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Abstract

In the hydrology field, time series forecasting is crucial for
efficient water resource management, improving flood and
drought control and increasing the safety and quality of life
for the general population. However, predicting long-term
streamflow is a complex task due to the presence of extreme
events. It requires the capture of long-range dependencies and
the modeling of rare but important extreme values. Existing ap-
proaches often struggle to tackle these dual challenges simul-
taneously. In this paper, we specifically delve into these issues
and propose Distance-weighted Auto-regularized Neural net-
work (DAN), a novel extreme-adaptive model for long-range
forecasting of stremflow enhanced by polar representation
learning. DAN utilizes a distance-weighted multi-loss mech-
anism and stackable blocks to dynamically refine indicator
sequences from exogenous data, while also being able to han-
dle uni-variate time-series by employing Gaussian Mixture
probability modeling to improve robustness to severe events.
We also introduce Kruskal-Wallis sampling and gate control
vectors to handle imbalanced extreme data. On four real-life
hydrologic streamflow datasets, we demonstrate that DAN
significantly outperforms both state-of-the-art hydrologic time
series prediction methods and general methods designed for
long-term time series prediction.

Introduction
Time series forecasting has a critical role in diverse domains,
enabling effective resource management and informed policy
decisions. However, certain time series data pose a unique
problem because they contain sporadic but significant ex-
treme events, such as unexpected flash floods or climate
change-induced droughts in the problem of streamflow pre-
diction. The ability to forecast time series that include these
types of extreme occurrences is an important research direc-
tion which has seen much attention in recent years (Nguyen
and Chan 2004; Ding et al. 2019; Qi and Majda 2020; Chen
et al. 2020; Zhang et al. 2021; Li, Xu, and Anastasiu 2023a).

Traditionally, machine learning and statistics-based mod-
els were the basic foundation for time series prediction (Box
and Pierce 1970; Nielsen 2019). However, techniques like
Autoregressive Integrated Moving Average (ARIMA) (Box
and Jenkins 1976) seem to perform badly when dealing
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with large variations in the streamflow values, while other
methods (Shortridge, Guikema, and Zaitchik 2016; Papachar-
alampous and Tyralis 2022; Cheng et al. 2020) are generally
designed for short future horizon forecasting.

A variety of neural network architectures have been in-
vestigated for hydrologic forecasting, including recurrent
neural networks (Lai et al. 2018; Siami-Namini, Tavakoli,
and Namin 2018), hybrid networks (Oreshkin et al. 2019)
and graph neural networks (Wu et al. 2020; Cao et al. 2020).
Some work employed Extreme Value Theory (EVT) to en-
hance the hydrologic time series performance (Li, Xu, and
Anastasiu 2023a; Zhang et al. 2021). However, these studies
primarily concentrate on short-term forecasting and their per-
formance on longer time horizons is doubtful. While there
has been a surge in transformer-based forecasting models as-
serting their high-performance capabilities for long-horizon
time series tasks (Li et al. 2019; Qin et al. 2017; Zhou et al.
2021, 2022; Kitaev, Kaiser, and Levskaya 2020), recent re-
search has raised questions about their efficacy, indicating
that simpler linear models can outperform them (Zeng et al.
2022; Das et al. 2023). Moreover, imbalanced data or se-
vere events might hurt all these state-of-art deep learning
approaches when it comes to long-term predictions.

We focus on these challenges and innovatively address
them through representation learning (Fortuin et al. 2018;
Lei et al. 2017; Tonekaboni et al. 2022), a burgeoning field
in unsupervised learning. Our aim is to extract latent states
containing the extreme features in data for downstream tasks.
To achieve this, we explore the potential of multi-loss func-
tions (Ma et al. 2021, 2018) in shaping our training objective.
The main contributions of this work are as follows:
• We propose a Distance-weighted Auto-regularized Neural

network (DAN), which uses expandable blocks to dynam-
ically facilitate long-term prediction.
• To improve the model’s robustness to severe events, DAN

innovatively uses a distance-weighted multi-loss method
to extract the polar representations from time series simul-
taneously.
• We introduce a Kruskal-Wallis sampling policy to handle

imbalanced extreme data and gate control vectors to boost
the discriminatory capacity of indicators to accommodate
imbalanced data.
• We evaluate DAN and competing methods on four sepa-

rate datasets and find that DAN significantly outperforms
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Figure 1: Streamflow over 3 years.

state-of-the-art baselines. Additionally, we carry out sev-
eral ablation studies to comprehend the effects of specific
design decisions.

Related Work
Streamflow forecasting holds a pivotal role in enhancing
water resource allocation, management, flood warning, and
mitigation of flood-related damages. Traditional methods
for streamflow forecasting included the univariate Autore-
gressive (AR), Moving Average (MA), Simple Exponential
Smoothing (SES), and Extreme Learning Machine (ELM)
algorithms, and most famously the Autoregressive Integrated
Moving Average (ARIMA) (Box and Jenkins 1976) method
and its several variants. Wang et al. (Wang, Qiu, and Li 2018)
developed a hybrid model combining Empirical Mode De-
composition (EMD), Ensemble Empirical Mode Decompo-
sition (EEMD) and ARIMA for long-term streamflow fore-
casting, but they did not examine the effectiveness of their
models on datasets with extreme values.

Recently, deep learning models have emerged as the pre-
ferred approach for forecasting rich time series data (Sen,
Yu, and Dhillon 2019), outperforming classical statistical ap-
proaches such as ARIMA or GARCH (Box et al. 2015). Boris
et al. (Oreshkin et al. 2019) proposed NBeats, which shows
good performance on general time series prediction (Salinas
et al. 2020). DeepAR (Salinas et al. 2020) learns a conditional
distribution over the future values and uses the shared RNN to
predict future values and their confidence. To tackle the long-
term forecasting challenge, some recent transformer-based
methods like Autoformer (Wu et al. 2021) and Reformer (Ki-
taev, Kaiser, and Levskaya 2020) have been proposed to em-
power the transformer with more sophisticated dependency
discovery and representation ability. Informer (Zhou et al.
2021) proposed a ProbSparse self-attention mechanism and a
generative style decoder which drastically improves the infer-
ence speed of long-sequence predictions. FEDFormer (Zhou
et al. 2022) represents time series by randomly selecting
a constant number of Fourier components to maintain the
global property and statistics of time series as a whole.

On the other hand, many generic time series prediction
models can perform poorly on data with high skewness and
kurtosis scores. Conventional methods often falter when con-
fronted with extreme events, which, although infrequent, hold
considerable real-world implications—such as in specific in-
stances of streamflow forecasting. Singh et al. (Singh, Ranjan,

and Tiwari 2022) proved machine learning approaches suf-
fer from the problem of imbalanced data distribution and
noted that balancing the dataset is an imperative sub-task.
An and Cho (An and Cho 2015) proposed an anomaly de-
tection method using the reconstruction probability, which
is a probabilistic measure that takes into account the vari-
ability of the data distribution. Ding et al. (Ding et al. 2019)
explored the central theme of improving the ability of deep
learning time series models to capture extreme events. Zhang
et al. (Zhang et al. 2021) proposed a framework to integrate
machine learning models with anomaly detection algorithms.
In an earlier work, we proposed NEC+ (Li, Xu, and Anas-
tasiu 2023a), a model specifically designed to provide good
prediction performance on hydrological time series with ex-
treme events. Additionally, concurrently with this work, we
recently developed SEED (Li, Xu, and Anastasiu 2023b), a
Segment-Expandable Encoder-Decoder model for univariate
streamflow prediction.

Few of these prior works have concentrated on address-
ing both prolonged sequences and extreme occurrences. To
bridge this gap, the proposed method, DAN, employs joint
learning of two polar hidden spaces within a single series,
guided by an associated distance-regularized loss function.
This combined approach facilitates accurate end-to-end struc-
ture prediction. Remarkably, DAN’s performance surpasses
that of state-of-the-art methods across four real-life stream-
flow datasets.

Preliminaries
Problem Statement
Suppose we have a collection ofm (m >= 1) related univari-
ate time series, with each row corresponding to a different
time series. We are going to predict the next h time steps for
the first time series x1, given historical data from multiple
length-t observed series. The problem can be described as,
x1,1 · · · x1,t
x2,1 · · · x2,t

...
. . .

...
xm,1 · · · xm,t

 ∈ Rm×t → [x1,t+1, ..., x1,t+h] ∈ Rh

where xi,j denotes the value of time series i at time j. The
matrix on the left are the inputs, and x1,t+1 to x1,t+h are the
outputs in our method.
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Figure 2: DAN’s end-to-end extendable framework consists of two stages, named RepGen and RepMerg, respectively. RepGen
contains three parallel encoder-decoder blocks, resulting in polar representations of ordinary series inputs and refined indicators.
These elements are further merged in the RepMerg stack.

We first define this task by modeling the objective time
series x1 as the ordinary series and the group of related time
series x2 to xm as extraordinary indicators. When an extraor-
dinary indicator series is not available, our proposed model
can generate a Gaussian Mixture Model (GMM) indicator
based on x1, which becomes x2. In such cases, the problem
can be reduced to that of univariate time series forecasting.

GMM Indicator
In our work, when there is no extraordinary indicator series
provided, we use a Gaussian mixture model (GMM) (Day
1969) to learn a group of distributions from the input uni-
variate time series. Then, we compute an indicator feature
for each value in the time series as the weighted sum of all
component probabilities, based on the weights learned during
GMM model fitting. Due to lack of space, we detail this step
in Section 4 of our technical appendix in (Li and Anastasiu
2023).

Kruskal-Wallis Test in Time Series
To balance the sparse distribution of extreme events, we em-
ploy the Kruskal-Wallis test (McKight and Najab 2010) as a
non-parametric method to evaluate the normality of a train-
ing sample and guide our oversampling policy. The Kruskal-
Wallis test examines two or more groups of time series based
on their medians, in which the data are first ranked, and the
sum of ranks is calculated for each group. The H value is
then calculated from these rank sums, and compared to a
critical value to determine if there are significant differences
between the groups. Because the Kruskal-Wallis test does not
assume a particular distribution, it is sometimes referred to
as a distribution-free test (Ostertagova, Ostertag, and Kováč
2014; Breslow 1970). The H value is computed as

H =
12

n(n+ 1)

k∑
j=1

R2
j

nj
− 3(n+ 1). (1)

In our work, we separate the sampled training sequence into
k sub sequence groups of equal length. H is the Kruskal-
Wallis test statistic, n is the total number of samples across all

groups,Rj is the sum of ranks for the jth group, and nj is the
number of samples in the jth group. The oversampling policy
will be described in the Kruskal-Wallis Sampling Section.

Methods
An overview of our architecture has been presented in Fig-
ure 2.

Polar Representation Learning
The key innovations in DAN are new mechanisms to generate
and exchange information among polar (far and near) rep-
resentations and the indicators (ind) for direct improvement
of the predictions. Polar representation learning in RepGen
allows for the separate encoding of extreme points, which
are then preserved in RepMerg. This ensures that, during
training, these representations are not compromised by the
predominance of normal values, as they often adhere to differ-
ent distributions. As described in Figure 3, RepGen consists
of three encoder-decoder sub-networks. Please note that the
CONV-LSTM layers are specifically designed for learning
to predict far points. Because the hidden state for extreme
events may be updated multiple times in repeated blocks,
we use convolution operations to shorten the input sequence,
which helps alleviate any potential exploding or vanishing
gradient problem. The far and near point predictions are
extended into the RepMerg stack and further refined as ŷf
and ŷn, respectively, after being added to the prior output
of RepGen. To reflect the change of predicted values, ŷi is
expected to converge to the first order of y.

Architecture Items
Representation Merge In the RepMerg stack, to finish
representation merging, the middle LSTM-FC block in the
red circle takes the far point representation hfar as the initial
hidden state and ŷi as input, which is then combined with
ŷn to form a two-dimensional vector as input for another FC
layer that outputs ŷ.
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Figure 3: In the RepGen stack, “f -ED” is responsible for the
representation learning of those points that are far away from
the mean of the series (ŷf ), including the extreme values
sparsely distributed in the predicted zone. “n-ED” mainly fo-
cuses on learning hidden features of near points (ŷn), which
include most of the normal values. “i-ED” is designed to
learn the indicator representation (ŷi).

Indicator Refine Layer It should be highlighted that pre-
cise ŷi prediction is important for performance improvement
as it can help predict extreme events. Therefore, an additional
refine layer made of double CNN components is intended to
assist in producing the expected indicator by first refining the
value within a local horizon. The indicator input can then be
cyclically updated from the output of the refine layer of the
“i-ED” as the RepGen is designed to be an expandable stack
that can be repeated multiple times.

Gate Control Vector Given the significance of ŷi, we pro-
vide another way to hone the predicted indicator. As shown
in Figure 3, we designed a gate control vector mfar, whose
values reflect precisely in which places ŷ is closer to ŷf . Sim-
ilarly, mnear is the complement of mfar. We then compute
ŷw as mfar � ŷf +mnear � ŷn, where � is the component-
wise multiplication. We therefore use ŷw to increase the dis-
criminatory ability of ŷi when it is expected to reflect better
extreme values without sacrificing the overall normal values.

Figure 4: Gate control vector. mfar is equal to
sigmoid(αŷi), where α is an amplifier and equals 4 in our
experiments; mnear is computed as 1−mfar.

.

Auto-Regularized Loss Function
Different from the conventional usage of regularization loss
as a penalty term for preventing overfitting of the model to
the training data, our approach employs multiple distance-
weighted loss functions when training the DAN model, with
the objective of compelling the model to learn more infor-
mative representations. Moreover, it should be noted that our
method can also serve as an effective regularizer for prevent-
ing overfitting of the model to the base normal values in the
long-term time series prediction task.

We define wf = (tanh(y))2 to be a weight that empha-
sizes the accuracy of points further away from the mean value
of 0 (since the series were standardized to have 0 mean). In
contrast, wn = (1− | tanh(y)|)2 focuses more on the points
closer to zero. The square root of wf , denoted by wp, is a
more moderate way to maintain discriminatory output for
indication-related tasks. These weight definitions contribute
to the accuracy of the model in predicting extreme events in
a long-term time series. Based on these weights, we build our
multi regulation loss as follows,

L1 = RMSE((ŷf � wf ), (y � wf )),

L2 = RMSE((ŷn � wn), (y � wn)),

L3 = RMSE(ŷw � wp, y � wp),

L4 = RMSE(ŷi � wp, yi � wp),

where L1 and L2 are used to regulate the bipolar representa-
tion learning and L3 and L4 force the predicted indicator to
reflect the change of predicted values by setting yi equal to
the first order of y. Then, the overall loss is composed as,

L = RMSE(ŷ, y) + λ× (L1 + L2 + L3 + L4),

where λ is a multiplier (λ = max(−1 ·e
epoch

45 +2, 0.2) in our
experiments) applied on those regulation items, decreasing
with each epoch.

Kruskal-Wallis Sampling
Given that extreme events are rare within our data compared
with normal ones, we utilize Kruskal-Wallis sampling to over-
sample regions with extreme events in our training set that
our model can learn appropriate patterns from. Namely, for
each random sample x of size t+ h we draw from the input
sequence, we first split the sequence into k consecutive sub-
sequences of equal size and compute the Kruskal-Wallis test
statistic H between the k sub-sequences, using Equation 1.
To avoid the H statistic being affected by minor differences
in the sub-sequences, we round values in x to the nearest
integer before computing H . We then include the sample in
the training set if H > ε, where ε is a threshold, or otherwise
include the sample with probability p < 1. The threshold ε
allows us to set the relative change in the sample that makes it
more likely to contain an extreme event, while the probability
p allows us to choose how many normal samples should be
included in the training set.

Evaluation
Code and data for DAN can be found at https://github.com/
davidanastasiu/dan. In this section, we present empirical re-
sults from evaluating our proposed framework. We are in-
terested in answering the following research questions with
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regards to prediction effectiveness: (1) How does DAN com-
pare against state-of-the-art baselines? (2) What is the effect
of DAN’s extensible framework? (3) What is the effect of the
Kruskal-Wallis oversampling policy? (4) How do the critical
design elements of the framework affect performance?

Experimental Settings

Dataset We used four groups of hydrologic datasets from
Santa Clara County, CA, namely Ross, Saratoga, Upper-
Pen, and SFC, named after their respective locations. Each
group included a streamflow dataset and an associated rainfall
dataset. Statistics of our primary series are shown in Table 1.
Our task was to forecast the streamflow for wet seasons in
a hydrologic year, excluding the summer months, namely
September 2021 to May 2022, in a rolling manner. The train-
ing and validation sets were randomly sampled from series
spanning from January 1988 to August 2021. Inference in-
volved predicting the streamflow every 4 hours for the next 3
days. Since the sensors measure the streamflow and precip-
itation every 15 minutes, we are attempting a lengthy fore-
casting horizon (h = 288), which is unquestionably an LSTF
task based on the most recent research (Zhou et al. 2021,
2022; Zeng et al. 2022; Das et al. 2023). Before training a
model, all time series were pre-processed by log transform
(xi = log(1 + xi)∀i) and standardization (subtract mean
and divide by standard deviation). Inference predictions were
post-processed by inverting the standardization and log trans-
form operations.

Ross Saratoga UpperPen SFC

min 0.00 0.00 0.00 0.00
max 1440.00 2210.00 830.00 7200.00
mean 2.91 5.77 6.66 20.25

skewness 19.84 19.50 13.42 18.05
kurtosis 523.16 697.78 262.18 555.18

High skewness and kurtosis scores indicate that there is a
significant deviation from a normal distribution in our data.

Table 1: Streamflow Datasets Statistics

Model Parameters For all models, after testing different
LSTM layer widths, we found that 512 node layers for ROSS
and 384 layers for the other three sensors were the most
effective. We set h = 288 (3 days) based on the problem
definition and tested different values of t ∈ {288, 672, 1440}
(3, 7, 15 days), with t = 1440 producing the best results for
all data streams. In the RepGen stage, the three CNN layers
produce 256 channels each. The kernel sizes used in these
layers are 11, 7, and 3, respectively. The stride, padding, and
activation function remain the same across all three layers,
with a stride equal to the kernel size, no padding, and a
subsequent tanh activation function. We use two stacked
CNN1d layers for indicator refinement, with the kernel size
and padding set to 7 for the first layer and 3 for the second.

Experimental Results
Baselines We include seven state-of-the-art models for
comparison, of which FEDFormer (Zhou et al. 2022), In-
former (Zhou et al. 2021), NLinear (Zeng et al. 2022), and
DLinear (Zeng et al. 2022) focus on long-term time series
forecasting, while NEC+ (Li, Xu, and Anastasiu 2023a) holds
the best performance for hydrologic time series prediction in
the presence of extreme events. These five models were used
as baselines for both multivariate and univariate prediction.
In addition, Attention-LSTM (Le et al. 2021) was used as a
state-of-the-art hydrologic multivariate model used to predict
stream-flow using rainfall data. Finally, N-BEATS (Oreshkin
et al. 2019), a state-of-the-art univariate baseline method that
outperformed all competitors on the standard M3 (Makri-
dakis and Hibon 2000), M4 (Makridakis, Spiliotis, and As-
simakopoulos 2018), and TOURISM (Athanasopoulos et al.
2011) time series datasets, was also used in the comparison.

Multivariate and Univariate Results Table 2 shows the
test root mean squared error (RMSE) and mean absolute
percentage error (MAPE) performance for the models that
achieved the best performance on our validation dataset. For
these experiments, all DAN results were achieved using the
same random seed. Due to lack of space, we include the
definition of our performance metrics and multiple seed run
performance statistics in Section 5 of our technical appendix
in (Li and Anastasiu 2023). In the multivariate forecasting
task, our proposed model DAN outperformed all baselines
on all four benchmark datasets. Compared to the second-best
results, DAN achieved an overall 19% relative RMSE reduc-
tion. Notably, the improvement was most significant for the
UpperPen dataset, where DAN achieved a 30% improvement.
For the univariate forecasting task, DAN outperformed other
methods on three out of four benchmark datasets. Although
NBeats achieved a 6% relative RMSE reduction compared to
DAN for the UpperPen sensor, DAN surpassed NBeats with
a relative RMSE reduction of 18%, 49%, and 52% on the
Ross, Saratoga, and SFC datasets, respectively.

Inference Overall Analysis Figure 5, in which we present
rolling prediction results for the whole test set (1600 time
points) for the Ross sensor, helps explain DAN’s good per-
formance. To make it easier to visualize, the test set was
sampled every 5 points (320 time points sampled) and a spe-
cific period including extreme events is denoted by the red
box and focused on in the right figure. We observed that
DAN performed better than other models on areas with ex-
treme events. While Informer and NLinear could follow the
extreme events better than other baselines, they predicted
values much higher than the actual peaks. On the other hand,
DLinear and Attention-LSTM performed better than NEC+
and FEDFormer, but they predicted values much lower than
the ground truth.

Ablation Studies
The superior performance of our method comes from its ex-
tendable framework, creative Kruskal-Wallis sampling policy,
and three key architecture designs: 1) the use of a refine layer
in RepGen that refines the indicator information using dou-
ble CNNs with moving kernel convolution operations, 2) the
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Methods Metric Ross Saratoga UpperPen SFC
Multi Single Multi Single Multi Single Multi Single

FEDformer RMSE 6.01 6.49 6.01 6.85 3.05 2.38 23.54 24.10
MAPE 2.10 2.49 1.55 2.26 1.87 1.02 2.35 2.817

Informer RMSE 7.84 9.14 5.04 4.89 5.88 5.33 39.89 19.00
MAPE 4.05 5.45 1.43 0.73 4.10 4.21 8.64 0.54

Nlinear RMSE 6.10 5.84 5.23 4.98 1.57 1.74 18.47 18.43
MAPE 1.99 1.62 0.83 0.75 0.45 0.57 0.92 0.87

Dlinear RMSE 7.16 6.90 4.33 4.06 3.53 3.25 21.62 23.64
MAPE 3.10 2.79 1.40 1.31 2.35 2.04 2.74 4.02

NEC+ RMSE 9.44 9.33 1.88 1.95 2.22 1.94 17.00 16.39
MAPE 4.80 4.53 0.17 0.21 0.95 0.80 1.07 0.55

LSTM-Atten / RMSE 7.35 5.16 6.49 3.60 6.35 1.23 34.17 31.47
NBeats MAPE 3.74 1.25 1.80 0.70 4.76 0.25 9.90 3.24

DAN RMSE 4.25 4.24 1.80 1.84 1.10 1.31 15.23 15.20
MAPE 0.07 0.09 0.14 0.16 0.15 0.32 0.26 0.21

Over 1600 test points in the test set were inferenced on all datasets. The best results are in bold and the second best results are underlined.

Table 2: Multivariate/Univariate Long-Term (h = 288) Series Forecasting Results on Four Datasets
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Figure 5: Sampled multivariate inference for the Ross sensor. The right figure emphasizes extreme events occurring during the
example time period in the red box of the left figure.

RepMerg layer which combines the rich polar representations
with the indicator learned from RepGen, and 3) regularization
loss components. We will examine their effects respectively
in this section.

Effects of DAN’s Extensible Framework Our network
comprises two main stages. The repeatable stacks are named
“E”, “D” and “R” in Figure 2, endowing DAN with the ca-
pability of updating the indicator in an evolutional way by
repeating “E”+“D” and including multiple refinements by
repeating “R”. The best stack configuration may vary for
different datasets, depending on the intrinsic relationships in
the multivariate series. We experimented with various combi-
nations and identified the best results as “EDEDRR”, “EDR”,
“EDEDRR”, and “EDEDR” for Ross, Saratoga, UpperPen,
and SFC, respectively.

Effects of the Oversampling Policy Figure 6 displays the
distribution of the H values before and after applying the
Kruskal-Wallis sampling algorithm. These observations high-

light the impact of adjusting p and ε on the distribution of H
values in the training set. If we maintain the p value and in-
crease the ε value, the training set will contain more samples
with H values exceeding ε, as illustrated in the rightmost
three figures in the first row of Figure 6.

Policy(ε = 10) Ross SFC

20% <= p <= 40% 23.5 118.1
60% <= p <= 80% 25.0 122.0

p = 100% 28.7 129.0
We used ε = 10 and the p values used were grouped into 3 cases.
p = 100% means no Kruskal-Wallis oversampling was applied.

Table 3: RMSEfar when Oversampling

Our oversampling policy can help shift the focus of our
model towards improving “far” point prediction performance.
To test this, we conducted multiple runs of each model, aver-
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Figure 6: Oversampling policy. Initially, a majority of the samples have H values below 10. However, upon setting p = 50% and
ε = 10, the number of samples with H values below 10 decreases, while the count for higher H values increases. The second
row showcases the scenario for p = 25%.

aging the RMSE values for points with values greater than
1.5 standard deviations above the mean of the series, which
we call RMSEfar in Table 3. The results show that the
RMSEfar can be steadily decreased by decreasing p.
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Figure 7: Inference examples to show the effects of different
architecture elements on the Ross dataset.

Effects of DAN Architecture Elements In this section,
we investigate the impact of different design elements on the
performance of our network. To isolate the effects of these
design elements and obtain a more comprehensive under-
standing of each one, we replace the input indicator in our
network with ground truth rain data and only use a simple
EDR architecture stack, which will remove the effect of vary-
ing indicator performance from the comparison. By doing

so, we can observe how the network performs when certain
layers are removed or added back.

To create a baseline structure, we first removed the refine
and the RepMerge layers, using only the encoder-decoder
block to generate the indicator, and set ŷ equals to ŷw to
bypass the RepMerge structure. This produced the first pre-
dicted sequence (named Vanilla_Ind in Figure 7), which
shows an example of inference on Ross sensor data. We then
added the refine layer back, which improved the results as
shown in the second sub-figure (named LCNN_Ind). Next,
we added back the RepMerg layer. Concurrently, we also
removed the regularization loss items except L3, obtaining
the third figure (named Un-regulated). Finally, we added all
regularization loss items back, which gave the best result, as
shown in the fourth figure.

These experiments demonstrate that the CNN-FC with
moving kernel convolutional operations refines the indicator
information, and RepMerg produces better results as the Gate
control vector mechanism increases the discrimination of pre-
dicted values. Adding polar representation of the basic series
assists in identifying data distributions beyond the indicator
information and enhances the accuracy of data at corners of
each fluctuation, as denoted in the blue circles in Figure 7.
Therefore, including the refine layer, representation learning,
and gate control vector resulted in the best performance.

Conclusion
In this work, we presented a novel end-to-end framework,
DAN, designed to better account for rare yet important ex-
treme events in long single- and multi-variate streamflow
time series. Our framework learns polar representations for
predicting extreme and normal values, along with a represen-
tation merging model that makes prediction in an expandable
way. In addition, to improve training performance, our frame-
work uses Kruskal-Wallis sampling policies to accommodate
imbalanced extreme data and a distance-weighted multi-loss
regularization penalty. Extensive experiments using more
than 33 years of streamflow data from Santa Clara County,
CA, showed that DAN provides significantly better predic-
tions than state-of-the-art baselines.
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