For the GAMC method, the first step is to model news prop-
agation as graphs. After that, to serve the feature reconstruc-
tion task and contrastive task, the data augmentation method
is employed to generate different enhanced graphs by trans-
forming the original graph for each piece of news.

To begin with, each piece of news is modeled into a
graph G = (V, A, X), based on the forwarding relation-
ship. V' = {v,,, v, } represents the set of nodes, where v,
is the news node, and v,, signifies the user nodes that for-
ward the news. A represents the adjacency matrix, which
embodies the forwarding relationships. X is the feature ma-
trix. The node feature for the news nodes v,, is the news con-
tent embedding, encoded by a pre-trained BERT model, and
the node feature for the user nodes v,, is derived from their
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historical posts, as described in (Dou et al. 2021). The node
feature of node 7 is denoted as x;, and the feature matrix X
is composed by z;.

Following the construction of the graph, the data augmen-
tation process employs two strategies: random node feature
masking and edge dropping. Random node feature mask-
ing is the random feature elimination of the nodes when
the training begins. Let V,;, C V be a subset of nodes ran-
domly selected for masking. For each node in V,,, we re-
place its feature vector with a special mask token, denoted
as TprAsK] € RP. Then, the masked feature matrix X can
be defined as:

~ {x[MASK]7 ifv; € Vi,
Tr; = .

T, if V; ¢ Vm,
where Z; is the augmentation feature of node 4, the aug-
mented feature matrix X is constructed by Z;.

Edge dropping is the second strategy used for data aug-
mentation. This method disrupts the connectivity of the
graph by randomly dropping some edges before training.
Eprop is the edge set obtained by randomly sampling from
the original edge set £, and Ap,,, denotes the adjacency

matrix of Ep;.p. Then the augmented adjacency matrix A

could be calculated as A = A — A Drop- Through the above
node feature masking and edge dropping operations, the
augmented graph transformed by G can be represented as
G = (v, A X ). Each of these strategies is applied twice
to the or1g1na1 graph resultlng in two distinct augmented
graphs, namely G1 (v, Al,Xl) and G2 (v, AQ,XQ)

The data augmentation strategy not only ensures the
model’s effectiveness in the face of complex news propa-
gation patterns but also facilitates the model to reconstruct
missing features, thereby promoting the model to capture
deeper feature dependencies.

2

Graph Encoding

Following the data augmentation process, the second in-
tegral component of the GAMC method is graph encod-
ing. The purpose of this step is to transform the augmented
graphs into a compact and meaningful latent space represen-
tation.

The graph encoder in our method is a two-layer Graph
Isomorphism Network (GIN) (Xu et al. 2019) Wthh is de-

signed to process the augmented graph G= (v, A X ) and
generate the graph-level representation vectors. The GIN is
selected due to its capacity to capture the topological struc-
ture and node features of a graph, making it suitable for the
task of fake news detection.

Given an augmented graph G, the GIN encoder operates
as follows. At the [-th layer, the hidden feature vector hz(-l)
for node ¢ is updated using the aggregation function:

W = MLP | (1+¢D)-

ill+2((ll)>

JEN(3)
3)
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Figure 2: Overview of the GAMC Fake News Detection Method. The original news propagation graph is first augmented
through random feature masking and edge dropping, generating two perturbed graphs. These graphs are then processed through
a graph encoder to generate latent representation vectors. A decoder subsequently maps these vectors back to their input space,
producing reconstructed feature vectors. Minimizing the composite loss function facilitates the effective learning of the propa-
gation graph’s latent features by the autoencoder and ensures the similarity of the reconstructed features across the augmented

graphs.

where N (4) is the set of neighboring nodes of 7, and hgo) =
Z; is the input feature vector of node 7. This process is itera-
tively conducted for all nodes until the [-th layer.

After two layers of information propagation, the GIN en-
coder outputs a set of node embeddings H for all nodes in
the graph. Through the above encoding step, for the two aug-
mented graphs G 1 and 62, we can obtain the corresponding
nodes’ latent representations as:

= GINEecoder (A27 X2)7

“)
where node representations H; and H, will then be pushed
into the graph decoder.

While the model has been trained, the latent representa-
tion vectors obtained from the GIN encoder can be used di-
rectly for news classification tasks. Node embeddings from
the encoder are pooled together to generate a graph-level
representation vector F' for the entire graph:

Hl = GINEecoder(A\h)?l)a H2

&)

This graph-level representation vector F' captures the
overall information of the graph, including both the struc-
tural and content information, which are essential for the
downstream task of fake news detection.

350

Graph Decoding

The third core component of the GAMC method is graph de-
coding. The goal of this step is to map the latent graph-level
representation vectors back to the input, namely to obtain re-
constructed feature matrices. Before decoding, we perform a
re-mask operation on the masked nodes. The re-mask option
forces the masked nodes to aggregate from their neighbors
to reconstruct their initial features. For each node in V,,,, we
replace its latent representation with a special mask token,
denoted as hjrErrask] € RP. The re-mask representation

ﬁi of v; can be described as:

-

The re-masked latent representation /1 of the whole graph
is constructed by h Correspondingly, after the re- mask op-
eration, the hldden representatlons of graphs G 1 and G2 can
be denoted as H1 and H2 Then, we feed the hidden rep-
resentations of the two graphs into the graph decoder, ob-
taining the reconstructed features X and XY. The detailed
aggregation process of decoding is shown in Eq. (3), and we
can simplify the process as:

if h; € V,,,
it hi ¢ Vin

hiarasky,
hiv

=)

(6)

X2 = GINDecode’r(A\Q? ﬁ2)
(7)

= GINDecoder(A\lv ﬁl)’
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Loss Function

The loss function in GAMC is to guide the learning process
in a way that the difference between the original and recon-
structed graphs is minimized, and the contrast between the
two reconstructed graphs derived from the same propagation
graph is minimized. We define the loss function in two parts:
the reconstruction loss and the contrastive loss.

The reconstruction loss aims to ensure the fidelity of the
reconstructed feature matrices X and X7} to the original fea-
ture matrices X7 and Xs. We use the Mean Squared Error
(MSE) between the original and reconstructed feature matri-
ces as reconstruction loss:

1 n
Lrec = ;Z (\X1 *Xﬂg + X2 *Xég) )

=1

®)

where n is the number of samples. By minimizing this loss
in the training phase, the model could produce reconstructed
graphs that closely match the originals, which encourages
the graph encoder to learn better graph-level representation
vectors.

On the other hand, the contrastive loss is designed to min-
imize the difference between the two reconstructed graphs
derived from the same propagation graph. This is achieved
by minimizing the cosine similarity between reconstructed
features X| and X:

XX}
[REiRey

By minimizing this loss, the model is encouraged to gen-
erate similar representations for one augmented graph.

The overall loss function is then a weighted sum of the
reconstruction loss and the contrastive loss:

©))

Lcon =

L = Lrec — aLcon, (10)

where « is the hyperparameter that controls the balance be-
tween the two loss components.

By minimizing this overall loss, our model is trained to
generate robust and discriminative graph-level representa-
tions that can be effectively used for the task of fake news
detection.

Experiments

In this section, we validate the effectiveness of the proposed
GAMC method by comparing it with some benchmark mod-
els on public datasets. Following this, to analyze and validate
the necessity of each component in GAMC, we conduct ab-
lation studies. Finally, we investigate the impact of different
parameter values within GAMC on the experimental results.

Datasets and Settings

Datasets To validate the efficiency of GAMC, we car-
ried out evaluations on the FakeNewsNet, a published data
source for fake news detection (Shu et al. 2020). This repos-
itory is divided into two sub-datasets, PolitiFact and Gossip-
Cop. The PolitiFact dataset primarily consists of news re-
lated to U.S. politics, while GossipCop is primarily focused
on news about Hollywood celebrities. The social context in
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these two datasets includes the propagation network of news
and the history of user posts. Table 1 provides comprehen-
sive statistics of the PolitiFact and GossipCop datasets.

Dataset PolitiFact  GossipCop
#News 314 5464
#True News 157 2732
#Fake News 157 2732
#Nodes 41054 314262
#Edges 40740 308798

Table 1: Statistics of the datasets. In the two datasets, each
graph denotes a piece of news.

Baselines We have conducted a comparison of the pro-
posed method GAMC with the following unsupervised
methods:

¢ TruthFinder (Yin, Han, and Yu 2008) is one of the ear-
liest methods for detecting fake news using an unsuper-
vised approach. This method employs an iterative pro-
cess to determine the veracity of news by assessing the
credibility of the source websites of the news.

* UFD (Yang et al. 2019) employs a Bayesian network
model and a collapsed Gibbs sampling technique. This
method leverages users’ engagements on social media to
understand their opinions regarding news authenticity.

* GTUT (Gangireddy et al. 2020) is a graph-based method
for fake news detection that identifies a seed set of ar-
ticles, and then progressively labels all articles in the
dataset.

* UFNDA (Li et al. 2021a) is an unsupervised fake news
detection approach. Utilizing a combination of a Bidirec-
tional GRU (Bi-GRU) layer and self-attention within an
autoencoder, the method uncovers hidden relationships
between features to detect fake news.

+ (UMD)? (Silva et al. 2023) is an unsupervised fake news
detection framework that encodes multi-modal knowl-
edge into low-dimensional vectors. This method lever-
ages a teacher-student architecture to determine the truth-
fulness of news by aligning various modalities, then uses
them as guiding signals for veracity assessment.

Additionally, we also conducted comparisons with the
following classical supervised methods:

e SAFE (Zhou, Wu, and Zafarani 2020) is a multimodal
method for fake news detection. It converts images in the
news into text, learns the latent representation of text and
visual information, then measures the similarity between
them to detect fake news.

* EANN (Wang et al. 2018) is a multi-modal approach for
detecting fake news. It extracts text and image features
from news content, and then incorporates an event dis-
criminator using adversarial learning to obtain the event-
invariant features of fake news.

* dEFEND (Shu et al. 2019) designs a co-attention net-
work to capture the noticeable sentences between news
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and comments, which improves the explanatoryness of
fake news detection.

* GACL (Sun et al. 2022) leverages contrastive learn-
ing within the loss function to learn the difference be-
tween positive and negative samples. This approach en-
hances the model’s robustness, contributing to efficient
fake news detection.

* FinerFact (Jin et al. 2022) models the article keywords
and related evidence, and then uses a dual-channel kernel
graph network to perform fine-grained reasoning on the
news, improving the accuracy of fake news detection.

Parameter Settings The experiments were conducted on
a server equipped with an Intel(R) Xeon(R) Gold 6326 CPU
@ 2.90GHz and a GeForce RTX 3090Ti graphics card. We
implement the proposed GAMC model using PyTorch. We
use accuracy, F1 score, precision, and recall as our evalua-
tion metrics across both datasets. During the data augmen-
tation process, we mask 50% of the node features and ap-
ply dropout to 20% of the edges. The node features are rep-
resented in 768-dimensional space, while the intermediate
layer vectors produced by the encoder have a dimension-
ality of 512. The training procedure consists of 80 epochs,
with the Adam optimization algorithm employed to optimize
the model. The hyperparameter that controls the balance be-
tween the two loss components is set to 0.1. Upon comple-
tion of training, we classify the graph-level vectors learned
by the graph encoder to predict labels. By conducting ex-
periments using multiple classifiers, we selected Multilayer
Perceptron (MLP) as the final classifier. For the experimen-
tal results, we run ten times and take the average values.

Overall Performance

Table 2 and Table 3 respectively display the performance of
the proposed GAMC method and the unsupervised methods.
From the results, compared to existing unsupervised meth-
ods, GAMC demonstrates noticeable improvements across
all four metrics on the two datasets. Specifically, the accu-
racy on the PolitiFact dataset increased by 4.49%, and on the
Gossipcop dataset, it rose by 19.44%. This improvement can
be attributed to GAMC’s unique design, which leverages a
graph autoencoder with masking and contrast. The approach
harnesses both the context and content of news propagation,
thereby providing a more holistic and accurate representa-
tion. Additionally, the composite loss function, combining
reconstruction error loss and contrast loss, ensures not only
that the latent features of the propagation graph are accu-
rately captured but also that the representations of the aug-
mented graphs are closely aligned.

Table 4 shows the performance of the proposed GAMC
and the supervised methods. Compared with Tables 2 and
3, we can observe that supervised methods tend to outper-
form unsupervised methods. This is primarily attributable
to supervised methods taking advantage of the specific la-
bel information provided in training datasets, enabling these
models to learn more distinctive and discriminative patterns
associated with fake news.

As can be seen in Table 4, on the PolitiFact and Gossipcop
datasets, the methods based on news propagation context
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Methods | ACC. Prec. Rec. F1.
TruthFinder 0.581 0.572 0.576 0.573
UFNDA 0.685 0.667 0.659 0.670
UFD 0.697 0.652 0.641 0.647
GTUT 0.776 0.782 0.758 0.767
(UMD)® | 0802 0795 0748  0.761
GAMC 0.838 0.836 0.827 0.831
variance +0.013 £0.008 +0.011 =+0.010

Table 2: Results of GAMC, compared with unsupervised
methods on the PolitiFact dataset. We bold the top results.

(deFEND, GACL, and FinerFact) perform better than those
based on news content (SAFE and EANN). This is due to
social context-based methods effectively capturing the com-
plex interconnections and behavioral patterns involved in
news propagation. In contrast, methods exclusively focused
on news content could potentially overlook these significant
contextual signals.

Methods | ACC. Prec. Rec. F1.
TruthFinder 0.668 0.669 0.672 0.669
UFNDA 0.692 0.687 0.662 0.673
UFD 0.662 0.687 0.654 0.667
GTUT 0.771 0.770 0.731 0.744
(UMD)2 0.792 0.779 0.788 0.783
GAMC 0.946 0.941 0.946 0.943
variance +0.004 =£0.005 =+0.003 +0.004

Table 3: Results of GAMC, compared with unsupervised
methods on the GossipCop dataset.

Additionally, our unsupervised method GAMC demon-
strates superior performance over the classic content-based
supervised algorithms, achieving an accuracy improvement
of 4.22% and 13.16%, respectively. Compared to classic so-
cial context-based supervised algorithms, our method shows
a decrease in accuracy by 7.81% on PolitiFact and an in-
crease by 4.29% on Gossipcop. However, in real-world sce-
narios where labeled data may be scarce or costly to obtain,
our GAMC method offers an effective alternative. Further-
more, this unsupervised model opens up new possibilities
for continual, on-the-fly fake news detection as it can eas-
ily adapt to changing data landscapes. As such, GAMC not
only competes with supervised methods but also provides
additional flexibility and cost-effectiveness, making it a ro-
bust solution for the challenge of fake news detection.

Ablation Study

To further elucidate the importance of each component in
our proposed GAMC model, we conduct an ablation study
in this section. This analysis aims to evaluate the contribu-
tion of individual modules by iteratively removing them and
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PolitiFact GossipCop

Dataset Acc. F1. Acc. F1.
SAFE 0.793  0.775 | 0.832 0.811
EANN 0.804 0.798 | 0.836  0.813
dEFEND | 0.904 0.928 | 0.808  0.755
GACL 0.867 0.866 | 0.907  0.905
FinerFact | 0.909 0917 | 0.832  0.868
GAMC 0.838  0.831 0946  0.943

Table 4: Results of GAMC, compared with supervised meth-
ods on PolitiFact and GossipCop datasets.

observing the effect on the model’s performance. We com-
pare GAMC with its various sub-models:

* GMAC-Aug removes the data augmentation, including
node feature masking and edge dropping.

* GAMC-L,... removes the reconstruction loss, and only
depends on the contrastive loss to optimize the model.

* GAMC-L,,, removes the contrastive loss while gener-
ating only one augmented graph from the propagation
graph.

The comparative results of these various sub-models are vi-
sually summarized in Table 5. From the results, it can be
observed that removing data augmentation (GAMC-Aug)
led to a decrease in accuracy, indicating the importance of
this feature in capturing the intricacies of news propagation.
Data augmentation in GAMC is instrumental in increasing
the autoencoder’s feature reconstruction ability. The absence
of reconstruction loss (GAMC-L,...) made a noticeable dif-
ference in performance, weakening the model’s ability to
accurately regenerate the original graph structure. The con-
trastive loss helps the model to recognize similarities and
differences between different instances, enhancing its dis-
crimination power. By generating only one augmented graph
(GAMC-L,,,), the model loses the capability to contrast be-
tween various augmented views of the data. In conclusion,
each component of the GAMC model plays a critical role in
ensuring optimal performance.

PolitiFact GossipCop
Dataset Acc.  FL. | Ace.  FL
GAMC-Aug 0.804 0.801 0.907 0.893
GAMC-L, ¢ 0.771 0.767 0.891 0.878
GAMC-L.,, | 0816 0812 | 0926 0917
GAMC 0.838 0.836 | 0946 0.943

Table 5: Results of sub-models of GAMC on PolitiFact and
GossipCop datasets.

Parameter Discussion

To ensure that our proposed GAMC model achieves optimal
performance, an investigation and analysis of the parame-
ters was conducted in this section. The mask rate A and edge
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drop rate ~y stand out as vital tunable parameters, impacting
the model’s capacity to understand and process the under-
lying data structure. For comprehensive insights into their
influence, we conduct a series of experiments using both
rates varying between 0.1 to 0.9 to encapsulate their entire
effective range. Figure 3 shows that when the mask rate is
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(a) PolitiFact (b) GossipCop

Figure 3: Parameter analysis for A and v in GAMC. (a)
shows the results on PolitiFact, and (b) shows the results on
Gossipcop.

set to 0.5 and the edge drop rate set to 0.2 the result is the
best. At a high mask rate, a substantial portion of node in-
formation becomes occluded. This leads to the model losing
critical information, making it harder to discern patterns and
structures essential for its tasks. Samely, a high edge drop-
ping disrupts the inherent structure and connectivity of the
original graph. It makes the graph too sparse, thereby losing
significant relational data between nodes. On the other hand,
the low mask and edge drop rate might not provide enough
reconstruction clues.

Conclusion

In this study, we introduced GAMC, a novel unsupervised
approach to fake news detection. By executing data aug-
mentations like node feature masking and edge dropping, we
engender enhanced graphs. Subsequently, we implemented
a graph encoding and decoding strategy. Furthermore, the
composite loss function, including both the reconstruction
error loss and the contrast loss, optimally synergizes these
components. The reconstruction error loss facilitates the re-
construction of the original graph from its representation
vector. The contrast loss facilitates the aligning representa-
tions of augmented graphs from the same original graph. Ex-
periments validate that our method manifests effectively in
fake news detection, eliminating the need for extensive la-
beled datasets. However, the method requires a certain level
of propagation to detect fake news. In the future, we will
integrate knowledge bases to facilitate efficient detection at
the initial stages of fake news emergence.
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