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Abstract

Log anomaly detection is a key component in the field of ar-
tificial intelligence for IT operations (AIOps). Considering
log data of variant domains, retraining the whole network for
unknown domains is inefficient in real industrial scenarios.
However, previous deep models merely focused on extracting
the semantics of log sequences in the same domain, leading
to poor generalization on multi-domain logs. To alleviate this
issue, we propose a unified Transformer-based framework for
Log anomaly detection (LogFormer) to improve the general-
ization ability across different domains, where we establish a
two-stage process including the pre-training and adapter-based
tuning stage. Specifically, our model is first pre-trained on the
source domain to obtain shared semantic knowledge of log
data. Then, we transfer such knowledge to the target domain
via shared parameters. Besides, the Log-Attention module is
proposed to supplement the information ignored by the log-
paring. The proposed method is evaluated on three public
and one real-world datasets. Experimental results on multiple
benchmarks demonstrate the effectiveness of our LogFormer
with fewer trainable parameters and lower training costs.

Introduction
With the rapid development of large-scale IT systems, numer-
ous companies have an increasing demand for high-quality
cloud services. Anomaly detection (Breier and Branišová
2015) is critical to monitor data peculiarities for logs, which
describe detailed system events at runtime and the intention
of users in the large-scale services (Zhang et al. 2015). It is
error-prone to detect anomalous logs from a local perspec-
tive. In this case, some automatic detection methods based on
machine learning are proposed (Xu et al. 2010). Due to the
development of IT services, the volume of log data has grown
fast and traditional approaches are infeasible. Meanwhile, as
log messages are half-structured and have their semantics, it
is similar to natural language corpus. Therefore, many deep
learning methods based on language models (Hochreiter and
Schmidhuber 1997; Devlin et al. 2018) have been proposed
on log anomaly detection task (Zhang et al. 2016; Du et al.
2017; Zhang et al. 2019; Meng et al. 2019; Guo et al. 2023a).
However, these models adopt parser (Du and Li 2016; He
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BGL:
data storage interrupt
rts: kernel terminated for reason 1004rts: bad message header: [...]
Thunderbird: 
kernel: mptscsih: ioc0: attempting task abort! (sc=00000101bddee480)
Red Storm: 
DMT 310 Command Aborted: SCSI cmd:2A LUN 2 DMT 310 T:299 a: [...]

Unusual End of Program

BGL: 
rts panic! - stopping execution
Thunderbird: 
pbs mom: Bad file descriptor (9) in tm request, job [job] not running
Spirit: 
kernel: GM: LANai is not running. Allowing port=0 open for debugging
Liberty: 
kernel: GM: LANai is not running. Allowing port=0 open for debugging

Program Not Running

Figure 1: The same anomaly from multiple domains. The
top part denotes the “Unusual End of Program” anomaly
from three domains including BGL, Thunderbird, and Red
Storm while the bottom part is the “Program Not Running”
from four domains including BGL, Thunderbird, Spirit, and
Liberty.

et al. 2017) to gain templates in logs before detection, which
leads to the loss of semantics in raw log data.

Despite being different in morphology and syntax, logs of
multiple domains usually share similar semantic space. For
example, in Fig. 1, three sources (BGL, Thunderbird, Red
Storm) have the same anomaly called Unusual End of Pro-
gram. However, existing methods mostly focus on a single
domain. When the components from a new domain are intro-
duced, these methods lack the ability to accommodate such
unseen logs. Besides, we need to consider the continuous
iteration of log data when the system upgrades and it is costly
to retrain different models for different datasets.

In this paper, we address the problems above via a two-
stage solution called LogFormer. LogFormer is capable of
preserving the shared semantic knowledge between different
domains. Specifically, to avoid information loss due to pars-
ing, Log-Attention module is to supplement the information
ignored by the log-paring for better performance. Then in
the first stage, we create a model based on the Log-Attention,
which is pre-trained on the source domain to obtain common
semantics of log sequences. Second, LogFormer uses a flex-
ible component called Adapter to transfer knowledge from
the source domain to the target domain.
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Generally, the contributions are as follows: (i) We propose
LogFormer, an end-to-end Pre-train and Tuning pipeline to
automatically detect log anomalies, which provides a new
perspective via simple and effective pre-training and adapter-
based tuning strategies for log anomaly detection. (ii) Log-
Attention module is proposed to avoid the loss of semantics
caused by log parsing. (iii) With only a few additional train-
able parameters on the target domain, the training costs are
reduced a lot based on the effective parameter-sharing strat-
egy in LogFormer. (iv) LogFormer achieves state-of-the-art
performance on three public benchmark datasets.

Related Work
Log Parsing Developers can create an unlimited number
of variable names, abbreviations, or special technical terms,
which are out of the scale of ordinary English words. If we
conduct word splitting, the endless unseen log tokens would
explode the vocabulary, which is called the out-of-vocabulary
(OOV) problem. To handle this issue, log parsing is used
to convert unstructured logs into structured event templates
by keeping keywords (Jiang et al. 2008; Makanju, Zincir-
Heywood, and Milios 2009; He et al. 2017) and removing
extra parameters, where the parameters usually denote spe-
cial fields (e.g., /etc, /tmp), words (e.g., *, ), serial numbers
(e.g., 0x10001) and so on. In Fig. 2, we use Drain (He et al.
2017) to extract the templates, and each log and the cor-
responding template are matched. Then, the log template
sequence is fed into anomaly detection models.

𝐿1: TIMES 8 crond(pam_unix)[2915]: session closed for user root

𝐿2: TIMES dn228/dn228 crond(pam_unix)[2915]: session opened for user root by (uid=0)

𝐿3: TIMES (root) CMD (run-parts /etc/cron.hourly)

𝐿4: TIMES session closed for user root

𝐿5: TIMES session opened for user root by (uid=0)

𝐿1: session closed for user <*> 

𝐿2: session opened for user <*> by <*>

𝐿3:(root) CMD (<*> <*>)

𝐿4: session closed for user <*> 

𝐿5: session opened for user <*> by <*>

Unstructured Logs

𝑇1: session closed for user <*> 

𝑇2: session opened for user <*> by <*>

𝑇3: (root) CMD (<*> <*>)

𝐿1
𝐿2
𝐿3
𝐿4
𝐿5

Log templates

Mapping Drain parsing

Structured Inputs

Formatting

Figure 2: Logs and Templates. The top part is unstructured
logs, we adopt Drain algorithm to extract log templates,then
we match each log with its template, which is the middle part.
The bottom part is structured inputs.

Log Anomaly Detection Natural language processing tech-
nology (Bai et al. 2023; Yang et al. 2022; Guo et al. 2022)
is evolving rapidly, which has also reinvigorated this task.
Supervised methods are based on classification. (Breier and
Branišová 2015; Huang et al. 2020; Lu et al. 2018). LogRo-
bust (Zhang et al. 2019) uses both normal and abnormal
log data for training based on the Bi-LSTM architecture.
Some semi-supervised methods (Xu et al. 2010; Yang et al.
2021b) are proposed to alleviate such burden. DeepLog (Du

et al. 2017) uses LSTM to forecast the next log sequence
with ranked probabilities. Besides, LogAnomaly (Meng et al.
2019) uses log embeddings to capture the semantic infor-
mation. PLElog (Yang et al. 2021a) clusters the features of
normal data and detects the anomalies by GRU. Although
these methods obtain performance improvements on exist-
ing log datasets from a single source, they ignore the shared
semantics between multiple sources and the value of the
parameters removed by log parsing.

Approach
In this section, we describe the general framework of Log-
Former. In Fig. 3, LogFormer contains two stages: pre-
training and adapter-based tuning. In the following, we
present the definition of the problem, and the components of
LogFormer. Finally, we introduce the processes of the two
stages.

Problem Definition
Log anomaly detection problem is defined as a binary clas-
sification task. The model is supposed to determine whether
the input log is abnormal or normal. For the source domain,
after preprocessing each raw logs, we generate the vector
representations of Ksrc log sequences, which are denoted
as Ssrc = {Sk}Ksrc

k=1 . Then, Ssrc
i = {V src

t }T
src
i

t=1 denotes the
i-th log sequence, where T src

i is the length of the i-th log
sequence and V src

t denotes the t-th log sentence in Ssrc
i . For

the target domain, Stgt = {Stgt
k }Ktgt

k=1 denotes the representa-

tions of Ktgt log sequences. Stgt
j = {V tgt

t }T
tgt
j

t=1 denotes the
j-th log sequence, where T tgt

j is the length of the j-th log
sequence. Therefore, the training procedure is as follows. We
first pre-train the model on the dataset from source domain
as follows:

fp(yi|Ssrc
i ; Θ)), (1)

where fp represents the pre-training stage and Θ is the model
parameters in pre-training stage. Then, the model is trans-
ferred to the target domain:

fa(yj |Stgt
j ; Θf , θa). (2)

where fa represents the adapter-based tuning stage. Θf de-
notes the parameter of the encoder transferred from the pre-
training stage, which is frozen in adapter-based tuning stage.
θa is the parameter of the adapter. y is the ground-truth label.

Feature Extractor
The feature extractor converts session sequences (template
sequence) to vectors with the same dimension d. Here we use
the pre-trained sentence-bert (Reimers and Gurevych 2019)
model to get the representation of the template sequence
in Fig. 2. Suppose each session has l fixed length, then the
embedding of the input X after the feature extractor:

XE = FE(X). (3)

Where FE represents the encoder of sentence-bert. we can
obtain XEϵR

l×d for each session.
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instruction cache parity error corrected
<*> double-hummer alignment exceptions
<*> double-hummer alignment exceptions

Log Event Sequence

Source Domain

session closed for user root
session opened for user root by (uid=<*>)
(root) CMD <*> <*>

Class Label 
(Normal/Abnomal)

Classifier

Log-Attention 
Encoder 

with Adapter 

Log Event Sequence

......

......

Target Domain

Feature 
Extractor

 Log-Attention
Encoder

Classifier

Class Label 
(Normal/Abnomal)

Feature 
Extractor

Pretrained   LM

Pretraining

Adapter-based Tuning

Parameter Initialization

Figure 3: Overview of architecture. Log sequences are first fed into the pre-trained language model to extract features. The
Log-Attention encoder is trained on the source domain to acquire shared semantic information. Then, we initialize the encoder
and only tune the parameters of the adapter on the target domain to transfer the knowledge.

Log-Attention Module
Although parsing solves the out-of-vocabulary (OOV) prob-
lem, the information of the parameters is discarded. To ag-
gregate parameters and keywords information, we have ad-
justed the structure of the original transformer encoder. Log-
Attention module is proposed in Fig. 4. Specifically, after
parsing, we gain the P parameters for each log sequence.
For each character Pi in P , we adopt the feature extractor
to obtain character-level embedding PE

i . Then we use the
Linear layer to encode the whole PE as follows:

ϕp = LINEAR(PE). (4)

where ϕp denotes the output of parameter encoding. Then,
we assign each output a learnable scalar, which will serve as
a bias term in self-attention. The intuition of Log-Attention
is also inspired by position encoding, which is mapped as
bias in attention and provides additional position information.
The Log-Attention is computed as follows:

LogAttention = Softmax(
QKT√
d/h

+ ϕp)V. (5)

where h is the number of the heads, d denotes the dimension
of the input, and Q,K, V represent queries, keys, and values,
respectively.

Encoder with Adapter
The order of a log sequence conveys information about the
program execution sequence. Wrong execution order is also
considered abnormal. Thus, constant positional embedding is
also used. The component after the attention layer and feed-
forward layer is the original serial adapter. We design our log
adapter with a parallel structure in Fig. 5, which is inserted
parallel to the Log-Attention layer and feedforward layer.
This design allows adapter to use input information better
with original complete encoders. During adapter-based tun-
ing, only a few parameters of the adapters are updated on the
target domain. More specifically, we use down- and up-scale

Char Embedding 

+

Input Log Feature

Linear Linear Linear

Q K V

MatMul

Scale

SoftMax

MatMul

8 V # .

Parameters

Linear

Parameter Encoding

Figure 4: Log-Attention. The left part is the multi-head atten-
tion, and the right part is the parameter encoding.

neural networks as the adapter. Two projection layers first
map the hidden vector from dimension d to dimension m and
then map it back to d. The adapter also has a skip-connection
operation internally. The output vector h′ is calculated:

h′ = Wuptanh(Wdownh) + h. (6)

where h ∈ Rd represents a given hidden vector. Wdown ∈
Rm×d and Wup ∈ Rd×m is the down-projection and the up-
projection matrix respectively, by setting m << d, we limit
the number of parameters added per adapter, which is the
core to reduce trainable parameters while retaining semantic
information.

Pre-training
Inspired by pre-trained models (Devlin et al. 2018; Reimers
and Gurevych 2019; Guo et al. 2023b), we can acquire the
common representation for log anomaly with the stacked log-
attention encoders. In this stage, the pre-trained model learns
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    Adapter

 Log
Attention

FFN

  +

 Layer Norm

Transformer layer

×N

  Down-projection

  Up-projection

+Adapter    Adapter

 Layer Norm

  +

Figure 5: Encoder with Adapters. Where N is the number
of encoder layers. The left part describes the log-attention
encoder inserted by parallel adapters, and the right part is the
structure of an adapter, which is composed of the down- and
up-projection layers.

the commonalities among different anomalies. Specifically,
the objective of pre-training is a supervised binary classifica-
tion task without using log adapter. Then, the parameters of
the log-attention encoders are used as the initialization of the
next stage.

Adapter-based Tuning
Adapter-based tuning leverages the knowledge obtained from
the pre-training with lightweight adapters (Houlsby et al.
2019). Specifically, in the second stage, we plug adapters into
the encoders of the pre-trained model, where only the parame-
ters of the adapters are updated during target domain adaption.
Parameters of the Log-Attention and the feedforward layers
in the pre-trained model are frozen. Unlike fine-tuning, Log-
Former provides a plug-in mechanism to reuse the pre-trained
model with only a few additional trainable parameters.

Training Strategy
The classifier is simply implemented by one linear layer. We
both take BCE loss for two stages. Thus, the loss of the
pre-training stage is as follows:

Lp = −Ex,y∈Dsrc
x,y

[logP (y|x; Θ)], (7)

where Lp represents the loss in the pre-training stage. Θ is the
parameter of the whole model in the pre-training stage. x and
y are the input data and label respectively, Dsrc

x,y represents
the data coming from the source domain. Then, we define the
objective loss in the adapter-based tuning stage:

La = −Ex,y∈Dtgt
x,y

[logP (y|x; Θf , θa)]. (8)

where La is the loss function in the adapter-based tuning
stage. Θf is the parameter of the encoder module trained in

Dataset HDFS BGL Thunderbird

Category Distributed Supercomputer Supercomputer
#Messages 11M 5M 10M
#Anomaly 17K 40K 123K
#Templates 49 1423 1092
#Error Types 53 143 95

Table 1: A summary of the datasets used in this work. Mes-
sages are the raw log strings. Log sequences are extracted by
ID or sliding window method.

the pre-training stage, which is frozen in the adapter-based
tuning stage. θa is the parameter of the adapter. Dtgt

x,y repre-
sents the data coming from the target domain.

Experiments
In this section, we compare our method with existing methods
on multiple benchmark datasets.

Datasets We conduct experiments on three datasets from
LogHub (He et al. 2020) 1. HDFS (Xu et al. 2010) dataset
is generated and collected from the Amazon EC2 platform
through running Hadoop-based map-reduce jobs. Thunder-
bird and BGL datasets (Oliner and Stearley 2007) contain
logs collected from a two-supercomputer system at Sandia
National Labs (SNL) in Albuquerque. The log contains alert
and non-alert messages identified by alert category tags. Fol-
lowing (Yao et al. 2020; Meng et al. 2019), 10M/11M/5M
continuous log messages from Thunderbird/HDFS/BGL are
used.

Preprocessing We extract log sequences by block IDs in
HDFS. For BGL and Thunderbird, we utilize the sliding win-
dow (size of 20) without overlap to generate log sequences.
We adopt Drain (He et al. 2017) with specifically designed
regex to do log parsing. For each dataset, considering that
logs evolve over time, we select the first 80% (according to
the timestamp of logs) log sequences for training and the rest
20% for testing, which is consistent with the prior work (Yang
et al. 2021a; Du et al. 2017).

Implementation Details In experiments, we use different
numbers of transformer encoder layers in {1, 2, 4}. The num-
ber of attention heads is 8, and the size of the feedforward
network that takes the output of the multi-head self-attention
mechanism is 3072. We use Adam as the optimization algo-
rithm whose learning rate is scheduled by OneCycleLR, with
β1 = 0.9, β2 = 0.99, and ε = 10−8. All runs are trained
on 2 NVIDIA A100(40G) with a batch size of 64. For each
dataset, we tune the maximum learning of the OneCycleLR
scheduler in {1e− 5, 5e− 5, 1e− 6}.

Baselines and Evaluation Table 1 shows five public base-
lines including Support Vector Machine(SVM), Deeplog (Du
et al. 2017), LogAnomaly (Meng et al. 2019), LogRobust
(Zhang et al. 2019), and PLELog (Yang et al. 2021a) 2 and

1https://github.com/logpai/loghub
2https://github.com/YangLin-George/PLELog
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Dataset Method Precision Recall F1 Score

SVM 0.31 0.65 0.41
DeepLog 0.83 0.87 0.85

LogAnomaly 0.86 0.89 0.87
PLELog 0.88 0.93 0.90

HDFS LogRobust 0.88 0.95 0.91
ChatGPT 0.74 0.82 0.78

LogFormerS 0.95 0.96 0.95
LogFormerP 0.96 0.97 0.96
LogFormer 0.97 0.98 0.98

SVM 0.22 0.56 0.32
DeepLog 0.14 0.81 0.24

LogAnomaly 0.19 0.78 0.31
BGL PLELog 0.92 0.96 0.94

LogRobust 0.92 0.96 0.94
ChatGPT 0.77 0.71 0.74

LogFormerS 0.96 0.97 0.97

SVM 0.34 0.91 0.46
DeepLog 0.48 0.89 0.62

LogAnomaly 0.51 0.97 0.67
PLELog 0.85 0.94 0.89

Thunderbird LogRobust 0.89 0.96 0.92
ChatGPT 0.84 0.79 0.81

LogFormerS 0.94 0.98 0.96
LogFormerP 0.97 0.99 0.98
LogFormer 0.99 0.99 0.99

Table 2: Results on Thunderbird, BGL and HDFS.
LogFormerS represents the model trained from scratch,
LogFormerP represents the model trained with pre-training
but tuning without adapters.

two variants of LogFormer 3. We also compare with the
popular ChatGPT (Ouyang et al. 2022). Here, LogFormerS
is trained from scratch without two stages. LogFormerP is
trained only with the pre-training stage, which means we di-
rectly tune the whole parameters from the pre-trained model.
For a fair comparison, these baselines are trained on the
union of source and target domain, as LogFormer utilize the
knowledge of source domain (BGL) and target domain (HDF-
S/Thunderbird). For evaluation, we use Precision ( TP

TP+FP ),
Recall ( TP

TP+FN ) and F1 score ( 2∗Precision∗Recall
Precision+Recall ).

Main Results In Table 2, baselines are trained on the union
of source and target domain data for a fair comparison. In
our setting, BGL dataset is chosen as the source domain
for the pre-training, HDFS and Thunderbird are chosen as
the target domain. LogFormer achieves the highest F1 score
on all three settings. Specifically, results show that most
baseline methods perform badly when BGL data is used for
training. It is reasonable for the diverse types of error and
complex structure of logs in BGL. This also confirms that
these baselines have poor generalizability and cannot handle
multi-source logs together. When only BGL data is used for
training, LogRobust and PLElog achieve a comparable F1

score with LogFormers, this means our backbone model with
Log-Attention module is strong enough without pre-training

3https://github.com/HC-Guo/LogFormer.

Method HDFS BGL Thunderbird
Train Test Train Test Train Test

DeepLog 50m 10m 23m 6m 59m 12m
LogAnomaly 1h 48m 22m 1h 10m 20m 1h 43m 30m

PLElog 42m 35s 20m 14s 36m 31s
LogRobust 1h 01m 17m 40m 4m 58m 12m
LogFormer 29m 20s 17m 11s 31m 16s

Table 3: Time consumption of different approaches. The
lowest results are highlighted.
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Figure 6: Loss and F1 score on the test set. We compare two
ways of training including training from scratch and fine-
tuning from the pre-trained model on BGL.

and adapter-tuning on the single source.

Time Consumption Table 3 shows the training and testing
time of LogFormer on HDFS, BGL, and Thunderbird, respec-
tively. LogFormer gains the lowest training and testing time
consumption compared with these state-of-the-art methods.

Ablation Study
Effect of pre-training To demonstrate the effectiveness of
pre-training, we compare the performance of LogFormers
and LogFormerp. We choose BGL as the source domain as its
variety in log templates. We compare two strategies in terms
of loss and F1 score. Fig 6 shows the loss and F1 score curves
in the training process (i.e., training steps). Results show
that fine-tuning converges faster than training from scratch,
which shows the learned knowledge from the source domain
is valuable. Besides, the method with fine-tuning achieves
higher performance in the initial stage and the loss curve is
more stable, which also shows the power of pre-training. For
the F1, we observe that fine-tuning requires fewer training
steps to gain the best results, which is noteworthy for reducing
costs in industrial scenes. To sum up, the pre-training stage
is valuable and allows the model to converge quickly with
better results.

Effect of Adapter-based Tuning Although we have shown
that pre-training could accelerate convergence without de-
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Method #Layers #Parameters HDFS Thunderbird

1 7.2M 0.945 0.969
Tuning 2 14.3M 0.962 0.981

4 28.5M 0.961 0.980

Adapter
tuning

1 0.4M 0.957 0.972
2 0.6M 0.974 0.987
4 1M 0.981 0.998

Table 4: Results between fine-tuning and adapter-based tun-
ing. #Layers is the number of encoder layers. #Parameters is
the number of trainable parameters.

Attention HDFS BGL Thunderbird

Self-Attention 0.911 0.943 0.935

Log-Attention 0.952 0.974 0.962

Table 5: F1 scores between self-attention and Log-Attention.
Experiments are based on 4 encoder layers.

creasing performance, fine-tuning is expensive and impor-
tant. Thus, we adopt adapter-based tuning to acquire a com-
pact model for log anomaly detection by adding a few ad-
ditional trainable parameters. To show the effect of adapter-
based tuning, we compare the performance of LogFormerp
and LogFormer on the HDFS and Thunderbird datasets as
shown in Table 4. We have the following observations. First,
LogFormer generates a little higher F1 score (1% on aver-
age) than directly fine-tuning the pre-trained model on two
datasets. Second, Adapter-based tuning adopts 3.5%− 5.5%
of the trainable parameters compared to direct fine-tuning.
Third, more encoder layers for fine-tuning do not generate bet-
ter results. In contrast, adapter-based tuning performs more
robustly with more encoder layers.

Effect of Log-Attention We compare the results of the
original self-attention with our Log-Attention. To avoid the
interference of other factors, we use LogFormerS in Table. 5.
Results show that our Log-Attention achieves 3.6% higher
points on average than the self-attention on three datasets,
which shows the effect of Log-Attention module. Meanwhile,
it shows that variables (removed by log parsing) also provide
valuable information for the anomaly detection.

Effect of Variants of Adapters We compare the F1 scores
of the variants of adapters including LoRA (Hu et al. 2022)
and Parallel-Adapter (Zhu et al. 2021) in Table 6. Results
show that in our task, all three types of adapter gains great per-
formance on three datasets, demonstrating the effectiveness
of adapter-based tuning stage.

Effect on Low-resource Setting To verify the power of
LogFormer under the low-resource setting, we consider the
task with fewer than 20k training examples as the low-
resource setting. The ablation study is conducted on the Thun-
derbird and models are sufficiently trained for 30 epochs. In
Fig. 7, we compare the F1 scores with different numbers
of training samples ranging from 5k-20k. We find that 1)
Adapter-based tuning consistently outperforms training and

Adapter HDFS BGL Thunderbird

Serial Adapter 0.982 0.971 0.992

Parallel Adapter 0.980 0.969 0.988

LoRA 0.981 0.972 0.993

Table 6: F1 scores between serial adapter and ours. Experi-
ments are based on 4 layers of log-attention encoder.

Figure 7: Test performance on Thunderbird w.r.t.the number
of training examples. 5k, 10k, 15k, 20k corresponding to the
first 1.25%, 2.5%, 3.75%, 5% training data respectively. We
show F1 scores for all methods.

fine-tuning, especially when the training size is small. For
example, we gain 34% improvements compared with training
from scratch with only 5k data. 2) With the number of train-
ing samples increasing, the gap between the F1 scores of all
methods will become smaller. 3) LogFormer is robust, with
a similar standard deviation across different training sizes.
To summarize, LogFormer provides acceptable results in the
low-resource setting, which is highly parameter-efficient for
log analysis.

Effect of Source Domain LogFormer aims at transferring
knowledge between domains to help detect log anomalies.
Thus it is vital to choose the correct source domain for the
pre-training stage. A suitable domain needs to meet two
conditions: 1) Variety in templates and types of error. 2)
For different and similar domains, it has the great power to
migrate semantic knowledge. HDFS has fewer templates and
types of error compared with BGL and Thunderbird. Thus
we do not utilize HDFS as the source domain. Specifically,
we compare the results by choosing BGL and Thunderbird as
the source domain respectively. In terms of the F1 score, both
of them gain high results on target domains. Thus we turn our
attention to loss curves, Fig. 8 shows the loss curves on the
target domains. Comparing two pre-trained models, on the
HDFS dataset, the model pre-trained on BGL brings faster
convergence. Besides, the model pre-trained on BGL brings
faster convergence for Thunderbird than Thunderbird brings
to BGL. Overall, BGL is the most suitable source domain for
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Method HDFS BGL Thunderbird

ChatGPT w/o LCoT 0.78 0.74 0.81

ChatGPT w/ LCoT 0.85 0.83 0.88

LogFormer 0.98 0.97 0.99

Table 7: F1 between ChatGPT with LCoT and without LCoT.

transferring semantics across domains.
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Figure 8: Loss on the test set w.r.t training steps. The
upper/bottom results are based on models pre-trained on
BGL/Thunderbird. All results are based on using one layer
encoder.

Effect of Large Language Models To fully explore the
ability of large language models to detect anomalous logs,
we specially design a two-hop log Chain-of-Thought (Wei
et al. 2022) (LCoT) approach for this task rather than directly
generate the decision. Specifically, in Fig. 9, we first guide the
model to generate the templates of the log sequences, than we
concatenate the raw logs and templates as the prompts, and
then let the model determine if there are any anomalies that
arise. A comparison of the results using Chain-of-Thought
and those generated directly is in Table. 7. We can see that
large language models like ChatGPT can not perform well
on log anomaly detection task. To explore why the large
language model performs badly, we check the results and
find that in most bad cases, the variables play an important
role. Large language model is more concerned with sensitive
words like ”Error” and ”failed”. Such words contain obvious
abnormalities, which can be recognized well. The findings
further illustrate the importance of our log-attention, and in
the future, we can inject external rules to make the large
language models more sensitive to the variables.

Practical Evaluation
LogFormer has been successfully applied to a cloud service
company. To test the generalization of LogFormer, we con-
duct experiments on a real-world distributed dataset called

Log Context
log sequences: 2023-08-02 10:30:00 DEBUG: Checking

server availability.
2023-08-02 10:30:15 ERROR: NetworkExcep-
tion - Unable to establish connection to server.
2023-08-02 10:31:00 INFO: Retrying connec-
tion to server.

Hop 1: Log Parsing
One-hop Prompt: Extract the templates of log sequences while

replacing the variableswith < ∗ >

Templates: 1. < ∗ > ERROR: NetworkException - < ∗ >
to establish connection to server.
2. < ∗ > DEBUG: Checking server availabil-
ity.
3. < ∗ > INFO: Retrying connection to server.

Hop 2: Anomaly Detection
Two-hop Prompt: According to the log sequences, Templates:,

the relationship between Templates: and vari-
ables, determine if there are any exceptions in
templates and variables, and directly give the
answer: Yes or No.

Answer: Yes or No.

Figure 9: An example of two hop log Chain-of-Thought
process. We first extract the templates of the logs, then we
let the ChatGPT find the anomalies according to the logs and
templates.

Dataset Method Precision Recall F1 Score

SVM 0.21 0.54 0.30
DeepLog 0.18 0.82 0.31

LogAnomaly 0.23 0.80 0.36
GAIA PLELog 0.81 0.86 0.84

LogRobust 0.83 0.94 0.88
ChatGPT 0.68 0.75 0.71

LogFormer 0.89 0.98 0.93

Table 8: Results of different methods on GAIA.

GAIA 4. As the online system serves hundreds of corpora-
tions, the generated logs are complex. Thus, it is difficult
to detect anomalies on such multi-domain and continuously
evolved data. Here we take 8,200,000 log messages for the
experiment (80% for training, 20% for testing), amounting
to 31,279 anomalous messages. In Table 8, LogFormer still
achieves the best performance among these baselines. Be-
sides, LogFormer is stably running over 3000 hours on this
system, which further demonstrates the stability of the model.

Conclusions
In this paper, we propose LogFormer, a pre-train and tuning
pipeline for log anomaly detection, which contains the pre-
training stage and the adapter-based tuning stage. Besides,
the Log-Attention module is proposed to better encode the
information of parameters. Extensive experiments show that
our LogFormer, with fewer trainable parameters and lower
training costs, outperforms all previous baselines.

4https://github.com/CloudWise-OpenSource/GAIA-DataSet
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