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Abstract

Fact checking aims to predict claim veracity by reasoning
over multiple evidence pieces. It usually involves evidence
retrieval and veracity reasoning. In this paper, we focus on
the latter, reasoning over unstructured text and structured ta-
ble information. Previous works have primarily relied on fine-
tuning pretrained language models or training homogeneous-
graph-based models. Despite their effectiveness, we argue
that they fail to explore the rich semantic information under-
lying the evidence with different structures. To address this,
we propose a novel word-level Heterogeneous-graph-based
model for Fact Checking over unstructured and structured in-
formation, namely HeterFC. Our approach leverages a het-
erogeneous evidence graph, with words as nodes and thought-
fully designed edges representing different evidence prop-
erties. We perform information propagation via a relational
graph neural network, facilitating interactions between claims
and evidence. An attention-based method is utilized to inte-
grate information, combined with a language model for gen-
erating predictions. We introduce a multitask loss function to
account for potential inaccuracies in evidence retrieval. Com-
prehensive experiments on the large fact checking dataset
FEVEROUS demonstrate the effectiveness of HeterFC. Code
will be released at: https://github.com/Deno-V/HeterFC.

Introduction
Fact checking, or fact verification, predicts claim veracity
using evidence. This task has practical applications in vari-
ous domains like politics (Liu et al. 2023; Xu et al. 2022),
news media (Zellers et al. 2019), public health (Naeem and
Bhatti 2020; Krause et al. 2020), and science (Wright et al.
2022; Wadden et al. 2020), attracting extensive research.
Prior efforts predominantly address unstructured fact check-
ing, handling evidence and claims as plain text (Thorne et al.
2018; Wang 2017; Xu et al. 2023). However, real-world
contexts often involve structured data like tables, creating
a pressing need for fact checking across unstructured and
structured information.

Fact checking mainly involves evidence retrieval and ve-
racity reasoning, which are two independent tasks (Aly et al.
2021). The aim of evidence retrieval is to retrieve as much
the claim-related evidence (golden evidence) as possible; the
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target of veracity reasoning is to precisely predict the verac-
ity of claim based on the retrieved evidence from the former
stage. In this paper, we mainly focus on the design of verac-
ity reasoning model.

Previous veracity reasoning models (Aly et al. 2021;
Kotonya et al. 2021; Funkquist 2021; Hu et al. 2022;
Bouziane et al. 2021; Zhao et al. 2020; Wu et al. 2022) have
primarily relied on fine-tuning pretrained language models
or training homogeneous-graph-based models. In the fine-
tuning approach, they firstly transform tables into sentences
via some heuristic linearizing rules. Then, a pretrained lan-
guage model (PLM), such as RoBERTa (Liu et al. 2019),
is fine-tuned by concatenating all pieces of evidence as the
input. In the homogeneous-graph-based approach, they con-
struct a homogeneous fully-connected evidence graph where
each node is treated as a piece of evidence. After that, a
graph neural network (GNN) is utilized to propagate neigh-
borhood information, which enables the semantic represen-
tations of different pieces of evidence to be aggregated.

While effective, existing approaches exhibit two key
weaknesses. Firstly, fact checking necessitates capturing se-
mantics among various evidence pieces, demanding intri-
cate modeling of evidence relationships. Transformer-based
methods often fall short as they merely concatenate evi-
dence or deal with point-wise claim-evidence pairs, insuf-
ficiently exploring complex evidence interconnections. Sec-
ondly, prevalent graph-based methods construct sentence-
level graphs with claim-evidence pairs as nodes, employ-
ing Pre-trained Language Models (PLMs) for node repre-
sentations (Zhou et al. 2019; Liu et al. 2020; Kotonya et al.
2021). Although these models perform well in conventional
fact checking, they falter in scenarios involving both struc-
tured and unstructured information. This is due to the limita-
tions of sentence-level graphs in capturing fine-grained de-
tails such as entities and time phrases. Furthermore, assum-
ing uniform relationships between node pairs overlooks the
diverse properties inherent in table and sentence evidence.

To tackle the aforementioned problems, we propose a
novel word-level Heterogeneous-graph-based model for
Fact Checking over unstructured and structured informa-
tion, HeterFC for brevity. Specifically, we first construct a
graph where nodes represent words in all pieces of evidence,
thereby achieving a granularity at word-level. Then, to cap-
ture the different relationships in structured and unstructured
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information, we specially design three kinds of connections
on the graph, namely intra-sentence edges, intra-table edges,
and inter-evidence edges. In detail, intra-sentence edges and
intra-table edges are added between each word and its lo-
cal contextual words in a fix-sized sliding window. Inter-
evidence edges are between the same keyword appearing in
several pieces of evidence, which allows the important infor-
mation be aggregated across the evidence via these edges.
We employ the relational graph convolutional network (R-
GCN) to perform neighborhood propagation and readout the
representations of each evidence, followed by an attention
mechanism to obtain information from all pieces of evi-
dence. Combined with a language model, we get the final
veracity prediction. To train the model, in addition to cross-
entropy loss for the claim veracity, we propose a multitask
loss to assist the model in discerning between valid and in-
valid evidence, thereby enhancing the overall performance
of the model.

In a nutshell, our main contributions can be listed as fol-
lows,
• We figure out the inapplicability of previous

homogeneous-graph-based methods in the traditional
unstructured fact checking and analyze the underlying
possible reasons.

• We propose a novel word-level heterogeneous-graph-
based model, namely HeterFC, which is specially de-
signed for fact checking over unstructured and structured
information.

• Extensive experiments on the large-scale FEVEROUS
fact-checking dataset, which includes both structured and
unstructured information, have demonstrated the effec-
tiveness of our proposed model over several baselines.

Related Work
Fact Checking Over Unstructured Information
Fact checking, a form of natural language inference (NLI),
involves predicting claim veracity by reasoning over mul-
tiple evidence pieces. Existing methods fall into two cat-
egories. The first category uses pretrained language mod-
els (PLMs), fine-tuning them for fact checking. They or-
ganize the input by concatenating all evidence and claim
into a single sentence (Aly et al. 2021), or processing each
evidence separately with the claim using aggregation tech-
niques (Soleimani, Monz, and Worring 2020; Gi, Fang, and
Tsai 2021). The second category employs graph neural net-
works (GNNs) to capture complex semantic interactions.
GEAR (Zhou et al. 2019) constructs sentence-level fully-
connected evidence graphs with GNNs. Zhao et al. (2020)
use Transformer-XH for graph representation, while Liu
et al. (2020) introduce KGAT with node and edge kernels.
DREAM (Zhong et al. 2020) incorporates semantic role la-
beling for fine-grained semantic graphs. Chen et al. (2022)
propose EvidenceNet with symmetrical interaction attention
and gating on sentence-level evidence graphs.

Fact Checking Over Mixed-type Information
Unlike unstructured fact checking, fact checking over both
structured and unstructured information requires handling a

combination of structured tables and unstructured text. Ex-
isting methods include table linearization, where tables are
converted into text, potentially losing structural information
(Gi, Fang, and Tsai 2021; Kotonya et al. 2021; Malon 2021).
Another approach is to combine sentence and table evi-
dence using models like TAPAS (Funkquist 2021; Bouziane
et al. 2021; Hu et al. 2022). In graph-based methods, previ-
ous works focused on homogeneous sentence-level evidence
graphs (Kotonya et al. 2021). In contrast, our approach intro-
duces word-level nodes and heterogeneous relations, mak-
ing it more suitable for fact checking over structured and
unstructured information.

Heterogeneous Graph Neural Networks
Heterogeneous graph neural networks (heterGNNs) are spe-
cialized GNNs designed for neighborhood propagation on
graphs with different types of edges. R-GCN (Schlichtkrull
et al. 2018) is a representative heterGNN that assigns train-
able weight matrices to each relation. HeterGNNs have been
successfully applied in various domains including recom-
mender systems (Fan et al. 2019; Zhao et al. 2017; Yan et al.
2021) and question answering (Yu et al. 2019; Sun et al.
2018).

Method
In this section, we introduce the proposed method HeterFC
in details. The overall framework is shown in Figure 1.

Task Formulation
The aim of multi-structured fact checking is to predict the
veracity of a claim according to several pieces of evidence,
which contains both tables and texts. Mathematically, given
a claim c and a retrieved evidence set E = {e1, e2, . . . , eM},
where each piece of evidence ei represents either a sentence
or a table cell, we need to propose a model p̂ = f(c, E) to
output the predicted veracity p̂.

Word-level Evidence Graph Construction
In this part, we elaborate the design of nodes and edges on
the evidence graph.

Node Construction We treat each word in the evidence as
a node on the evidence graph, since it contains more fine-
grained semantic information than the sentence.1 To achieve
this, we employ a PLM to process each claim-evidence pair
to build the initial node representations.

The sentence evidence can be directly treated as input
to a PLM, however, since tables have a distinct structure
from sentences, table evidence can’t be directly processed
by PLM. To address this, we adopt the idea of cell lineariza-
tion proposed in (Hu et al. 2022). Specifically, each piece of
table evidence is transformed into either “<column header>
for <row header> is <cell value> ” if it belongs to a gen-
eral table or “<column header> :<row header> of <title>
is <cell value> ” if it is from an infobox-type table.

1We have tried token-level node construction, which is more
fine-grained than the word-level nodes. However, it is less effective
and more analysis can be seen in the experimental section.
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Figure 1: Architecture of HeterFC. Inputs are claim c and an evidence set E . There are five main parts: 1) Word-level evidence
graph construction. Initial node embeddings are obtained by using PLM and subword mean pooling. Three types of edges are
designed for the heterogeneous connection. 2) Heterogeneous information propagation. R-GCN is used to perform neighbor-
hood aggregation on the word-level evidence graph. 3) Evidence-level representation readout. Evidence representations are
obtained by pooling over subgraphs corresponding to each piece of evidence. 4) Attention-based claim-evidence interaction.
Graph representation og is generated by claim-guided evidence combination. A supervised loss item, Losse, is computed based
on the attention assignment. 5) Fused veracity prediction. The claim and evidence are concatenated and fed into PLM to obtain
ot, which, when combined with the graph representation og , forms the final representation. A fully-connected network takes the
representation as input and generates the prediction p̂. HeterFC is trained using classification loss Lossc and assisted Losse.

By applying cell linearization technique to table evidence,
we are able to feed each claim-evidence pair to a PLM and
obtain the embedding of each token (subword) in both table
evidence and sentence evidence. It is noteworthy that though
claim-evidence pair is fed into PLM, the subwords in claim
are excluded and only the subwords in evidence are kept.
This can be expressed mathematically as follows:

S0
i = PLM([c, ei]) (1)

S0
i := s0i0 || s0i1 || . . . || s0ij (2)

where PLM is a RoBERTa model here, following previous
works (Aly et al. 2021). c denotes the claim and ei is the i-th
evidence. s0ij represents the embedding of the j-th subword
in the i-th evidence and || is the concatenation of vectors.

Then, we generate the embedding of a whole word via
computing the mean of the embeddings of its corresponding
subwords. By following this approach, we can obtain the
word embedding matrix H0 for the all pieces of evidence by
the mentioned way, where H0 is the initial node representa-
tions since we treat each word in the evidence as a node.

Edge Construction After constructing word-level nodes,
the next step is to design the connections among them. The
simplest way is to construct a fully-connected graph, where
each node shares an edge with every other node on the graph.
However, this approach may bring too much noise since only
part of information is related and beneficial for a node. Espe-
cially, the input evidence inevitably contains some unrelated

information due to the error of the retrieval model. There-
fore, a more elaborate design is required in this task.

We carefully design three types of edges to capture the
heterogeneous information among several pieces of evi-
dence. Specifically, the three types of edges are named inter-
evidence edges, intra-sentence edges and intra-table edges.
The illustration of such edges is shown in Figure 1 where
different type of edge is illustrated with different color in
the graph, and we introduce them in detail as follows,

Inter-evidence edges re. Aggregating relevant informa-
tion from multiple pieces of evidence is crucial for accu-
rate claim veracity prediction. In fact verification scenarios
involving both texts and tables, it is common for the same
entity to be referenced in different types of evidence. Thus,
integrating information from both sources is necessary for a
comprehensive understanding. To capture the multi-hop re-
lationship between evidence, we construct edges connecting
the same word in different pieces of evidence. By propa-
gating information along these edges, we can capture the
flow of information between related evidence. To ensure the
quality of inter-evidence edges, we filter out stop words like
“is,” “of,” and “the” to prevent constructing edges between
frequently used but insignificant words.

Intra-sentence edges rs. A word in the sentence is usu-
ally associated with its local context for understanding the
semantics (Mikolov et al. 2013). Therefore, we adopt this
traditional technique and employ a sliding window with a
fix size w to cover the local context. In this way, each word
in the center of the window has edges with the rest of words
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in the window, through which each word is connected with
its context on the graph. Thus, the contextual information
can be aggregated via a one-layer GNN, which is beneficial
for learning the sentence-level semantics.

Intra-table edges rt. Tables have a completely different
structure compared with sentences. The header and the cell
form a key-value relationship. This structure is distinct from
that of a sentence, which contains many stop words (is, the,
etc.) to ensure fluency. Based on the analysis above, we as-
sign edges among the cell, its row header, column header
and its page title. To achieve this, we reuse the cell lin-
earization method mentioned in the node construction sec-
tion to transform each table cell into sequence and utilize the
fix-sized window again to connect words, just like building
intra-sentence edges.

Eventually, we construct a word-level evidence graph G
via the aforementioned design, which involves three differ-
ent relations R = {rs, rt, re}. Next, we introduce the main
model architecture.

Heterogeneous Information Propagation
The constructed evidence graph includes various edges,
making homogeneous GNNs unsuitable. Thus, we employ
relational graph convolutional networks (R-GCN) to capture
distinct node relations. Formally, it can be written as,

hl+1
i = σ

∑
r∈R

∑
j∈N r

i

1

ci,r
Wl

rh
l
j +Wl

0h
l
i

 (3)

where N r
i denotes the one-hop neighbors of i-th node that

have edges of relation r and hl
i = Hl[i, :] ∈ R1∗dl

(dl is the
embedding dimension). ci,r = |N r

i | is the normalized term,
σ is the Sigmoid activation function, and Wl

∗ are learnable
weight matrices in the l-th layer.

After one-step neighborhood propagation via Eq. (3), we
obtain the contextual information in one-hop neighborhood.
By stacking k layers of R-GCN, we can aggregate the in-
formation from k-hop neighborhood, where k is a hyperpa-
rameter that will be discussed in the experimental section.
We denote the final output of k-layer R-GCN as H ∈ RN∗d,
where N and d are the number of nodes and the embedding
dimension, respectively.

Evidence-level Representation Readout
The word-level node representations H are processed using
a readout module to generate evidence-level embeddings.
Inspired by the work in the graph classification (Ying et al.
2018), we employ both max pooling and mean pooling over
the words within each evidence to produce its representa-
tion.

em = max(Hi:j) || mean(Hi:j) (4)

where Hi:j ∈ R(j−i+1)∗d denotes the segment of H span-
ning rows i to j, corresponding to nodes from the m-th
evidence. The pooling strategies are applied along the first
dimension so as to obtain the embedding of each evidence
em ∈ R1∗2d.

In contrast to the graph classification context where pool-
ing is performed over all graph nodes, this evidence-wise

readout scheme proves beneficial for our task due to the
varying significance of different evidence pieces.

Attention-based Claim-evidence Interaction
Evidence representations {e1, e2, . . . , eM} have varying
significance for claim verification. For example, the imper-
fect upstream evidence retrieval model may recall some re-
dundant, claim-unrelated evidence. Such evidence should be
ignored in the reasoning model. According to this observa-
tion, we introduce an attention-based claim-evidence inter-
action module. In detail, we compute the importance score
αm for the m-th evidence regarding the claim based on an
attention mechanism,

c = PLM(c) (5)
gm = Wa1 (ReLU (Wa0 (c∥em))) (6)

αm = softmax (gm) =
exp (gm)∑M
i=1 exp (gi)

(7)

where PLM denotes a RoBERTa model encoding the claim
into embeddings. PLMs in this module and node construc-
tion share the same weights for efficiency. We take the [CLS]
representation as the claim embedding c ∈ R1∗d. We then
obtain the graph representation of the whole evidence set
og ∈ R1∗2d via the attention-weighted summation of all ev-
idence.

og =
M∑
i=1

αiei (8)

Fused Veracity Prediction
The graph construction method utilized here effectively cap-
tures the interaction between evidence, but it also weakens
the integrity of the claim and evidence paragraphs. We found
that relying solely on the graph representation may cause the
model to overlook phrases such as negation words. There-
fore, in addition to solely using the graph representation, we
generate an assisted representation ot by feeding the lin-
earized claim and evidence sequences directly to a PLM.
Then, the graph representation og is concatenated with the
assisted representation ot and fed into a multi-layer fully-
connected network, followed by softmax normalization, to
produce the final prediction p̂ ∈ R1∗C , where C denotes the
number of class.

ot = PLM([c, e1, e2, · · · , eM ]) (9)
p̂ = softmax(MLP(og∥ot)) (10)

Model Training
The cross-entropy objective is utilized to compute the verac-
ity classification loss,

Lossc = −
C∑

c=1

yc log (p̂c) (11)

where y denotes the one-hot label vector (e.g., [1, 0, 0] rep-
resents that the ground truth is the first class).

To counteract the effects of the upstream evidence re-
trieval model’s imperfections, we utilize the advantageous
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attributes of attention mechanisms in the attention-based
claim-evidence interaction module. Specifically, we calcu-
late a predicted evidence score sm for each evidence em us-
ing the sigmoid function, and then compare it with the truth
evidence label to generate a binary classification loss. The
truth evidence label indicates whether an evidence is rele-
vant for verifying the claim. The assisted loss is obtained by
averaging all binary classification losses over the evidence
set E :

sm = sigmoid(gm) (12)

Losse =
1

M

M∑
i=1

[tm log(sm) + (1− tm) log(1− sm)]

(13)

where gm is a intermediate result in computing attention
scores in Equation 6, tm denotes the truth evidence label
for evidence em.

For training the whole model, we combined the loss item
lossc and losse with a hyperparameter β, which will be dis-
cussed in the experimental section.

Loss = Lossc + βLosse (14)

Experiment
In this section, we conduct comprehensive experiments to
answer the following research questions:

• RQ1: How does the proposed method HeterFC perform
compared with existing baselines?

• RQ2: How is the word-level graph compared with the
sentence-level graph and the token-level graph?

• RQ3: How does the model perform with different design
of edges?

• RQ4: Which part of the model contributes most to the
final result apart from the graph construction?

• RQ5: How does the model performance change with dif-
ferent values of hyper-parameters?

• RQ6: How does the model perform with different re-
trieval model?

Experimental Setups
Dataset Following prior research, we utilize the extensive
FEVEROUS dataset in our experiments (Aly et al. 2021).
The FEVEROUS task involves finding relevant evidence be-
fore claim verification. Each claim is manually annotated
with labels: Supported, Refuted, or Not Enough Informa-
tion, and paired with a corresponding golden evidence set.
The dataset is divided into a training set of 71,291 claims, a
development set of 7,890 claims, and a blind test set avail-
able on an online judging system2. The evidence sets in-
clude 38,941 with sentences only, 30,574 with tables only,
and 25,395 with both sentences and tables.

2https://eval.ai/web/challenges/challenge-page/1091/overview

Metrics Two metrics gauge the model’s performance: the
Feverous score and label accuracy. Label accuracy solely
evaluates claim veracity classification accuracy, whereas the
Feverous score assesses verdict prediction accuracy and cor-
rect retrieval of the golden evidence set. This score quantifies
instances where the golden evidence set is successfully re-
trieved and the verdict is correctly predicted. The Feverous
score is a comprehensive metric that assesses both the re-
trieval system and veracity reasoning model’s performance.

Baselines
• RoBERTa-Pairmean/max Utilizes RoBERTa as backbone.

Concatenates claim with each evidence separately to
form sentences. Mean or max pooling is applied over em-
beddings of all evidence for final prediction.

• RoBERTa-Concat Concatenates claim with all evidence
using [SEP] as separator. [CLS] token’s representation is
used for classification.

• GEAR (Zhou et al. 2019) Homogeneous coarse-grained
graph-based method. Treats each claim-evidence pair as
node in a fully-connected evidence graph. Graph convo-
lutional network and evidence aggregator are used.

• KGAT (Liu et al. 2020) Kernel graph attention model.
Similar graph construction as GEAR. Employs node and
edge kernels for fine-grained evidence propagation.

• DCUF (Hu et al. 2022) Dual-channel approach. Con-
verts evidence to sentence form and table form. Utilizes
RoBERTa for sentence form, and TAPAS for table form.
Integrates both channels for veracity prediction.

Evidence Retrieval The primary objective of our paper
is to present a model for veracity reasoning. For equitable
comparison, we employ the evidence retrieval model from
(Hu et al. 2022) for all tested models. We retrieve up to 150
relevant Wikipedia pages per claim using entity-matching
and TF-IDF. The top 5 pages are selected based on SBERT3

and BM25 rankings. Tables within these pages are flattened,
and up to 5 sentences and 3 tables are selected per claim us-
ing DrQA (Chen et al. 2017). Relevant table cells are identi-
fied using a cell selector. Each claim’s retrieved evidence set
comprises up to 5 sentences and 25 table cells, as FEVER-
OUS task requirements.

Implementation Details To boost our model’s ability to
extract relevant details from noisy evidence, we augment
each claim with two sets of evidence: the golden evidence
set and the retrieved evidence set. Claims with the golden
evidence set have all truth evidence labels set to positive.
while for claims with the retrieved evidence set, only evi-
dence shared with the golden evidence set receives a positive
label. We consistently apply this augmentation to all base-
line models. This approach differs from GEAR and KGAT’s
original technique for the FEVER task (Thorne et al. 2018),
which focuses on fact verification over unstructured text ev-
idence. We use the Adam optimizer (Kingma and Ba 2015)
with learning rates of 1e-5 for language model parameters

3https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-
12-v2

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

104



Model
Dev Test

Feverous Label Accuracy Feverous Label Accuracy

Transformer-based
RoBERTa-Pairmean 0.3452 0.7117 0.3231 0.6074
RoBERTa-Pairmax 0.3550 0.7207 0.3347 0.6190
RoBERTa-Concat 0.3549 0.7221 0.3344 0.6194

DCUF (Hu et al. 2022) 0.3577 0.7291 0.3397 0.6321

Graph-based
GEAR (Zhou et al. 2019) 0.2640 0.5859 0.2483 0.4964
KGAT (Liu et al. 2020) 0.3293 0.6844 0.3043 0.5797

HeterFC 0.3714 0.7352 0.3476 0.6329

Table 1: Comparison of models on Feverous task

and 1e-3 for others, employing a linear scheduler with a
20% warm-up rate. RoBERTa-Large serves as the PLM,
with window size w and R-GCN layer count k set to 2. All
experiments run on a server with an AMD EPYC 7742 (256)
@ 2.250GHz CPU and one NVIDIA A100 GPU.

Overall Performance (RQ1)
We compare our proposed HeterFC against various base-
lines, spanning transformer-based and graph-based mod-
els. In Table 1, HeterFC consistently outperforms all strong
baselines across metrics and datasets, highlighting its supe-
riority. Key observations from these results are as follows:
• Among RoBERTa-based models, RoBERTa-Pairmean

lags, while the other two exhibit similar performance lev-
els. This may stem from RoBERTa-Pair’s limited ability
to capture diverse relationships by processing evidence
pieces separately. RoBERTa-Concat processes evidence
together, but struggles to distinguish between golden and
noisy evidence, affecting its performance. Thus, direct
PLM use falls short, emphasizing the need for task-
specific design.

• DCUF, the top-performing transformer-based method,
incorporates RoBERTa-Concat alongside TAPAS, con-
tributing to its superior performance.

• Graph-based models GEAR and KGAT, stemming from
FEVER task, exhibit suboptimal performance due to task
and data differences. Comparing them with HeterFCgraph
(see Table 2), which is a purely graph-based model,
HeterFCgraph outperforms substantially, affirming the ef-
ficacy of our hybrid fact verification design.

Ablation Study and Model Variants
Comparison of the Graph Granularity (RQ2) To vali-
date our word-level graph design, we experiment with Het-
erFC against its sentence-level graph variant (HeterFCsent)
and token-level graph variant (HeterFCtoken). For sentence-
level graphs, each claim-paired sentence (tables linearized
into sentences) constitutes a node. Nodes from the same
claim interconnect to form a fully-connected evidence
graph, initialized with PLM [CLS] token embeddings. For
token-level graphs, we omit subword mean pooling, result-
ing in nodes representing subwords.

From Figure 2, HeterFC surpasses both model variants
across metrics. HeterFCsent significantly lags behind Het-
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Figure 2: The performance comparison among models with
different graph granularity. HeterFCsent represents the vari-
ant with sentence-level graph, while HeterFCtoken represents
the variant with token-level graph.

0.354

0.360

0.366

0.372

Fe
ve

ro
us

0.712

0.720

0.728

0.736

La
be

lA
cc

.

HeterFCw/o both HeterFCw/o Het HeterFCw/o gl HeterFC

Figure 3: The performance comparison between the pro-
posed model HeterFC and its three variants: HeterFCw/o gl
ignores global and local connection designs. HeterFCw/o Het
ignores heterogeneous relations. HeterFCw/o both removes all
special designs for a fully-connected homogeneous graph.

erFC and HeterFCtoken. This gap suggests that HeterFCsent’s
coarser granularity struggles to capture nuanced semantic
relationships among evidence pieces. Comparing HeterFC
with HeterFCtoken, HeterFC maintains better Feverous score
and slightly edges in label accuracy. This suggests that the
word-level graph in HeterFC enhances performance due to
more precise inter-evidence connections than the token-level
graph. In token-level graphs, shared subwords may lead
to extraneous inter-evidence links among unrelated words
(e.g., “interesting” and “thing” sharing “ing”). This results
in noisy connections due to non-keyword shared subwords,
undermining overall performance.

Comparison of Different Edge Construction Strategies
(RQ3) In HeterFC, unique edge constructions include het-
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Model Feverous Label Accuracy

HeterFC 0.3714 0.7352
HeterFCmean 0.3613 0.7238
HeterFCmax 0.3620 0.7226
HeterFCgraph 0.3640 0.7243
HeterFCsingle 0.3641 0.7257

Table 2: Comparison between HeterFC and its variants:
HeterFCmean/max substitutes attention-based claim-evidence
interaction with mean/max pooling. HeterFCgraph uses only
graph representation for a purely graph-based model.
HeterFCsingle ignores the assisted loss.

erogeneous relations, inter-evidence global connections, and
intra-evidence local connections. This section ablates these
strategies through model variants to assess their impact. For
HeterFCw/o Het, homogeneous edges replace heterogeneous
relations, making all edges identical. HeterFCw/o gl disre-
gards specific local and global connection designs, yielding
a fully-connected graph while retaining heterogeneous rela-
tions. HeterFCw/o both discards all special designs, leading to
a fully-connected and homogeneous graph.

From Figure 3, HeterFC outperforms its variants, with
HeterFCw/o both exhibiting the weakest performance. Fur-
thermore, HeterFCw/o gl and HeterFCw/o Het show marked
performance drops, emphasizing the effectiveness of both
heterogeneous edges and local/global connection designs.

Investigating Attention Module, Veracity Prediction and
Losses (RQ4) In addition to the discussed graph con-
struction, we further evaluate the Attention-based Claim-
evidence Interaction model, Fused Veracity Prediction, and
assisted loss designs through several HeterFC variants:
• HeterFCmean/max: Substitutes the original Attention-

based Claim-evidence Interaction with a mean/max pool-
ing layer for evidence representation aggregation. No as-
sisted loss is computed due to the absence of predicted
evidence scores.

• HeterFCgraph: Excludes ot in Fused Veracity Prediction,
relying solely on graph representation og for a purely
graph-based model.

• HeterFCsingle: Using only the veracity classification loss
Lossc, ignoring the assisted loss Losse.

Table 2 displays development set results for these variants.
Notably, HeterFC surpasses all variants. HeterFCmean/max
perform worse than HeterFCsingle. These three variants lack
assisted loss during training, highlighting the importance
of the Attention-based Claim-evidence Interaction model.
Comparing HeterFCsingle and HeterFCgraph, assisted loss and
Fused Veracity Prediction contribute similarly to outcomes.
The pivotal role of the Attention-based Claim-evidence In-
teraction module is evident.

Hyperparameter Sensitivity Analysis (RQ5)
We study the impact of two key hyperparameters: the num-
ber of R-GCN layers k determining information aggregation
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Figure 4: The influence of hyper-parameters on HeterFC’s
performance on the development set.

Model Feverous Label Acc.

RoBERTa-Pairmean 0.2272 0.6689
RoBERTa-Pairmax 0.2379 0.6829
RoBERTa-Concat 0.2352 0.6627

DCUF 0.2380 0.6895
GEAR 0.1783 0.5786
KGAT 0.2110 0.6117

HeterFC 0.2427 0.6977

Table 3: Comparison of model performances on the devel-
opment set under different retrieval method.

range and the parameter β for balancing Losse and Lossc.

Number of layers k. In the left part of Figure 4, increasing
GNN layers enhances metrics, but beyond k = 2, metrics
drop due to over-smoothing. We select k = 2 for HeterFC.

Balancing parameter β. The right part of Figure 4 shows
Feverous score peaks at β = 1.2 before a slight decline,
while label accuracy increases steadily with larger β, stabi-
lizing eventually. We select β = 1.2 as optimal for HeterFC.

Evaluating the Robustness of HeterFC (RQ6)
We extend our analysis beyond the retrieval method by (Hu
et al. 2022) to include a simpler approach by (Aly et al.
2021). Despite less effective retrieval, it simulates scenarios
with limited, noisy evidence. Results in Table 3 align with
those in Table 1, showing that HeterFC maintains superior
performance over baseline models, underscoring its robust-
ness even with less optimal retrieval techniques.

Conclusion
In this paper, we introduce HeterFC, a novel word-level
heterogeneous-graph-based model for fact checking that ef-
fectively combines unstructured and structured information.
Our model employs a carefully designed graph structure
with word-level nodes and diverse edge types. We inte-
grate a heterogeneous information propagation module with
attention-based claim-evidence interaction to capture the se-
mantic relationships between claims and evidence. Addi-
tionally, we introduce an assisted loss based on attention
scores to differentiate valid and invalid evidence. Extensive
experiments confirm the superiority of HeterFC over diverse
baseline models.
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