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Abstract

This paper presents an Exploratory 3D Dance generation
framework, E3D2, designed to address the exploration capa-
bility deficiency in existing music-conditioned 3D dance gen-
eration models. Current models often generate monotonous
and simplistic dance sequences that misalign with hu-
man preferences because they lack exploration capabili-
ties. The E3D2 framework involves a reward model trained
from automatically-ranked dance demonstrations, which then
guides the reinforcement learning process. This approach en-
courages the agent to explore and generate high quality and
diverse dance movement sequences. The soundness of the
reward model is both theoretically and experimentally vali-
dated. Empirical experiments demonstrate the effectiveness
of E3D2 on the AIST++ dataset.

Introduction
Music-conditioned 3D dance generation is an emerging field
that combines the art of dance and the science of machine
learning, fostering a novel and creative fusion. By utilizing
music as a guiding condition, dance generative models cre-
ate dance poses synchronized with the melody and rhythm of
the music. Several studies (Huang et al. 2021, 2022; Li et al.
2021; Siyao et al. 2022) utilize generative networks to auto-
regressively generate dance sequences in supervised learn-
ing, with music as the condition and human dance poses as
the supervisory signal. These approaches are capable of pro-
ducing complete dance movements, as significant advance-
ments in the field of dance generation.

Nevertheless, we observe that supervised learning ap-
proaches often exhibit the following three shortcomings:
(1) Weak generalization for unseen music, which affects di-
versity and quality, (2) Fragility of auto-regressive models,
which are prone to severe compounding rollout errors, par-
ticularly when data is scarce, leading to the potential col-
lapse of the dance sequence, and (3) Misalignment between
generated dances and human preferences, which stems from
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the excessive focus on mimicking human movements with-
out considering human preferences (e.g., movement diffi-
culty and aesthetic appeal). Inspired by the learning process
of human dancers, novice dancers not only require the me-
chanical imitation of movements from dance experts but also
continuous practice and exploration to develop their skills.
Furthermore, receiving feedback from experts plays a cru-
cial role in reinforcing their movements, ultimately helping
them become proficient dancers.

In this work, we argue that the aforementioned three is-
sues arise from the lack of exploration capacity in current
dance generation models. We expect trained dance agents to
explore various movements within the dance space while re-
ceiving accurate signals indicating which movements are de-
sirable, thereby increasing the probability of generating such
movements. Based on this assumption, we propose the Ex-
ploratory 3D Dance generation framework, E3D2, to ad-
dress the issue of exploration. To achieve this, we model the
music-conditioned dance generation task as a Markov De-
cision Process (MDP) and employ Reinforcement Learning
(RL) to endow the dance agent with the ability to explore.
For the reward signal, we utilize Inverse Reinforcement
Learning (IRL) to train a Reward Model (RM) from auto-
matically ranked dance demonstrations, which guides the
exploration and exploitation of the dance agent. As shown
in Figure 2, we firstly use Behavior Cloning (Michie, Bain,
and Hayes-Miches 1990) to train an initial dance genera-
tion policy, allowing the agent to learn basic dance move-
ments. Then, we inject increasing levels of noise into multi-
ple cloned initial dance generation policies to acquire mul-
tiple policies with decreasing performance, generating dif-
ferent quality dance demonstrations. Next, we train a re-
ward model with these automatically ranked dance demon-
strations. Finally, under the guidance of the learned reward
model, we encourage the dance agent to explore using rein-
forcement learning, ultimately obtaining the optimal dance
generation policy.

Our design enables the dance policy to address the above
issues through exploration: (1) To tackle the limited diver-
sity and quality of generated dances, reinforcement learning
encourages the dance agent to efficiently explore a broader
range of state-action pairs, where new movements emerge
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Figure 1: Visualizations. Red and blue lines represent right and left leg movements, respectively. Top: Dance examples generated
by the policy lack exploration, exhibiting limited leg movements’ diversity and quality. Bottom: Dance examples generated by
the policy reinforced via exploration align with human preferences, showcasing increased leg movements’ diversity and quality.

naturally, either by combining the sub-actions from various
human dances or by creating entirely novel dances. This re-
sults in dance movements with increased diversity and qual-
ity, as shown in Figure 1. Moreover, the consistent distri-
bution of music and dance movement in the environment
ensures the stability of dynamics, such as transition proba-
bility, allowing the learned reward to generalize. This the-
oretically guarantees the generalization of the learned poli-
cies, guided by the learned reward, for both seen and unseen
environments. (2) Regarding the fragility of auto-regressive
models under supervised learning, which suffers from severe
compounding rollout errors of single-step decisions with re-
spect to long planning horizons, our proposed method is
optimized by sequence-based reward with trial and error.
Through sequence-based exploration and exploitation, our
proposed method focuses on the generated dance trajectories
rather than its single-step error, avoiding the compounding
errors (Asadi et al. 2019; Janner, Li, and Levine 2021; Jan-
ner et al. 2022). (3) To address the misalignment between the
policy and human preferences, our proposed reward model
is able to distinguish the differences between attractive and
ordinary dances due to the assumption that the dance gen-
eration with a higher noise level aligns less with human
preferences. During the exploration and exploitation, human
preference is incorporated into the dance policy through the
guidance of the reward model.

Empirical experiments on the AIST++ dataset (Li et al.
2021) demonstrate that the proposed E3D2 outperforms the
behavior cloning (pure supervised) method across multiple
metrics. Moreover, we perform an in-depth analysis and pro-
vide a theoretical proof (in Appendices section1) of the re-
ward model. The contributions of this article are three-fold:

• We illuminated three issues, weak generalization,
fragility, and misalignment, in existing supervised dance
generation methods attributable to a lack of exploration
capability.

• To address the deficiency of exploration, we propose
an Exploratory 3D Dance generation framework, E3D2,
which encourages dance agents to explore by introducing

1https://arxiv.org/abs/2312.11442

the inverse reinforcement learning method with a learned
reward model that reflects human preference.

• Empirical experiments demonstrate the effectiveness and
generalization performance of our reward model and
E3D2 over supervised models.

Related Works
Music-Conditioned Dance Generation
Music-conditioned dance generation is a cross-modal task
involving auditory and visual integration. Existing methods
for music-conditioned dance generation can be broadly clas-
sified into two categories: retrieval-based methods and direct
generation methods. Retrieval-based methods (Fukayama
and Goto 2015; Ye et al. 2020; Chen et al. 2021a; Au et al.
2022) divide dances into fixed length units and choreograph
by concatenating these units according to the melody of the
music. Unfortunately, the fixed length and Beats Per Minute
(BPM) of the segmented dance units imposed significant re-
strictions on the rhythm of the music used to drive the dance.
To tackle these issues, direct generation methods (Ahn et al.
2020; Huang et al. 2021, 2022; Zhuang et al. 2022; Valle-
Pérez et al. 2021; Wang et al. 2022; Gao et al. 2022; Li
et al. 2022, 2020; Tseng, Castellon, and Liu 2023) have been
proposed which generate dance motion from scratch. These
methods are trained in a supervised learning fashion, with
music as the conditioning input and real human dance as the
supervisory signal. In this work, we focus on exploratory ca-
pabilities during training to improve the quality and diversity
of the generated dance sequences.

Preference-Based Inverse Reinforcement Learning
The goal of Preference-based Inverse Reinforcement Learn-
ing (PIRL) (Sugiyama, Meguro, and Minami 2012; Chris-
tiano et al. 2017) is to learn a reward function from ex-
pert preferences. Compared with learning the reward model
directly from expert behaviors through conventional IRL
methods (Russell 1998; Ng and Russell 2000; Abbeel and
Ng 2004), e.g., Adversarial Inverse Reinforcement Learn-
ing (AIRL) (Fu, Luo, and Levine 2018), PIRL have been
effectively applied in many high-dimensional state spaces
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Figure 2: Diagram of our E3D2: (1) An initial policy πBC is distilled from the human expert dataset through behavior cloning.
(2) Automatically ranked dance demonstrations are collected by πBC with different levels of noise. (3) A reward model Rθ is
trained from these automatically ranked demonstrations to rank the quality of dance trajectories. (4) A reinforcement learning
policy πRL is initialized with πBC and optimized to obtain the optimal dance policy, guided by the reward model Rθ.

(Brown, Goo, and Niekum 2020; Ibarz et al. 2018) where
AIRL may not work effectively (Tucker, Gleave, and Russell
2018). Besides, PIRL could also serve as a way to introduce
the human feedback (RLHF) (Christiano et al. 2017; Warnell
et al. 2018; MacGlashan et al. 2017), make the model better
aligned with human preferences (Stiennon et al. 2020; Wu
et al. 2021; Nakano et al. 2021; Ganguli et al. 2022; Glaese
et al. 2022). To address the issue of sub-optimal demonstra-
tions, T-REX (Brown et al. 2019) trained a reward model
conditioned on states with expert-provided ranking informa-
tion and then trained an agent that surpasses the sub-optimal
demonstrator using the reward model. Based on T-REX, D-
REX (Brown, Goo, and Niekum 2020) proposed a genera-
tion method of automatically ranked demonstrations by in-
jecting different levels of noise into the behavior cloning
policy. D-REX is highly relevant to the demonstration col-
lection of E3D2. However, our main focus is not so much
that we proposed a novel PIRL algorithms, or our success-
ful adoptation of D-REX in dance generation, but rather
our methods solve exploration capability deficiency plagu-
ing existing music-conditioned 3D dance generation mod-
els, that were previously unaddressed and holds significant
importance.

Preliminary
Given a music-driven dance dataset D = {(mi,pi)}Ni=1
consisting of N sequence pairs, where mi ∈ M is a

music feature sequence, and pi ∈ P is the correspond-
ing dance sequence, M and P represent the music feature
space and the dance motion space, respectively. We treat
music-conditioned dance generation as a sequential deci-
sion problem (Sutton and Barto 2018) and model it as a
Markov Decision Process (MDP) (S,A, R, P, γ, T ), where
S,A represent state and action spaces, T and R repre-
sent the termination of the episode and reward function,
and γ ∈ (0, 1) represents the discount factor. We identify
two entities, the environment and the agent, where the en-
vironment is determined by MDP and the agent is deter-
mined by the policy π. And mt and p̂t represent the mu-
sic feature and dance pose at timestep t, respectively. To
sufficiently consider the consistency of the dance genera-
tion sequence, we instantiate the MDP by extending the
state with history information. At the beginning of each
episode, t = 0, the dance agent receives the initial state
s0 = {minit, pinit,m0} ∈ S , which is randomly sampled
from the dataset by the environment, where S is the state
space with st ∈ Pt+1 ×Mt+2 and minit and pinit are the
initial music feature and dance pose, respectively. Then, the
agent generates an action a0 ∼ π(·|s0) ∈ A according to the
policy π, where the action space A = P and thus at = p̂t.
Following this, the environment receives the action p̂0 and
obtains the next state s1 = {minit, pinit,m0, p̂0,m1} us-
ing the deterministic state transition function P : S ×
A → ∆(S) = st. extend({p̂t,mt+1}). After that, the re-
ward rt of taking action at at state st is obtained from
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the reward function R : S × A → R. The agent
then continues to make decisions based on s1 to de-
termine the next action a1. This process continues un-
til the termination of the episode T , where the termina-
tion state sT−1 = {minit, pinit,m0, p̂0, · · · ,mT−1, p̂T−1}
is reached (there is no subsequent music feature mT

in the termination state) and target dance sequence
{pinit, p̂0, · · · , p̂T−1} is obtained. The objective of our
learning algorithm is to train a dance agent with op-
timal policy π∗(a|s) to maximize the expected dis-
counted return J(π∗) = Eτ∼π∗ [

∑T−1
t=0 γtr(st, at)], where

τ = {minit, pinit,m0, p̂0,m1, p̂1, · · · ,mT−1, p̂T−1} and
r(st, at) = R(st, at) means the reward value, abbreviated
as rt. To simplify the notation, in the following parts, unless
otherwise specified, pt = p̂t.

Methodology
Our framework comprises four main steps, as illustrated in
Figure 2. The subsequent sections provide a comprehensive
depiction of each component.

Behavior Cloning
To supply demonstration data for reward model training and
establish the initial skill required for efficient exploration,
we learn an initial policy, πBC , from the human expert
dataset Dhuman in a supervised learning manner. Specifi-
cally, we follow (Siyao et al. 2022) including network archi-
tecture (i.e., Transformer), objective (i.e., cross-entropy loss
LBC), and action space discretization (i.e., VQ-VAE).

Automatically-Ranked Demonstrations Collection
In this section, we will describe how to use πBC to collect
automatically ranked demonstrations. Specifically, we ob-
tain policies with performance between the behavior cloning
policy πBC and a completely random policy by injecting
noise of different levels into the pretrained behavior cloning
policy, similar to D-REX (Brown, Goo, and Niekum 2020).
Empirically (in Discussion section), we show that given
a noise schedule E = (ϵ1, ϵ2, · · · , ϵd) where the ϵi, i ∈
{1. · · · , d} means the noise range in [0, 1] and are ordered
as ϵ1 > ϵ2 > · · · > ϵd. Intuitively, the dance agent’s
performance J(·) is likely to have the following ranking:
J(πBC(·|ϵ1)) < J(πBC(·|ϵ2)) < · · · < J(πBC(·|ϵd)).

In practice, we collect demonstrations by using the ϵ-
greedy strategy to inject noise into the policy. That is, at each
decision-making step, the agent has a probability of ϵ to uni-
formly sample an action a from the action space A, and a
probability of 1 − ϵ to decide on the action a based on its
learned policy πBC . For each noise ϵi, K dance trajectories
are generated to construct the dataset for training the reward
model. Finally, the dataset contains d ×K trajectories with
the following ranking relationship:
Dranked = {τi ≺ τj ; τi ∼ πBC(·|ϵi), τj ∼ πBC(·|ϵj), ϵi > ϵj},

(1)
where τi ≺ τj means τi is worse than τj .

Reward Model
In this section, given the automatically-ranked demonstra-
tions dataset Dranked, we will discuss the network architec-
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Figure 3: Overview of our reward model. Tokens are gener-
ated by combining music and pose embeddings with posi-
tion encoding, followed by a Causal Transformer to extract
features. The extracted features are then fed into a fully con-
nected layer to predict the total reward.

ture and training method of the reward model. Intuitively,
as a discriminative model, the reward model has greater po-
tential for extrapolation tasks compared to auto-regressive
models.

Network Architecture An overview of the reward
model is shown in Figure 3. Given a dance trajectory
τ = {minit, pinit,m0, p0,m1, p1, · · · ,mT−1, pT−1} of T
timesteps generated by the interaction between the agent and
the environment, which contains two modalities, music and
dance poses, with a total length of 2(T + 1). We interleave
the two modalities in the trajectory to ensure compatibil-
ity with the standard causal attention mechanism and feed
them into the reward model Rθ. Then, we apply a linear
layer for each modality to map the raw inputs into an embed-
ding space, added by a learned timestep embedding, which
is shared by different modalities embedding similar to De-
cision Transformer (Chen et al. 2021b). Subsequently, these
tokens will be fed into a Causal Transformer with multiple
layers of masked multi-head attention to produce output fea-
tures with equal length {xs

t , x
a
t }T−1

t=0 , where xs
t represents

the feature of state st, and xa
t represents the feature of action

at. Then, the corresponding state and action features will be
fed into a fully connected layer to generate the reward rt that
can be obtained by taking action at under the current state
st. By applying the reward function Rθ(st, at), we obtain
the total reward u =

∑
t rt for the entire sequence.

Training the Reward Model For training, we first sam-
ple a pair of trajectories τi, τj of different quality from
the automatically ranked demonstration dataset Dranked =
{τ1, · · · , τm}, where τi ∼ πBC(·|ϵi), τj ∼ πBC(·|ϵj) and
ϵi ̸= ϵj . Next, we obtain the quantitative metric of each
trajectory through the reward model, i.e., the total reward
ul =

∑
st,at∈τl

Rθ(st, at), l ∈ {i, j}. Here we use the
total reward u instead of individual reward rt as the rank-
ing criterion because the performance of the policy are de-
cided by the entire sequence rather than each state-action
pair. Then, we define a ranking predictor (Bradley and Terry
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1952) based on the reward function Rθ:

R(τi ≺ τj ; θ) =
(
exp

∑
st,at∈τj

Rθ(st, at)
)
/

(
exp

∑
st,at∈τi

Rθ(st, at) + exp
∑

st,at∈τj

Rθ(st, at)
)
.

(2)

Then, we optimize the network using cross-entropy loss:

LRM = −E(τi,τj ,y)∈D

[
(1− y) log R(τi ≺ τj ; θ)

+y log R(τj ≺ τi; θ)
]
,

(3)

where y = int(ϵi < ϵj). Intuitively, the cross-entropy loss
trains a classifier to predict the quality of two trajectories
correctly. This ranking loss (Cao et al. 2007) is based on the
classic Bradley-Terry (Bradley and Terry 1952) and Luce-
Shephard models of preferences (Luce 2012), and its effec-
tiveness has been demonstrated in previous works (Kim et al.
2023; Park et al. 2022; Hejna III and Sadigh 2023).

Inference During Reinforcement Learning Consistent
with the ranking criterion in the training process, in sub-
sequent reinforcement learning, the learned reward model
Rθ provides a sparse reward r̂t for each state-action pair in
dance sequence:

r̂t =


∑
t

rt, if t = T − 1

0, else
(4)

We provide a total reward at the end of the dance sequence.

Exploration with Reinforcement Learning
The policy network πRL (or πϕ) is parameterized by ϕ and
seeks to maximize the expected return of the trajectory τ :

ϕ = argmax
ϕ

Eτ∼πϕ [R(τ)] = argmax
ϕ

∑
τ

pτ∼πϕ(τ)R(τ),

(5)
where pτ∼πϕ

(τ) represents the probability of generating
trajectory τ given policy πϕ. R(τ) =

∑T−1
t=0 γtR(st, at)

represents the discounted return of trajectory τ . Combined
with the Markov Decision Process (MDP) defined in the Pre-
liminary section, for pτ∼πϕ

(τ), we have:

pτ∼πϕ(τ) = p(s0)

K−1∏
t=1

πϕ(at|st)p(st+1|st, at)

= p(minit, pinit,m0)

K−1∏
t=1

πϕ(pt|minit, · · · ,mt).

(6)
The music-conditioned generation is a deterministic envi-

ronment, where the state and action are given and the next
state is deterministic. Therefore, the pτ∼πϕ

(τ) is only rela-
tive to πϕ and initial state. Additionally, since the probability
of the initial state p(s0) = p(minit, pinit,m0) is determined
solely by the environment and not affected by the policy pa-
rameters ϕ, we have:

ϕ = argmax
ϕ

∑
τ

pτ∼πϕ(τ)R(τ)

= argmax
ϕ

∑
τ

T−1∏
t=1

πϕ(pt|minit, pinit,m0, · · · ,mt)R(τ),

(7)

Policy Network 𝜋𝜙

𝑚 𝑚 𝑚 𝑚
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Figure 4: Overview of our policy network. Given a music
sequence and an initial pose, the policy network πϕ auto-
regressively predicts the subsequent poses.

where the second term R(τ) =
∑

t γ
tr̂t is determined by

the learned reward model Rθ. According to the first term, we
can directly apply an auto-regressive model for dance pose
generation, e.g., Transformer, similar to (Chen et al. 2021b;
Janner, Li, and Levine 2021; Zheng, Zhang, and Grover
2022; Xu et al. 2022). As shown in Figure 4, when πRL,
initialized with πBC , collects samples, the environment pro-
vides fixed music sequence {minit,m0, · · · ,mT−1} and
an initial action pinit. The policy πRL generates the en-
tire dance pose sequence {pinit, p0, · · · , pT−1} in an auto-
regressive manner.

The training of the policy adopts the Proximal Policy Op-
timization algorithm (PPO) (Schulman et al. 2017).

Experiements
Experiments Setup
Dataset We conduct the training and experiments on the
AIST++ dataset (Li et al. 2021), which is the largest public
available dataset for aligned 3D dance motions and music.
AIST++ dataset includes 992 60-Frame Per Second (FPS)
3D dance motion sequences in SMPL (Loper et al. 2015)
format. In line with (Li et al. 2021; Siyao et al. 2022), we
split these data into 952 sequences for training and 40 se-
quences for subsequent experiments.

Implementation Details For audio preprocess, we em-
ploy Librosa to extract music features. Specifically, we ex-
tract the following features: Mel Frequency Cepstral Coeffi-
cients (MFCC), MFCC delta, constant-Q chromagram, tem-
pogram, and onset strength, yielding a 438-dimensional mu-
sical feature vector. More details and hyper-parameter set-
tings can be found in Appendices.

Comparisons with State-Of-The-Arts
We compare E3D2 to state-of-the-art including FACT (Li
et al. 2021) and Bailando (Siyao et al. 2022), which is also
our behavior cloning policy. Following (Siyao et al. 2022),
we generate 40 dance clips for each method in the AIST++
test set and cut the generated dances into the length of 20
seconds for further experiments.
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Motion Quality Motion Diversity

FIDk ↓ FIDg ↓ DIVk ↑ DIVg ↑ BAS ↑
Ground-Truth 17.10 10.60 8.19 7.45 0.2484

FACT (Li et al. 2021) 37.31 34.87 5.75 5.47 0.2175
Bailando (Siyao et al. 2022) 28.62 9.95 6.27 6.22 0.2220

E3D2 (Ours) 26.25 8.94 7.96 6.49 0.2232

Table 1: Evaluation results on test set of different dance generation frameworks. To ensure a fair comparison with baselines, we
report the results of (Siyao et al. 2022) without RL fine-tuning on the test set.

We conduct objective evaluations following (Siyao et al.
2022), including the quality and diversity of generated
dances, and the alignment score between the dance and mu-
sic beats. Specifically, for the quality of generated dances,
we calculate the Fréchet Inception Distance (FID) (Heusel
et al. 2017) between the generated dance and all dance se-
quences of AIST++ dataset on the kinetic feature (FIDk)
(Onuma, Faloutsos, and Hodgins 2008) and the geomet-
ric feature (FIDg) (Müller, Röder, and Clausen 2005). For
the diversity, we calculate the average Euclidean distance
(DIV ) (Li et al. 2021) of the generated dances on the ki-
netic feature (DIVk) and the geometric feature (DIVg). For
the alignment between the dance and music beats, we cal-
culate the Beat Align Score (BAS) (Liu et al. 2022b; Siyao
et al. 2022).

Table 1 report the comparison with state-of-the-art meth-
ods. According to the comparison, the proposed E3D2 out-
performs baseline frameworks in all aspects, demonstrating
the effectiveness of the exploration. Specifically, with explo-
ration, E3D2 improves 8.28% and 10.15% than the Behavior
Cloning (BC) policy Bailando on FIDk and FIDg , respec-
tively. This indicates that the reward model prefers move-
ments that are more similar to those of humans and high-
quality. And for the motion diversity, exploration helps the
policy improve 21.23% and 4.16% on DIVk and DIVg , re-
spectively. The results on BAS also indicate the improve-
ment of our method. More comparisons and visualizations
in wild musics are available in demo page2.

Discussion
This section provides a comprehensive analysis of the re-
ward model, including the effectiveness, advantages over the
hand-designed reward, the empirical soundness of the train-
ing process, as well as the accuracy and generalization.

Does Exploration Provide More Alignment?
To further present the alignment with human preferences
brought by exploration and reward model, we conduct a sub-
jective test with 24 subjects, who are asked to select which
dance segment they preferred through pairwise comparisons
given a certain piece of music. The results are shown in Ta-
ble 2. Human evaluation shows the superior performance of
our approach compared to frameworks without exploration,

2https://sites.google.com/view/e3d2

which is consistent with objective metrics diversity, quality
and beat align score.

Win Fail No Preference
Ours vs. FACT 94.4% 4.2% 1.4%

Ours vs. Bailando 66.7% 28.7% 4.6%

Table 2: Human-based evaluation results. We conduct a hu-
man evaluation to ask annotators to select the preferred
dances through pairwise comparison.

Is a Learned Reward Function More Effective
Than a Hand-Designed One?
To explore the differences between learned and hand-
designed reward, we compare a hand-designed reward pro-
posed in (Siyao et al. 2022):

r = rb + γcrc, (8)

where rb and rc represent the beat alignment reward and
orientation reward, respectively. The former aligns dance
movements with the rhythm of music, while the latter con-
strains the consistency of the upper and lower half body. γc
is the balance weight.

Table 3 presents various evaluation results of dance gen-
eration from the agent trained with the hand-designed re-
ward. As the interaction steps increase, the dance gradually
deviates from human movement patterns and its diversity is
not as good as the behavior cloning policy. This is because
the hand-designed reward only considers the beat alignment
and consistency of upper and lower body movements, which
results in a lack of diversity and similarity to human move-
ments being overlooked. Besides, the design of reward re-
quires a lot of task-specific prior knowledge (Wirth et al.
2017; Liu et al. 2022a). In contrast, our reward is learned
from automatically ranked demonstrations without any do-
main knowledge. This reward is expected to implicitly learn
various aspects of the dance, allowing a comprehensive eval-
uation of the dance and a correct optimization of the dance
policy.

Higher Level Noise Leads to the Worse
Demonstrations?
The learned reward model is based on the assumption that
the behavior cloning policy significantly outperforms a com-
pletely random policy and that increasing levels of noise lead
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Steps FIDk ↓ FIDg ↓ DIVk ↑ DIVg ↑ BAS ↑
0M 28.62 9.95 6.27 6.22 0.2220
1M 45.39 15.41 4.17 3.49 0.2338
2M 46.25 17.20 4.63 3.46 0.2374
3M 43.10 18.59 4.82 2.90 0.2283
4M 47.80 22.15 4.97 2.47 0.2388
5M 56.30 24.58 5.52 3.56 0.2442

Table 3: Performance of hand-designed reward. ‘Steps’ is
the interaction numbers between the agent and the environ-
ment. The hand-designed reward only considers BAS and
orientation, leading to decreasing performance on other met-
rics during the optimization.

ϵ FIDk ↓ FIDg ↓ DIVk ↑ DIVg ↑ BAS ↑ u
0.02 13.94 2.71 8.01 6.20 0.2782 206.31
0.25 40.45 22.39 4.41 2.40 0.2501 127.68
0.50 48.59 29.80 3.72 1.61 0.2547 52.09
0.75 53.79 33.35 3.31 1.32 0.2451 -20.24
1.00 57.18 35.67 3.04 1.17 0.2427 -91.53

Table 4: Ablation on the impact of noise in the training set.
The performance of the BC policy gradually decreases as the
noise level increases. u represents the average total reward
across all trajectories in the training set.

to an increasingly worse policy. To validate this assumption,
we select different noisy levels [0.02, 0.25, 0.50, 0.75, 1.00]
and evaluate the performance of behavior cloning policies
injected with these noises on the training set music. As
shown in Table 4, as the noise level increases, the quality
of the generated dances generally decreases.

What Is the Performance of the Reward Model?
Table 4 demonstrates that the reward model can provide ap-
propriate evaluations, i.e., total reward, for the dance se-
quences. For generalization, Figure 5 illustrates the classifi-
cation accuracy of the reward model on dances with different
rankings conditioned on training and test set musics during
the training process. At the final epoch, the reward model
achieves an accuracy of around 97% on both the training and
test sets. In contrast, we evaluate the pose code prediction
accuracy of the BC policy on training and test sets, with the
results shown in Table 5. ‘Complete Pose’ refers to the cor-

Dataset Complete Pose Partial Pose
Music Seen 54.69% 73.44%

Music Unseen 2.32% 7.52%

Table 5: Pose prediction accuracy. We evaluate the behavior
cloning policy on both seen and unseen music. ‘Complete
Pose’: both the codes of upper and lower half bodies are
correct; ‘Partial Pose’: at least one code is correct. These
results demonstrate the limited generalization capabilities of
supervised learning approaches.

1 2 3 4 5 6 7 8 9 10
Epochs

0.94

0.95

0.96

0.97

A
cc

ur
ac

y

Test
Train

Figure 5: Reward model accuracy: The classification accu-
racy of the reward model on dances generated by policies
with varying levels of noise during training. The reward
model exhibits excellent generalization on the test set.

Dataset FIDk ↓ FIDg ↓ DIVk ↑ DIVg ↑ BAS ↑
Music Seen 8.48 1.88 8.28 6.86 0.2854

Music Unseen 28.62 9.95 6.27 6.22 0.2220

Table 6: Performance of behavior cloning policy on seen and
unseen music. The significant gap indicates the limited gen-
eralization of supervised learning approaches.

rect prediction of both the upper and lower half body codes,
while ‘Partial Pose’ indicates that at least one code is correct.
The BC policy suffers from severe overfitting to the training
set and struggles to generalize to unseen music, achieving
only 2.32% complete pose accuracy and 7.52% partial pose
accuracy. Moreover, we assess the performance of the BC
policy in generating dance sequences under the conditions
of seen and unseen music, as shown in Table 6. The signifi-
cant gap indicates the weak generalization of the supervised
learning approaches. In comparison, the reward model ex-
hibits excellent generalization performance. A plausible ex-
planation for these findings is that the reward model, as a
discriminative model, easily achieves better generalization
than the generative behavior cloning model, enabling rein-
forcement learning policy to demonstrate superior general-
ization compared to behavior cloning policy.

Conclusion

In this paper, to address the problem of the lack of explo-
ration ability in current music-driven dance models, we pro-
pose a novel dance generation framework, E3D2. We first
train a reward model on automatically ranked dance demon-
strations, and then, we train the dance policy using reinforce-
ment learning with the learned reward model, resulting in
more diverse and human-aligned dances. Extensive experi-
ments demonstrate the effectiveness of E3D2.
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