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Abstract
Solving partial differential equations (PDEs) by learning the
solution operators has emerged as an attractive alternative to
traditional numerical methods. However, implementing such
architectures presents two main challenges: flexibility in han-
dling irregular and arbitrary input and output formats and
scalability to large discretizations. Most existing architectures
are limited by their desired structure or infeasible to scale large
inputs and outputs. To address these issues, we introduce an
attention-based model called an inducing point operator trans-
former (IPOT). Inspired by inducing points methods, IPOT
is designed to handle any input function and output query
while capturing global interactions in a computationally ef-
ficient way. By detaching the inputs/outputs discretizations
from the processor with a smaller latent bottleneck, IPOT of-
fers flexibility in processing arbitrary discretizations and scales
linearly with the size of inputs/outputs. Our experimental re-
sults demonstrate that IPOT achieves strong performances
with manageable computational complexity on an extensive
range of PDE benchmarks and real-world weather forecasting
scenarios, compared to state-of-the-art methods. Our code is
publicly available at https://github.com/7tl7qns7ch/IPOT.

Introduction
Partial differential equations (PDEs) are widely used for
mathematically modeling physical phenomena by represent-
ing pairwise interactions between infinitesimal segments.
Once formulated, PDEs allow us to analyze and predict
the physical system, making them essential tools in vari-
ous scientific fields (Strauss 2007). However, formulating
accurate PDEs can be a daunting task without domain ex-
pertise where there remain numerous unknown processes
for many complex systems. Moreover, traditional numerical
methods for solving PDEs can require significant compu-
tational costs and may sometimes be intractable. In recent
years, data-driven approaches have emerged as an alternative
to the conventional procedures for solving PDEs, since they
provide much faster predictions and only require observa-
tional data. In particular, operator learning, learning mapping
between infinite-dimensional function spaces, generalizes
well to unseen system inputs with their own flexibility in a
discretization-invariant way (Lu et al. 2021, 2022; Kovachki
et al. 2021; Li et al. 2020a,b, 2021b).
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Observational data in solving PDEs often comes in much
more diverse measurement formats, making it challenging
to handle. These formats may include sparse and irregular
measurements, different input and output domains, and com-
plex geometries due to environmental conditions (Belbute-
Peres, Economon, and Kolter 2020; Lienen and Günnemann
2022; Li et al. 2022; Tran et al. 2023). In addition, adaptive
remeshing schemes are often deployed when different re-
gions require different resolutions (Brenner, Scott, and Scott
2008; Huang and Russell 2010). However, most existing op-
erator learners have their own restrictions. For instance, some
require fixed discretization for the input function (Lu, Jin,
and Karniadakis 2019; Lu et al. 2021), assume that input
and output discretizations are the same (Lu et al. 2022; Li
et al. 2020b, 2021b; Brandstetter, Worrall, and Welling 2022),
assume local connectivity (Li et al. 2020a,b), or have uni-
form regular grids (Li et al. 2021b; Gupta, Xiao, and Bogdan
2021; Cao 2021). They can be limited when the observations
have discrepancies between their own settings and given
measurements. In order to be flexible to handle a variety of
discretization schemes, the model should impose minimal
assumptions on locality or data structure.

Our approach aims to address the challenges of handling
arbitrary input and output formats by developing a mesh-
agnostic architecture that treats observations as individual
elements without problem-specific modifications. As flexible
in processing data (Jaegle et al. 2021) and efficient in model-
ing long-range dependencies (Tsai et al. 2019), Transformer
(Vaswani et al. 2017) can be an appropriate starting point for
our approach. A core building block of the Transformers, the
attention mechanism corresponds to and even outperforms
the kernel integral operation of the existing operator learners
due to its nature of capturing long-range interactions (Cao
2021; Liu, Xu, and Zhang 2022; Guo, Cao, and Chen 2023).
However, their quadratic growth in computational complex-
ity with input size can make it impractical for real-world
applications, high-fidelity modeling, or long-term forecasting
without imposing problem-specific locality.

To address the issue, we took inspiration from inducing-
point methods which aim to reduce the effective number of
input data points for computational efficiency (Quiñonero-
Candela and Rasmussen 2005; Snelson and Ghahramani
2005; Titsias 2009; Li et al. 2020b), and from the exten-
sion of the methods to Transformer by cross-attention with a
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small number of learnable queries (Lee et al. 2019; Tang and
Ha 2021; Jaegle et al. 2021, 2022; Rastogi et al. 2023). In this
paper, we introduce a fully attention-based model called an
inducing-point operator transformer (IPOT) to capture long-
range interactions and provide flexibility for arbitrary input
and output formats with feasible computational complexity.
IPOT consists of an encoder-processor-decoder (Sanchez-
Gonzalez et al. 2020; Pfaff et al. 2021), where the encoder
compresses the input function into a smaller fixed number of
latent bottlenecks inspired by inducing-point methods, the
processor operates on the latent features, and the decoder pro-
duces solutions at any output queries from the latent features.
This architecture achieves scalability by separating input and
output discretizations from the latent processor. It allows the
architecture to avoid quadratic complexity and decouples the
depth of the processor from the size of the inputs or out-
puts. This approach can be used for real-world applications
with large, complex systems or long-term forecasting tasks,
making it feasible and practical to use.

Finally, we conducted several experiments on the exten-
sive PDE benchmarks and a real-world dataset. Compared to
state-of-the-art methods, IPOT achieves competitive perfor-
mances with feasible computational complexity. It can han-
dle uniform regular grids, irregular grids, real-world weather
forecasting, and their variants with arbitrary discretization
formats.

Related Works
Operator Learning. Based on a pioneer work (Chen and
Chen 1995), deep operator networks (DeepONets) were pre-
sented to extend the architectures for operator learning with
modern deep networks (Lu, Jin, and Karniadakis 2019; Lu
et al. 2021). DeepONets consists of a branch network and
a trunk network and can be queried out at any coordinate
from the trunk network. However, they require the fixed dis-
cretization of the input functions from the branch network
(Lu et al. 2022). Another promising framework is neural
operators, which consist of several integral operators with
parameterized kernels to map between infinite-dimensional
functions (Kovachki et al. 2021; Li et al. 2020a,b, 2021b).
Message passings on graphs (Li et al. 2020a,b; Pfaff et al.
2021), convolutions in the Fourier domain (Li et al. 2021b),
or wavelets domain (Gupta, Xiao, and Bogdan 2021; Tripura
and Chakraborty 2023) are used to approximate the kernel
integral operations. However, the implemented architectures
typically require having the same sampling points for input
and output (Lu et al. 2022; Kovachki et al. 2021; Li et al.
2020b, 2021b). In addition, graph-based methods do not con-
verge when problems become complex, and convolutional
in the spectral domains methods are limited to the uniform
regular grids due to the usage of FFT (Li et al. 2021b). To
handle irregular grids, (Li et al. 2022; Tran et al. 2023) apply
adaptive coordinate maps before and after FNO to make it
extend to irregular meshes. Recently, Transformers have been
recognized as flexible and accurate operator learners (Cao
2021). However, their quadratic scaling poses a significant
challenge to their practical use. (Cao 2021) removes the soft-
max normalization and introduces Galerkin-type attention to
achieve linear scaling. Although efficient transformers (Liu,

Xu, and Zhang 2022; Li, Meidani, and Farimani 2022; Hao
et al. 2023) have been proposed with preserving permutation
symmetries (Lee 2022), the demand for flexibility and scala-
bility is still not met for practical use in the real world.
Inducing-Point Methods. Inducing-point methods have
been commonly used to approximate the Gaussian process
through m inducing points, where they involve replacing
the entire dataset with smaller subsets that are representa-
tive of the data. These inducing points methods have been
widely used in regression (Cao et al. 2013), kernel machines
(Nguyen, Chen, and Lee 2021), and matrix factorizations (He
and Xu 2019). A similar idea is also employed in the existing
neural operator (Li et al. 2020b), which is based on graph net-
works and uses sub-sampled nodes from the original graph
as inducing points to reduce the computational complexity of
the previous graph neural operator (Li et al. 2020a). However,
this approach did not converge for complex problems (Li
et al. 2021b). Recently, the methods have been extended to
Transformers by incorporating cross-attention with a reduced
number of learnable query vectors (Lee et al. 2019; Tang and
Ha 2021; Jaegle et al. 2021, 2022; Rastogi et al. 2023).

Preliminaries
Neural Operators
Let us consider a set of N input-output pairs, denoted by
(ai, ui)

N
i=1, where ai = ai|X and ui = ui|Y are finite dis-

cretizations of the input function ai ∈ A at the set of input
points X = {x1, . . . , xnx

} and output function ui ∈ U at
the set of output points Y = {y1, . . . , yny

} with the number
of discretized points nx and ny , respectively. Here, A and U
are input and output function spaces, respectively. The ob-
jective of operator learning is to minimize the empirical loss
Ea∼µ [L (Gθ(a), u)] ≈ 1

N

∑N
i=1 ∥ui − Gθ(ai)∥2 to learn a

mapping Gθ : A → U . The architectures of the neural opera-
tor (Kovachki et al. 2021; Li et al. 2021b), usually consist of
three components, namely lifting, iterative updates, and pro-
jection, which correspond to the encoder-processor-decoder,
respectively.

u = Gθ(a) = (Q ◦ GL−1 ◦ · · · ◦ G1 ◦ P)(a) (1)
where the lifting (encoder) P = Genc and projection (de-
coder) Q = Gdec are local transformations that map input
features to target dimensional features, implemented by point-
wise feed-forward neural networks. The iterative updates
Gl : vl 7→ vl+1, l ∈ [0, L− 1] are global transformations that
capture the interactions between the elements, implemented
by a sequence of following transformations,

vl+1(x) = σ

(
Wlvl(x) + [Kl(vl)] (x)

)
, x ∈ Ω, (2)

where σ are nonlinear functions, Wl are point-wise linear
transformations, Kl are kernel integral operations on vl(x).
The existing implementations of the neural operators typi-
cally use the same discretizations for the input and output
(Lu et al. 2022; Li et al. 2020b, 2021b; Brandstetter, Worrall,
and Welling 2022), which leads to the predicted outputs only
being queried at the input meshes. Our core idea is to replace
the encoder Genc and decoder Gdec to accommodate arbitrary
size and structure of the input functions and output queries.
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Kernel Integral Operation & Attention Mechanism
The kernel integral operations are generally implemented
by integration of input values weighted by kernel values κ
representing the pairwise interactions between the elements
on input domain x ∈ Ωx and output domain y ∈ Ωy ,

[K(v)] (y) =

∫
Ωx

κ(y, x)v(x)dx, (x, y) ∈ Ωx × Ωy,

(3)
where the kernel κ is defined on Ωy × Ωx. The transform
K can be interpreted as mapping a function v(x) defined
on a domain x ∈ Ωx to the function [K(v)](y) defined on
a domain y ∈ Ωy. Recently, it has been proved that the
kernel integral operation can be successfully approximated by
the attention mechanism of Transformers both theoretically
and empirically (Kovachki et al. 2021; Cao 2021; Guibas
et al. 2021; Pathak et al. 2022). Intuitively, let input vectors
X ∈ Rnx×dx and query vectors Y ∈ Rny×dy , then the
attention can be expressed as

Attn(Y,X,X) = σ(QKT )V ≈
∫
Ωx

(q(Y ) · k(x))v(x)dx,

(4)
where Q = YW q ∈ Rny×d, K = XW k ∈ Rnx×d,
V = XW v ∈ Rnx×d, and σ are the query, key, value matri-
ces, and softmax function, respectively. W q, W k, and W v

are learnable weight matrices that operate in a pointwise
way which makes the attention module not depend on the
input and output discretizations. A brief derivation of Equa-
tion 4 can be found in the Appendix. The weighted sum
of V with the attention matrix σ(QKT ) can be interpreted
as the kernel integral operation in which the parameterized
kernel is approximated by the attention matrix (Tsai et al.
2019; Cao 2021; Xiong et al. 2021; Choromanski et al. 2021).
This attention is also known as cross-attention, where the
input vectors are projected to query embedding space by the
attention, Attn(Y,X,X). However, the computational com-
plexity of the mechanism is proportional to O(nxnyd), and
it can cause quadratic complexity O(n2d) for large nx and
ny (nx, ny ≈ n).

Approach
The goal of this work is to develop a mesh-agnostic architec-
ture that can handle any input and output discretizations with
reduced computational complexity. We allow for different,
irregular, and arbitrary input and output formats.
Handling Arbitrary Input Function and Output Queries.
The output solution evaluated at output query y can be ex-
pressed as u(y) = [Gθ(a)] (y) which can be viewed as the
operating G : A × Y → U an input function a ∈ A at
the corresponding output query y ∈ Y . We treat the rep-
resentations of discretized input a = a|X ∈ Rnx×da , out-
put u = u|Y ∈ Rny×du and corresponding output queries
Y ∈ Rny×dy as sets of individual elements. In practice, they
are represented by flattened arrays, without using structured
bias to avoid our model bias toward specific data structures
and flexibly process any discretization formats. The signifi-
cant modifications from the existing neural operators (Equa-
tion 1) are mostly in the encoder and decoder for detaching

the dependence of input and output discretizations by
Z0 = Genc(a), Zl+1 = Gl(Zl), ũ = Gdec(Y,ZL). (5)

where the encoder projects the input function into latent
space, the sequence of the processing is operated in latent
space, and then the decoder predicts the output solutions from
the latent representations at the corresponding output queries.
Positional Encoding. In order to compensate for the posi-
tional information at each function value, we follow a com-
mon way of existing neural operators (Kovachki et al. 2021;
Li et al. 2021b), which involves concatenating the position co-
ordinates with the corresponding function values to form the
input representation, a = {(x1, a(x1)), ..., (xnx , a(xnx))}.
Additionally, instead of using raw position coordinates for
both input X = {x1, ..., xnx} and outputs Y = {y1, ..., yny},
we concatenate additional Fourier embeddings for the posi-
tion coordinates. This technique, which is commonly used to
enrich positional information in neural networks (Vaswani
et al. 2017; Mildenhall et al. 2020; Tancik et al. 2020; Sitz-
mann et al. 2020) involves exploiting sine and cosine func-
tions with frequencies spanning from minimum to maximum
frequencies, thereby covering the sampling rates for the cor-
responding dimensions.

Inducing Point Operator Transformer (IPOT)
We build our model with an attention-based architecture con-
sisting of an encoder-processor-decoder, called an inducing
point operator transformer (IPOT) to reduce the computa-
tional complexity of attention mechanisms (Figure 1). The
key feature of IPOT is the use of a reduced number of in-
ducing points (nz ≪ nx, ny) (Lee et al. 2019; Jaegle et al.
2021; Rastogi et al. 2023). This is typically achieved by
employing nz learnable query vectors into the encoder, al-
lowing most of the attention mechanisms to be computed in
the smaller latent space instead of the larger observational
space. This results in a significant reduction in computational
complexity. The encoder encodes the input function a to the
fixed smaller number of latent feature vectors (discretization
number: nx 7→ nz), the processor processes the pairwise
interactions between elements of the latent features vectors
(discretization number: nz 7→ nz), and the decoder decodes
the latent features to output solutions at a set of output queries
Y (discretization number: nz 7→ ny).
Attention Blocks. The exact form of the attention blocks At-
tention(Y,X,X) used in the following sections are described
in Appendix. The nonlinearity σ, pointwise linear transfor-
mations Wl, and kernel integral operations Kl in Equation 2
are approximated by feed-forward neural networks, residual
connections, and the attention modules, which are common
block forms of Transformer-like architectures (Vaswani et al.
2017). In addition, layer normalization (Ba, Kiros, and Hin-
ton 2016) is used to normalize the query, key, and values
inputs, and multi-headed extensions of the attention blocks
are employed to improve the model’s performance.
Encoder. We use a cross-attention block as the encoder to
encode inputs a with the size nx to a smaller fixed number nz

of learnable query vectors (inducing points) Zq ∈ Rnz×dz

(typically nz ≪ nx). Then the result of the block is

Z0 = Genc(a) = Attention(Zq, a, a) ∈ Rnz×dz , (6)
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Figure 1: Inducing-Point Operator Transformer (IPOT) uses a smaller number of inducing points, enabling it to flexibly handle
any discretization formats of input and output, and significantly reduce the computational costs. IPOT encodes input function
discretized on X = {x1, ..., xnx} to a fixed smaller size nz of learnable query vectors, and decoding them to output discretized
on Y = {y1, ..., yny}. The number of size is varied as nx (arbitrary) → nz (fixed) → ny (arbitrary).

where each learnable query vector of Zq is randomly ini-
tialized by a normal distribution and learned along the ar-
chitectures. The encoder maps the input domain to a latent
domain consisting of nz inducing points based on the cor-
relations between input discretizations and inducing points.
The computational complexity of the encoder is proportional
to O(nxnzd) which scales linearly with the input size nx.
Furthermore, the use of inducing points reduces the computa-
tional complexity of the subsequent attention blocks.
Processor. We use a series of self-attention blocks as the
processor each of which takes Zl ∈ Rnz×dz as the input of
the query, key, and value components. Then the output of
each self-attention block for l ∈ [0, L− 1] is

Zl+1 = Gl(Zl) = Attention(Zl, Zl, Zl) ∈ Rnz×dz , (7)
which captures global interactions of inducing points in the
latent space. Since the processor is decoupled from the input
and output discretizations, IPOT is not only applicable to any
input and output discretization formats but also significantly
reduces computational costs. Processing in the latent space
rather than in observational space reduces the costs in the
processor to O(Ln2

zd) from O(Ln2
xd) for the original Trans-

formers. This decouples the depth of the processor L from
the size of input nx or output ny, allowing the construction
of deep architectures or long-term forecasting models with
large L.
Decoder. We use a cross-attention block as the decoder to
decode the latent vectors from the processor ZL ∈ Rnz×dz

at output queries Y ∈ Rny×d. Then, the output solutions
predicted by IPOT at the corresponding output queries are
ũ = Gdec(Y, ZL) = Attention(Y,ZL, ZL) ∈ Rny×du . (8)

The decoder maps the latent domain to the output domain
based on the correlations between nz inducing points and
output queries Y . Since the result from the processor is inde-
pendent of the discretization format of input function a, the

entire model is also applicable to arbitrary input discretization
and can be queried out at arbitrary output queries. In addi-
tion, the computational cost of the decoder is proportional to
O(nznyd) which also scales linearly with the output size ny .

Time-Stepping Through Latent Space
We model the time-dependent PDEs as an autoregressive
process. The state of the system at time t+ dt is described as
ut+dt = (Gdec◦Gdt◦Genc)(ut), where Genc is an encoder that
maps the current observational state to the latent state, Gdec is
a decoder that maps the latent state back to the observational
state, and Gdt is a processor that steps forward in time by dt
implemented by a series of self-attention blocks on the latent
states. We assume that the processor Gdt is independent of
t (Sanchez-Gonzalez et al. 2020; Pfaff et al. 2021; Li et al.
2021a; Li, Meidani, and Farimani 2022). When setting the
time step as dt = 1, the predicted trajectory of the system
is obtained by the following recurrent relation at each time
t ∈ [0, T − 1]

Z0 = Genc(u0), Zt+1 = Gdt(Zt), ũt+1 = Gdec(Y, Zt+1).
(9)

where u0 is the initial state, Y are output queries, and iden-
tical processor Gdt is applied at each time step. Throughout
the entire trajectory, by encoding the initial state into the
latent space, we can significantly reduce the computational
costs of subsequent processing compared to processing in the
observational space.

Computational Complexity
The overall computational complexity of IPOT is propor-
tional to O(nxnzd+ Ln2

zd+ nznyd) which scales linearly
to nx and ny, and the depth of architecture L is decoupled
from the input and output size. When nx, ny ≈ n and L ≫ 1,
the complexity becomes O(Ln2

zd + 2nnzd) ≈ O(Ln2
zd),
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Figure 2: The state of the system at time T is denoted as uT = (Gdec ◦ [Gdt ◦ · · · ◦ Gdt] ◦ Genc)(u0), where Genc is an encoder
that maps the initial state u0 to the latent state, Gdec is a decoder that maps the latent state back to the observational state, and
Gdt is a processor that steps forward in time by dt implemented by a series of self-attention blocks on latent states.

which is significantly lower than that of standard Transformer
O(Ln2d) (Vaswani et al. 2017), which has quadratic scaling
and is coupled with L. Existing operator learners including
Fourier neural operator O(Ln log nd) (Li et al. 2021b) or
linear Transformers O(Lnd2) (Cao 2021; Li, Meidani, and
Farimani 2022) have sub-quadratic scaling with the size n,
but they are coupled with the depth L. The decoupling of
the depth L from the size n makes it practical to construct
deep architectures or apply them to long-term forecasting
that requires a large L.

Experiments
We conduct experiments on several benchmark datasets, in-
cluding PDEs on regular grids (Li et al. 2021b), irregular
grids (Li et al. 2022; Tran et al. 2023; Yin et al. 2022), and
real-world data from the ERA5 reanalysis dataset (Hersbach
et al. 2020) to investigate the flexibility and scalability of
our model through various downstream tasks. Details of the
equations and the problems are described in the Appendix.
Results for experiments already discussed on baselines were
obtained from the related literature, and results for the ex-
tended tasks that have not been discussed before have been
reproduced from their original codes. We provide some il-
lustrations of the predictions of IPOT for the benchmarks on
regular and irregular grids (Figure 3) and long-term dynamics
(Figure 4). The implementation details and additional results
can be found in the Appendix.
Baselines. We took several representative architectures as
baselines including deep operator network (DeepONet) (Lu,
Jin, and Karniadakis 2019), the mesh-based learner with
graph neural networks (Meshgraphnet) (Pfaff et al. 2021),
Fourier neural operator (FNO) (Li et al. 2021b), Factorized-
Fourier neural operator (FFNO) (Tran et al. 2023), and op-
erator Transformer (OFormer) (Li, Meidani, and Farimani
2022).
Evaluation Metric. We use relative L2 error for the objective
functions and evaluation metrics for test errors, where we fol-
low the convention of related literature (Kovachki et al. 2021;
Li et al. 2021b). When N is the dataset size of input-output
pairs (ai, ui)

N
i=1, the relative L2 error is defined as

Ea∼µ[L(Gθ(a), u)] =
1

N

N∑
i=1

∥u− Gθ(a)∥2
∥ui∥2

. (10)

Problems of PDEs Solved on Regular Grids
We conducted experiments on benchmark problems, where
the PDEs for Darcy flow, and Navier-Stokes equation were
solved on regular grids from (Li et al. 2021b). Shown in Ta-
ble 1, IPOT consistently demonstrates competitive or strong
performances with efficient computational resources, particu-
larly in the case of Navier-Stokes benchmarks that involve
higher complexity and time-dependence, resulting in larger n
and requiring models with long sequences L of processors or
iterative updates. These achievements are obtained without
using any problem-specific layers such as pooling layers or
convolutional filters, which are only compatible the regular
grid structures. Consequently, IPOT offers greater flexibility
in handling arbitrary inputs and output formats beyond the
regular grids.

Problems of PDEs Solved on Irregular Grids
We conducted experiments on various problems, where the
PDEs were solved on non-uniform and irregular grids. These
problems include predicting flows around complex geome-
tries (airfoil), estimating stresses on irregularly sampled point
clouds (elasticity), and predicting displacements given initial
boundary conditions for plastic forging problem (plasticity)
as described in (Tran et al. 2023). The experimental results
presented in Table 1 also demonstrate that our IPOT model
demonstrates competitive or stronger performances with effi-
cient computational resources, as illustrated in Figure 3.

Application to Real-World Data
Unlike the previous problems, we conducted experiments on
a subset of the ERA5 reanalysis dataset from the European
Centre for Medium-Range Weather Forecasts (Hersbach et al.
2020), where the governing PDEs are unknown. While the
ERA5 database includes extensive hourly and monthly mea-
surements for several parameters at various pressure levels,
our focus is specifically on predicting the daily temperature
at 2m from the surface T2m. IPOT achieves superior accuracy
compared to the baselines while maintaining comparable both
time and memory costs. Using the decoupled nz inducing
points from the observational space, our approach mitigates
the computational burden associated with large n and L, mak-
ing it beneficial for complex and long-term forecasting tasks.
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Model Dataset Params Runtime Memory Error Dataset Params Runtime Memory Error
DeepONet

Darcy

0.42M 2.73 2.40 4.61e-2

Airfoil

0.42M 3.13 2.75 3.85e–2
MeshGraphNet 0.21M 9.51 5.57 9.67e–2 0.22M 10.92 6.38 5.57e–2

FNO 1.19M 1.88 1.96 1.09e–2 1.19M 2.63 2.73 4.21e–2
FFNO 0.41M 3.36 1.99 7.70e–3 0.41M 4.71 2.78 7.80e–3

OFormer 1.28M 3.63 5.71 1.26e–2 1.28M 4.17 7.97 1.83e–2
IPOT (ours) 0.15M 2.70 1.82 1.73e–2 0.12M 2.15 2.10 8.79e–3
DeepONet

Navier

- - - -

Elasticity

1.03M 3.72 1.18 9.65e–2
MeshGraphNet 0.29M 137.17 6.15 1.29e–1 0.46M 7.36 4.04 4.18e–2

FNO 0.93M 53.73 3.09 1.28e–2 0.57M 1.04 1.68 5.08e–2
FFNO 0.27M 53.82 3.40 1.32e–2 0.55M 2.42 2.08 2.63e–2

OFormer 1.85M 70.15 9.90 1.04e–2 2.56M 5.58 2.98 1.83e–2
IPOT (ours) 0.12M 21.05 2.08 8.85e–3 0.12M 1.99 1.13 1.56e–2
DeepONet

ERA5

- - - -

Plasticity

- - - -
MeshGraphNet 2.07M 51.75 18.45 7.16e–2 - - - -

FNO 2.37M 9.23 13.04 1.21e–2 1.85M 10.40 16.81 5.08e–2
FFNO 1.12M 14.39 17.06 7.25e–3 0.57M 66.47 16.86 4.70e–3

OFormer 1.85M 71.18 10.90 1.15e–2 0.49M 28.43 14.11 1.83e–2
IPOT (ours) 0.51M 9.83 10.58 6.64e–3 0.13M 10.14 5.35 3.25e–3

Table 1: Performance and efficiency comparisons with baselines across various datasets. The efficiencies are compared in terms
of the number of parameters, time spent per epoch (seconds), and CUDA memory consumption (GB). The missing entries occur
when the methods are not able to handle the datasets or when encountering convergence issues.

Model Different resolutions Partial observed
res= 4◦ / 1◦ / 0.25◦ Masked land

FNO 1.30e–2 / 1.23e–2 / 1.24e–2 3.10e–2
OFormer 3.66e–2 / 1.65e–2 / 1.86e–2 4.37e–2

IPOT 8.96e–3 / 7.78e–3 / 8.66e–3 2.83e–2

Table 2: Results for comparing the generalization ability
on discretizations. The models are evaluated on the task of
different resolutions and masked inputs for the ERA5 dataset.

Generalization Ability on Discretizations. Furthermore, we
explore the model’s generalization ability to different resolu-
tions and to make predictions from partially observed inputs.
The evaluation of different resolutions is motivated by the sce-
nario where observations are collected at varying resolutions.
The evaluation with masked inputs is motivated by situations
when observations are only available for the sea surface while
data from land areas are unavailable as shown in the bottom
right of Figure 4. We employ bilinear interpolation methods
to obtain interpolated input values corresponding to land co-
ordinates and combine them with the masked inputs for some
comparison models that necessitate a consistent grid structure
for both input and output data. As shown in Table 2, IPOT
consistently outperforms all the baselines in all scenarios,
demonstrating stable and strong performance. These results
highlight the exceptional flexibility and accuracy of IPOT,
showcasing its remarkable generalization capability.

Ablation Study
Effect of the Number of Inducing Points. We conducted
experiments on ERA5 data with varying numbers of latent
query vectors, ranging from 64 to 512, to evaluate the effect
of the number of inducing points, and to emulate the quadratic

Model n / nz Time Error Comp
OFormer 16.2K / 16.2K 71.18 1.15e–2 O(nd2)

IPOT w.o ip 16.2K / 16.2K ≫ 100 – O(n2d)
IPOT (64) 16.2K / 64 7.44 1.45e–2 O(n2

zd)
IPOT (128) 16.2K / 128 7.61 1.30e–2 O(n2

zd)
IPOT (256) 16.2K / 256 7.91 6.87e–3 O(n2

zd)
IPOT (512) 16.2K / 512 9.83 6.44e–3 O(n2

zd)

Table 3: Performance of IPOT with varying the number of
inducing points with respective of runtime (Time), error, and
complexity (Comp). IPOT w.o ip denotes that IPOT without
inducing points which emulates the standard Transformer.

complexity in attention blocks of the standard Transformer
(Vaswani et al. 2017), we also consider IPOT without in-
ducing points. In this variant, we use self-attention where
the observational input is injected into query, key, and value
components instead of using cross-attention with learnable
queries in the encoder. Table 3 demonstrates that increasing
the number of latent query vectors improves the performance
of IPOT. Notably, when the number is over 256, IPOT suf-
ficiently outperforms other baselines. However, when the
number of inducing points is too small, IPOT exhibits poor
performance. Additionally, the quadratic complexity of at-
tention in a standard Transformer hinders convergence and
results in excessive computational time.
Computational Complexity on Different Resolutions. We
compared the computational complexity of different models
on the ERA5 data at different resolutions, as shown in Fig-
ure 5. The time complexities were assessed by measuring the
inference time in seconds for processing observational data
during testing, and the memory complexities were evaluated
by recording CUDA memory allocation. It is observed that
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Figure 3: Predictions of IPOT on the problems of Darcy flow (left), airfoil (top right), elasticity (middle right), and plasticity
(bottom right). In the case of Darcy flow, the partially observed inputs are randomly subsampled with the ratios of {100, 50, 25}%.

Figure 4: Long-term predictions of IPOT on spherical manifolds for the shallow-water equations (left), and on real-world weather
forecasting when the inputs are spatially fully given (top right), and partially given (bottom right).

IPOT without latent inducing points, which serves as a surro-
gate for a standard Transformer with quadratic complexity in
self-attention, does not scale well in terms of both time and
memory costs. IPOT with 256 or 512 inducing points scale
effectively up to n = 106, making them suitable for handling
large-scale observational data due to their efficiency in both
time and memory complexity.

Conclusions
In this work, we raise potential issues on existing operator
learning models for solving PDEs in terms of flexibility in
handling irregular and arbitrary input and output discretiza-
tions, as well as the computational complexity for complex
and long-term forecasting real-world problems. To address
these issues, we propose IPOT, an attention-based architec-
ture capable of handling arbitrary input and output discretiza-
tions while maintaining feasible computational complexity.
This is achieved by using a reduced number of inducing
points in the latent space, effectively addressing the quadratic
scaling issue in the attention mechanism. Our proposed model
demonstrates superior performance on a wide range of bench-
mark problems, including PDEs solved on both regular and

Figure 5: Complexity comparisons on different resolutions.
We compare the different models in terms of inference time
(left) and CUDA memory usage (right) with different sizes
of input/output.

irregular grids. Furthermore, we show that IPOT outperforms
other baseline models on real-world data with competitive ef-
ficiency. Moreover, IPOT exhibits strong generalization abil-
ity, providing consistent performance in challenging real-life
scenarios, while other models often suffer from significant
performance degradation or require additional pre-processing
for compatibility with the data structure.
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