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Abstract

The non-consensual exploitation of facial manipulation has
emerged as a pressing societal concern. In tandem with the
identification of such fake content, recent research endeavors
have advocated countering manipulation techniques through
proactive interventions, specifically the incorporation of ad-
versarial noise to impede the manipulation in advance. Nev-
ertheless, with insufficient consideration of robustness, we
show that current methods falter in providing protection af-
ter simple perturbations, e.g., blur. In addition, traditional
optimization-based methods face limitations in scalability as
they struggle to accommodate the substantial expansion of
data volume, a consequence of the time-intensive iterative
pipeline. To solve these challenges, we propose a learning-
based model, Adversarial Robust Safeguard (ARS), to gen-
erate desirable protection noise in a single forward process,
concurrently exhibiting a heightened resistance against preva-
lent perturbations. Specifically, our method involves a two-
way protection design, characterized by a basic protection
component responsible for generating efficacious noise fea-
tures, coupled with robust protection for further enhance-
ment. In robust protection, we first fuse image features with
spatially duplicated noise embedding, thereby accounting for
inherent information redundancy. Subsequently, a combina-
tion comprising a differentiable perturbation module and an
adversarial network is devised to simulate potential informa-
tion degradation during the training process. To evaluate it,
we conduct experiments on four manipulation methods and
compare recent works comprehensively. The results of our
method exhibit good visual effects with pronounced robust-
ness against varied perturbations at different levels.

Introduction
Human-central entertainment is booming with rapid ad-
vancements in artificial intelligence applications. One of the
most important topics, facial manipulation, is now being
able to deliver photo-realistic outcomes given simply a tar-
get facial image. Although these techniques are proposed for
enriching people’s living world, they also induce malicious
usages such as non-consensual portrait violation, even pro-
ducing nasty porn content. Concerns from society promote
many countermeasures in academic groups.
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Figure 1: Current protection methods can protect images
from malicious manipulations by adding adversarial noise,
as we see disrupted outcomes of the manipulation (manip.)
model. Nevertheless, the performance is largely compro-
mised following simple perturbations, as the target is suc-
cessfully manipulated with a desirable style in the last row.

Fake detection has been broadly studied in recent years
(Li et al. 2020; Sun et al. 2021a; Xu et al. 2023; Huang et al.
2023). Identifying the existing fake content cannot erase
the possible negative impact that has already been done.
Therefore, an additional avenue of priors (Ruiz, Bargal, and
Sclaroff 2020; Huang et al. 2022) delves into a proactive so-
lution, leveraging adversarial noise to pre-protect facial con-
tents. Despite promising results reported that injected noise
is able to disrupt the manipulation process, there are still
some issues to be solved. 1) Optimization-based methods
(e.g., (Ruiz, Bargal, and Sclaroff 2020)) require from-scratch
optimization for each image independently, which costs con-
siderable time and computational resources. 2) The manip-
ulation methods are sensitive to subtle changes introduced
by the injected noise, while the injected noise itself is also
susceptible to minor alterations. There is still no compre-
hensive evaluation regarding the robustness of the injected
noise against manipulations when fronting commonly exist-
ing perturbations on the Internet. This problem is intuitively
demonstrated in Fig. 1. Our preliminary experiment finds the
vulnerability of current studies in this aspect.

With a spirit to tackle these challenges, in this paper,
we develop a learning-based protection framework named
Adversarial Robust Safeguard (ARS). ARS is designed
to achieve highly efficient and perturbation-resistant pre-
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protection, in the context of countering deep facial manip-
ulations. One of the pivotal concepts central to our approach
involves the design of a neural network to generate input-
specific protection noises. These noises are subsequently
injected into the original input with the primary objective
of disrupting the outcomes of manipulations. Thus, differ-
ent from optimization-based methods (Ruiz, Bargal, and
Sclaroff 2020; Yeh et al. 2020), the entire protection could
be done in a single-forward process after one-time training
of our model.

On the other hand, the robustness of noises is emphasized
in our method from two folds. Initially, we propose a two-
way protection framework. The first one, denoted as Basic
Protection, is designed to learn and generate an effective
noise feature. And second one, termed Robust Protection,
is aimed at producing a noise signal that ensures robustness.
We learn the information replication measure from (Wang
et al. 2021; Guan et al. 2023a), which is inspired by Shan-
non’s capacity theorem that redundancy could improve ro-
bustness. Different from direct duplication of the input in
previous works, we spatially repeat the noise embedding
from the Basic Protection. Thus the protective information
is injected individually and spread throughout the spatial di-
mensions, ensuring proper information integrity from being
recovered after certain lossy perturbations. Second, from the
training aspect, a combination of a differentiable perturba-
tion module and an adversarial net is proposed to simulate
possible information loss in training. Similar to related ap-
plications in (Zhu et al. 2018), including the perturbation
module can enhance information preservation. We adopt the
same idea to power better resistance to perturbations of our
protection noises. In addition, an adversarial net is proposed
to play a role against our protection model, which aims to
erase the injected information. As a result, our model can
benefit from an adversarial training process, achieving more
robust protection.

We conduct experiments on four manipulation methods
and compare recent works comprehensively. From the first
aspect of protection visual effect, our method reports ob-
jectively better performance in several metrics and shows
clearly better disruption effect visually. Regarding robust-
ness evaluation, we conduct comparisons with six types of
perturbations at five different levels. Our method consis-
tently reports the best performance both quantitatively and
qualitatively. Our contributions can be summarized as:

• We develop a learning-based two-way model achiev-
ing high efficiency and perturbation-resist pre-protection
against deep facial manipulations.

• By introducing a differentiable perturbation module and
an adversarial training strategy, our model is learned to
generate more robust protection noises that better tolerate
possible information loss fronting perturbations.

• We conduct comprehensive experiments in different as-
pects. Comparisons with previous studies show that our
method achieves better protection both qualitatively and
quantitatively.

• To the best of our knowledge, we are the first to bench-
mark the robustness evaluation of adversarial protection

methods against facial manipulations. Considering the
ubiquitous post-processing in multimedia platforms, in-
depth studies in this aspect could greatly promote the
real-world applications of related protection methods.

Related Works
Facial Manipulation
In light of the rapid progress in generative methods, re-
cent research has demonstrated the capability to attain vivid
facial manipulations. StyleGAN (Karras et al. 2020) rep-
resents a milestone in image synthesis, capable of being
trained to produce high-fidelity images given only ran-
dom initialization. Drawing upon this foundation, plenty
of studies have been devised to realize controlled manip-
ulations (Yang et al. 2021; Guan et al. 2023b). For in-
stance, built upon a well-trained StyleGAN serving as the
decoder, (Richardson et al. 2021) attains desirable manipu-
lations through the employment of diverse encoding strate-
gies. An even more powerful application involves identity
swapping. (Chen et al. 2020) is able to seamlessly transform
facial identities between two provided images, all the while
ensuring the preservation of the original attributes with high
fidelity. The pressing issue of non-consensual exploitation
of these manipulation methods has garnered significant so-
cietal attention. It is imperative to underscore the critical im-
portance of developing countermeasures.

Facial Manipulation Detection
Detection of facial manipulation, as a passive defense mea-
sure against abuses, has been widely studied in recent years.
Most works (Sun et al. 2021b; Qian et al. 2020; Li et al.
2020; Guan et al. 2023c) are formulated as a binary clas-
sification problem, with the objective of identifying pre-
existing fake contents. While powerful deep neural networks
could provide a good understanding of the differences be-
tween real faces and the generated fake ones, recent studies
(Sun et al. 2021a; Luo et al. 2021; Guan et al. 2022; Dong
et al. 2022; Yao et al. 2023; Yan et al. 2023; Dong et al.
2023) find it hard to keep a consistent performance from the
training set to untapped manipulations. The weak general-
ization ability encourages researchers to dig deeper into this
problem. Even if we could identify fakes with precision, we
cannot erase the negative impact that could already be done.
Thus, an additional avenue of priors delves into a proactive
solution.

Adversarial Attack against Facial Manipulation
Adversarial attack (Goodfellow, Shlens, and Szegedy 2014)
is initially studied in the context of a classification prob-
lem, that a deep network can be fooled with small pixel-level
changes. It has penetrated into many fields such as emotion
recognition (Zhao et al. 2021b), network intrusion detection
(Chen et al. 2023), speech recognition (Guo et al. 2022),
and edge computing (Zhao et al. 2021a). Recent researchers
have adopted a similar idea and turned it into a proactive
defensive method against facial manipulations. (Ruiz, Bar-
gal, and Sclaroff 2020) first conduct experiments with well-
established baselines. Their results prove a fruitful avenue
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Figure 2: (a): Overview of the proposed Adversarial Robust Safeguard (ARS). Our two-way protection model consists of the
Basic Protection (green) and the Robust Protection (blue). Manipulation (Manip.) Model (red), Perturbation Module (yellow),
and Adv Net (yellow) are exclusively employed during the training phase, where the yellow part is especially leveraged to
simulate instances of information loss after the protection. (b): Illustration of the Robust Protection.

for proactive defense against facial manipulations. (Huang
et al. 2022) adopt the idea of universal adversarial pertur-
bation and devise an effective method against multiple ma-
nipulations simultaneously. (He et al. 2022) propose to pro-
tect images in the latent space of StyleGAN (Karras et al.
2020) and disable manipulations via reconstruction. Tiny
changes in the latent space could disable manipulations,
but also introduce minor changes to the original identity.
(Aneja, Markhasin, and Nießner 2022) is a close study of our
motivations, which focuses on designing a learning-based
protection model. Their method is able to protect images
through one single forward process. While these methods
can achieve successful protection, the performance when
fronting various kinds of perturbations is still unclear. Con-
sidering the ubiquitous post-processing in multimedia plat-
forms, our method is distinct from previous works especially
designs in robust protection, for better support of practical
scenarios.

Method
Preliminary on Adversarial Attack
In this paper, our focus lies on safeguarding images by em-
ploying attacks on facial manipulation models. For this rea-
son, we refrain from explicitly distinguishing between the
terms “attack” and “protect” within the following context.
Both terms are applicable in describing our objective, where
the “attack” pertains to the manipulation model, and the
“protect” pertains to the target image we aim to safeguard.

Given a target image x ∈ RH×W×3 and a well-trained
manipulation model G. The original manipulated output y =
G(x, c), where c is an optional conditional input depending
on G. We aim to find a desirable noise η ∈ RH×W×3, which
is additive to x as x̃ = clip(x+ η), where x̃ is the protected
image and clip function ensures a validate result of addi-
tion. Thus the disrupted/protected manipulation output ỹ is
defined as ỹ = G(x̃, c).

A desirable noise η should be human-neglectable to the
visual effect of x and be able to considerably disrupt the
generative results of G. Learning from adversarial attack

methods (Kurakin, Goodfellow, and Bengio 2018), a FGSM-
based baseline could be defined as:

η = ϵ sign(∇xJ(G(x, c))), (1)

where ϵ describes that each pixel of x can be changed no
more than ϵ, and J is a loss function defining the protection
goal. When J is L2-norm constraint, maximum J(G(x, c))
will lead to a protected output ỹ to be less similar to the
original manipulation in y, achieving our goal of protection.

To provide clarity in our following descriptions, in this
paper, the term “noise” refers to the outcome η in our ob-
jectives. Conversely, the term “perturbation” is employed to
signify potential post-processing that occurs subsequent to
the completion of our protection.

Adversarial Robust Safeguard
After defining the problem, we elaborate the Adversarial
Robust Safeguard (ARS) in this section. The overview of
the proposed method is illustrated in Fig. 2. ARS follows a
learning-based manner, where we generate desirable noise η
for each target image x independently in only one forward
process. The two-way design is outlined at the upper and
lower pipelines in Fig. 2 (a), respectively.
Basic Protection. In the upper one, the basic protection
function fθ(·) with trainable parameters θ will generate
basic noise ηb = fθ(x). Different from the maximum-
disruption optimization protocol adopted in (Yeh et al. 2020;
Huang et al. 2022), we set a protection target similar to
(Aneja, Markhasin, and Nießner 2022). Thus fθ is optimized
as:

min
θ

∥G(x̃b)− ŷ∥2 + λ ∥ηb∥2 , (2)

x̃b = clip(x+ ηb) = clip(x+ fθ(x)),
s.t. ∥ηb∥∞ < ϵ,

(3)

where ŷ is the protection target that is simply set as full-
white image in the same shape of x, λ is set to 10, the last
∥ηb∥2 is a regular term preventing too large the noise, and
L∞-constraint is implemented by clip function as well.
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To optimize Eq. (2), we could have a desirable noise ηb
that is suitable for target image x to nullify the manipula-
tion of G. Naturally, sensitive information for attacking the
manipulation model is also extracted in ηb. We thus later
leverage this critical information in the next stage for further
enhancement.
Robust Protection. In the second way of robust protection,
we also introduce a protection function gψ(·) with train-
able parameters ψ. Details of its design are illustrated in
Fig. 2 (b). The main idea of this part is to enhance infor-
mation redundancy for robust considerations. Therefore, our
protection could be more effective even after perturbations.

The robust protection gψ(·) is split it into three compo-
nents, where the stage-1, stage-2, and noise encoding are
denoted as g1, g2, and gn, respectively. The stage-1 takes the
target image x as input, for feature extraction of the specific
input:

z = g1(x), z ∈ RH×W×C , (4)

where C is a hyper-parameter. The noise encoding function
gn is responsible for compressing the spatial dimension of
ηb while keeping useful information for our protection pur-
poses:

n = gn(ηb), n ∈ R1×1×C . (5)

Then, we spatially repeat the compressed feature n by H ×
W times to be ns ∈ RH×W×C . At last, we concatenate the
above feature in channel dimension as input to get the final
protection:

η = g2(cat(z, ns, ηb)),
x̃ = clip(x + η),
s.t. ∥η∥∞ < ϵ.

(6)

Therefore, even if the protected x̃ is processed to lose cer-
tain information at a specific sub-corner, our method can en-
sure proper information integrity from being recovered. The
whole gψ is optimized end-to-end with the following parts,
which we will introduce later.
Perturbation Module and Adv Net. Both the two compo-
nents are adopted to enhance the robustness of the protection
noise η. We denote the perturbation module as function p(·),
which is consisted of four differentiable functions, including
pdrop, presize, pblur, and pjpeg , to simulate possible pertur-
bations. For pdrop, we define it as:

pdrop(x̃, x) = x̃ ·m+ x · (1−m), (7)

where m ∈ {0, 1}RH×W×1

here is a mask that each
value is randomly assigned independently. Therefore, pdrop
could simulate pixel-level lossy perturbations. Additionally,
presize is simply implemented using bilinear interpolation.
We randomly downscale and then upscale x̃ back. More-
over, pblur is implemented using convolutional operation
with predefined blur kernels. Lastly, pjpeg aims to simulate
information loss after JPEG compression. Since there is a
lossy quantization step in the compression process, which
is non-differentiable, we cannot directly adopt a standard
JPEG compression in our training. Learning from an approx-
imate method (Zhu et al. 2018), we randomly mask out part
of the high-frequency coefficients after the DCT-transform
step of the compression process. During training, we apply

the introduced functions with a probability of 0.5. There-
fore, different combinations of these functions will simulate
a variety of situations.

Despite p(·) can be helpful in dealing with certain per-
turbations, we cannot exhaustively enumerate all possible
scenarios in training. Therefore, we propose the Adv Net,
denoted as qϕ(·) with trainable parameters ϕ, to nullify our
protection. qϕ is optimized by:

min
ϕ

∥G(qϕ(x̃))− y∥2 , (8)

recalling y = G(x, c) is the original manipulation result.
Our model is trained to bypass any information loss that
could be caused in qϕ as:

min
ψ

∥G(qϕ(x̃))− ŷ∥2 . (9)

As a result, our model can benefit from the above adversarial
process, generating more robust protection noise.

To summarize, our robust protection function gψ is end-
to-end optimized by:

min
ψ

∥G(x̃)− ŷ∥2+λ1 ∥G(qϕ(x̃))− ŷ∥2+λ2 ∥η∥2 , (10)

where λ1 = λ2 = 10 and ∥η∥2 is also a regular term as
Eq. (2).

Experiments
Set Up
Implementations. Image inputs are resized to 256×256 and
normalized in [−1, 1] for all our experiments. The functions
including fθ, g1, g2, are implemented using U-net (Ron-
neberger, Fischer, and Brox 2015) architecture. And noise
encoding function gn is implemented by stacking several
Conv-BN-ReLU layers. ϵ is set to 0.1 by default. The chan-
nel C for noise encoding is 128. We use Adam optimizer
with a learning rate of 10−4 in training. And our model con-
verges at around 30 epochs.
Manipulation Methods. We conduct comprehensive exper-
iments on several powerful facial manipulation methods. 1)
pSp-mix (Richardson et al. 2021) achieves style translation
of facial images by mixing latent codes of different sources.
2) pSp-recon (Richardson et al. 2021) uses the same archi-
tecture as pSp-mix, while being leveraged to reconstruct a
given facial image. 3) SimSwap (Chen et al. 2020) is a state-
of-the-art face swap method that we utilized for simulating
abuses of identity replacement. 4) StyleClip (Patashnik et al.

Manip.
Method Method MSE ↑ LPIPS ↑ SSIM ↓ PSNR ↓

pS
p-

m
ix

FGSM 0.0433 0.1286 0.6381 19.9703
PGD 0.3081 0.2945 0.4691 11.3420

Disrupt 0.1879 0.2375 0.5249 13.5339
TAFIM 0.0158 0.0978 0.7045 24.4298

ARS 1.3218 0.8007 0.3602 5.7422

Table 1: Performance against pSp-mix.
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Figure 3: Qualitative comparisons. We present the protected results of four manipulation methods, alongside the original ma-
nipulation results shown in the rightmost column, for reference. Our results are in red boxes.

2021) is a recent study focusing on text-driven manipula-
tion. For all the manipulation methods, we collect the open-
source codes and model weights from their official imple-
mentations.
Datasets. Since the above four manipulation methods are
trained on different datasets, we also conduct experiments
using the data aligned with their implementations. For pSp-
mix, pSp-recon, and StyleClip, we randomly select 10000
images from FFHQ (Karras, Laine, and Aila 2019) in train-
ing, 2000 images for validation, and 2000 images for testing.
For SimSwap, we also introduce a custom subset of VG-
GFace2 (Cao et al. 2018) including 10000, 2000, and 2000
images for train, validation, and test, respectively.
Baselines. We conduct comparisons with several well-
established baselines. 1) FGSM (Kurakin, Goodfellow, and
Bengio 2016) is one of the most well-known methods in
adversarial training. 2) PGD (Madry et al. 2017) is also
adopted to attack the manipulation methods in an iterative
way. 3) Disrupt (Ruiz, Bargal, and Sclaroff 2020) is one
of the earliest works investigating adversarial attacks for
protection against facial manipulations. We adopt the best
model of their proposals, which involves a spread-spectrum
evasion of blur defenses. 4) TAFIM (Aneja, Markhasin, and
Nießner 2022) is a recent learning-based method. We retrain
their model with our experimental conditions for fair com-
parisons.
Metrics. Following previous works (Ruiz, Bargal, and
Sclaroff 2020; Huang et al. 2022; Aneja, Markhasin, and
Nießner 2022), we use metrics including Mean Square Error
(MSE), Peak Signal-to-Noise Ratio (PSNR), Learned Per-
ceptual Image Patch Similarity (LPIPS) (Zhang et al. 2018),

Structural Similarity (SSIM), Success Rate (SR) (Ruiz, Bar-
gal, and Sclaroff 2020), and Masked Success Rate (SRmask)
(Huang et al. 2022) for evaluations. MSE, PSNR, LPIPS,
and SSIM are calculated between the original manipulated
outcomes and the possible disrupted output after protection.
Therefore, larger MSE and LPIPS indicate better protection
ability. While regarding PSNR and SSIM, the smaller the
number, the better the protection. SR and SRmask are pro-
posed to represent the successful ratio of protection. When
the output of manipulation methods could be considerably
disrupted, the protection is regarded as a successful case.
Please find details of SR and SRmask in (Ruiz, Bargal, and
Sclaroff 2020; Huang et al. 2022).

Results
Visual Comparisons. We first present intuitive visual com-
parisons in Fig. 3. From the figure, single-step FGSM can-
not work well with a small ϵ = 0.1. Iterative-based methods,
PGD and Disrupt, perform better in disrupting the manipu-
lations. Although TAFIM is also trained with a white target
image, it cannot work well with a small ϵ. Additionally, our
learning-based ARS is trained in a targeted-protection way,
thus the protected manipulation should be close to our prede-
fined full-white image. A comparison between all manipu-
lation methods shows that SimSwap is the most challenging
to defend against. For quantitative comparisons, we tabulate
detailed results against pSp-mix in Table 1. Our method con-
sistently outperforms baselines.
Robust Comparisons. Next, we conduct comparisons with
perturbations included. When the perturbation is included,
we find some baselines almost lost protection ability with
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Figure 4: Qualitative comparisons with perturbations. We present the protected results of four manipulation methods, alongside
the original manipulation results (w/ perturbations) shown in the rightmost column, for reference. Our results are in red boxes.

Method FGSM PGD Disrupt TAFIM ARS
ϵ = 0.1 0.04 0.48 0.41 0.02 0.53
ϵ = 0.3 0.31 0.81 0.86 0.64 0.96

Table 2: Success Rate evaluated on pSp-mix averaged from
all kinds of perturbations at the highest level.

Method FGSM PGD Disrupt TAFIM ARS
pSp-mix7→StyleClip 0.31 0.30 0.30 0.19 0.77
StyleClip7→pSp-mix 0.17 0.16 0.21 0.13 0.92

Table 3: Success Rate evaluated between pSp-mix and Style-
Clip averaged from all perturbations at the highest level.

a small ϵ = 0.1 (see Success Rate in Table 2). A greater ϵ
than 0.3 would seriously impact the visual quality, we thus
set ϵ = 0.3 as an appropriate value for a better demonstra-
tion. We first demonstrate the protection in Fig. 4. From the
results, our method can perform successful protection and
disrupt the manipulations considerably. Moreover, for quan-
titative comparisons, we show results with pSp-mix at each
level averaged from all perturbations in Fig. 5 for intuitive
demonstration. From the results, we see that our method
significantly outperforms all baselines in visual metrics in-
cluding LPIPS and PSNR. Regarding SR and SRmask, Dis-
rupt and our method both report a saturated successful ratio
when lower-level perturbations are included. When a higher
level of perturbation is confronted, our method achieves bet-
ter protection. In addition, we tabulate performance evalu-
ated against pSp-mix at the highest level for each kind of
perturbation in Table 6. Comparing different perturbations,
“Gaussian Blur” happens to be the most powerful one. In
spite of the incorporation of a blur module within the Dis-
rupt for the sake of robustness, our approach, distinguished

by its specially tailored robust protection, significantly out-
performs all baselines. Note the included perturbation will
also have an impact on the original manipulated result, e.g.,
the instances in rightmost column of Fig. 4. For details of the
introduced perturbations, please find them in the appendix.
Transferable Protection. In addition to the white-box set-
ting, we further perform transfer experiments and tabulate
the comparisons in Table 3. The success rate is evaluated
with the protection model trained using one manipulation
method and tested on another one. The results show our
method holds a good transferable protection ability.
Speed Comparisons. Running speed is also a key prop-
erty in applications. We tabulate the comparisons in Table 4.
PGD and Disrupt spend the most time on protecting one im-
age due to the time-intensive iterative pipeline. FGSM can
yield results within a singular forward-backward process,
but its protection effect is not satisfactory. While TAFIM
and our method require only one forward process to generate
protection noises, which costs the least amount of time.

Method FGSM PGD Disrupt TAFIM ARS
Time Cost (s/image) 0.65 2.79 2.84 0.46 0.46

Table 4: Speed comparisons. We run methods against pSp-
mix with the same experimental environment and report the
performance averaged from 5 independent runnings.

Ablation Study
In this section, we conduct ablations on key designs of our
approach. Here we first explain these alternative designs.
a) “Basic” denotes the model without the proposed second
way in Fig. 2, i.e., the Robust Protection, the Perturbation
Module, and Adv Net are removed; b) “Basic w/ Robust”
removes the Robust Protection but keeps the Perturbation
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LPIPS ↑SSIM ↓ SR𝑚𝑎𝑠𝑘 ↑SR ↑

Level 1-5 Level 1-5 Level 1-5 Level 1-5

Figure 5: Robust evaluation. Protection against pSp-mix averaged from all kinds of perturbations at each level.

Model MSE ↑ PSNR ↓ SR ↑ SRmask ↑
Basic 0.2221 13.6986 0.8741 0.8866
Basic w/ Robust 0.6304 10.7555 0.9300 0.9340
non-lossy ARS 0.7944 10.2761 0.8930 0.9130
ARS w/o Adv 0.6145 10.8189 0.9290 0.9390
ARS 0.5035 11.9364 0.9600 0.9680

Table 5: Ablations on pSp-mix. We compare several alterna-
tive designs with randomly chosen perturbations at random
levels. All the experiments are initialized with the same ran-
dom seed to ensure fairness.

Module and Adv Net in training. In this model, the output of
the Basic Protection can still benefit from the simulation of
information loss in training, but lost information redundancy
provided in Robust Protection; c) “non-lossy ARS” indicates
that we remove both Perturbation Module and Adv Net; d)
“ARS w/o Adv” indicates that we remove Adv Net and the
adversarial training process but keep the Perturbation Mod-
ule; e) “ARS” denotes the whole method we proposed.

We compare these models with randomly chosen pertur-
bations at random levels. All the experiments are initialized
with the same random seed to ensure fairness. The Results
are tabulated in Table 5. “Basic” could be regarded as a sim-
ple learning-based baseline. Comparing “Basic” and “Basic
w/ Robust”, we see the proposed Perturbation Module and
Adv Net can greatly promote the protection performance of
the learning-based method. “non-lossy ARS” achieves the
best performance in MSE and PSNR, but has poorer suc-
cessful protection rate (SR and SRmask). This indicates this
model is able to disrupt the manipulation more significantly
but fails in tough cases with severe perturbations. In addi-
tion, comparing “non-lossy ARS” and “ARS w/o Adv”, we
see that simply including the Perturbation Module for cer-
tain types of information loss can benefit the successful rate.
Further, including the Adv Net and adversarial training pro-
cess in “ARS” will slightly impact the visual performance,
but greatly improve the success rate.

Conclusion
In this paper, we present a learning-based method, abbrevi-
ated ARS, to pre-protect facial images from being manip-
ulated without consensus. Prominent attributes of our pro-
posed approach encompass its good efficiency and notable

Noise
Type Method MSE ↑ PSNR ↓ SR ↑ SRmask ↑

C
ol

or
Sa

tu
ra

tio
n FGSM 0.0419 20.3315 0.2700 0.3120

PGD 0.1228 15.4775 0.9867 0.9833
Disrupt 0.1036 16.2793 0.9300 0.9333
TAFIM 0.0766 17.6059 0.7850 0.7960

ARS 0.1720 14.2258 0.9960 0.9950

C
ol

or
C

on
tr

as
t FGSM 0.0335 21.4004 0.1610 0.1640

PGD 0.1235 15.4683 0.9900 0.9867
Disrupt 0.1066 16.1490 0.9433 0.9433
TAFIM 0.0906 17.7739 0.6100 0.6210

ARS 1.1085 6.6215 1.0000 1.0000
D

an
do

m
D

ro
p

FGSM 0.0541 19.0030 0.5020 0.5530
PGD 0.1511 14.4892 1.0000 1.0000

Disrupt 0.1272 15.2732 0.9933 0.9933
TAFIM 0.1066 16.5021 0.8780 0.9020

ARS 0.3711 11.2601 1.0000 1.0000

G
au

ss
ia

n
B

lu
r

FGSM 0.0238 22.9322 0.0590 0.0670
PGD 0.0320 21.6120 0.1400 0.1867

Disrupt 0.0534 19.3434 0.4633 0.5433
TAFIM 0.0231 23.2245 0.0660 0.0810

ARS 0.0759 17.5743 0.8040 0.8300

D
o w

n
Sc

al
e

FGSM 0.0586 18.9503 0.5400 0.5620
PGD 0.0758 17.6559 0.7700 0.8033

Disrupt 0.0856 17.0568 0.8600 0.8967
TAFIM 0.0562 19.0650 0.5160 0.5530

ARS 0.0973 16.3995 0.9590 0.9580

JP
E

G
C

om
pr

es
si

on FGSM 0.0426 20.2552 0.2990 0.3570
PGD 0.1549 14.4008 1.0000 1.0000

Disrupt 0.1459 14.6833 0.9967 0.9967
TAFIM 0.2899 13.0587 0.9570 0.9650

ARS 0.6911 8.4913 1.0000 1.0000

Table 6: Robust evaluation. Protection against pSp-mix at
the highest level for each kind of perturbation.

robustness. Compared with related baselines, our method
outperforms them both qualitatively and quantitatively. Es-
pecially, we first benchmark the robustness evaluation of ad-
versarial protection methods against four kinds of facial ma-
nipulations. Considering the ubiquitous post-processing in
multimedia platforms, in-depth studies in this aspect could
greatly promote the applications of related pre-protection
methods in the future.
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