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Abstract

Rumor detection on social media has become increasingly
important. Most existing graph-based models presume rumor
propagation trees (RPTs) have deep structures and learn se-
quential stance features along branches. However, through
statistical analysis on real-world datasets, we find RPTs ex-
hibit wide structures, with most nodes being shallow 1-level
replies. To focus learning on intensive substructures, we pro-
pose Rumor Adaptive Graph Contrastive Learning (RAGCL)
method with adaptive view augmentation guided by node
centralities. We summarize three principles for RPT augmen-
tation: 1) exempt root nodes, 2) retain deep reply nodes, 3)
preserve lower-level nodes in deep sections. We employ node
dropping, attribute masking and edge dropping with proba-
bilities from centrality-based importance scores to generate
views. A graph contrastive objective then learns robust ru-
mor representations. Extensive experiments on four bench-
mark datasets demonstrate RAGCL outperforms state-of-the-
art methods. Our work reveals the wide-structure nature of
RPTs and contributes an effective graph contrastive learn-
ing approach tailored for rumor detection through principled
adaptive augmentation. The proposed principles and augmen-
tation techniques can potentially benefit other applications in-
volving tree-structured graphs.

Introduction
The unprecedented growth of the Internet in recent years
has promoted the widespread applications of social media.
Digital platforms like Weibo and Twitter have evolved into
critical conduits for users to garner information and inter-
act with each other. These platforms, while facilitating in-
formation dissemination and diverse opinion expression on
a multitude of trending issues, are also breeding grounds for
various rumors. Given the massive user base and the ease of
use, rumors are disseminated extensively and swiftly via so-
cial media, wreaking substantial societal havoc. Therefore,
there is an urgent need to establish efficacious and efficient
strategies for automated rumor verification on social media.

Currently, a plethora of studies concerning rumor detec-
tion exist. Certain studies (Bian et al. 2020; Wei et al. 2021)
have demonstrated that the propagation structure of a claim,
which fully encapsulates the interrelationship between posts
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and harnesses the collective intelligence of the crowd, is in-
valuable for debunking rumors. In general, rumor detection
models built upon rumor propagation structures glean dis-
criminative features of rumors from the interrelation of com-
ments, apprehending specific patterns of reply stances as the
basis for claim classification, given that clear disparities ex-
ist between the comment stances of rumor claims and those
of non-rumor claims. These models are adept at discerning
these differences, which constitute one of the fundamental
postulates of rumor detection methods based on rumor prop-
agation trees (Ma, Gao, and Wong 2018). This supposition
relies, to a certain degree, on the deep structures of rumor
propagation trees (RPTs). But are RPTs really deep?

Bearing this question in mind, we undertook a statistical
analysis to explore the structural characteristics of RPTs.
The findings indicate that, in commonly employed rumor
detection datasets and real-world social media platforms,
the tree structures of claims are typically shallow. The vast
majority of a claim’s comments constitute 1-level replies,
with the remainder primarily consisting of 2-level replies,
and only a negligible number delve into deeper levels. This
essentially implies that RPTs are not characterized by deep
tree structures, but instead exhibit wide structures.

As per our statistical analysis, the majority of nodes in
RPTs are 1-level replies, all pointing directly to the root
node (i.e., the source post), which highlights the significance
of the root node. Further, it is plausible that the majority of
the 1-level replies, due to their lack of deeper engagement,
may contain less informational value in rumor identifica-
tion compared to nodes with more extensive paths. Based on
these findings, we propose the Rumor Adaptive Graph Con-
trastive Learning (RAGCL) method. RAGCL utilizes node
centrality measures to generate augmented views of RPTs
and leverages graph contrastive learning methods to facili-
tate graph neural networks (GNNs) in learning crucial ru-
mor discriminative features from the deep sections of RPTs.
Empirical studies demonstrate the effectiveness of RAGCL.

In summary, the contributions of this study are as follows.
• Our statistical survey has unveiled that RPTs primarily

exhibit a wide tree structure, breaking the stereotype of
a deep tree structure in previous studies. This shifts the
understanding of information propagation processes on
social media platforms.

• Informed by the structural characteristics of RPTs and in-
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spired by current research on graph self-supervised learn-
ing (Zhu et al. 2021), we propose the RAGCL method to
learn discriminative features for rumor detection.

• In light of the unique tree structure of RPTs, we propose
three guiding principles to be followed when designing
adaptive data augmentation methods for RPTs.

• Our experimental results underscore the superior perfor-
mance of RAGCL in comparison to the current state-of-
the-art (SOTA) methods and substantiate the validity of
our three principles.

Related Work
In this section, we will review the related works on rumor
detection and graph contrastive learning.

Social Media Rumor Detection
To debunk rumors, various efforts have been made. Among
the existing studies, early methods mainly take advantage
of traditional classification methods by using hand-crafted
features (Castillo, Mendoza, and Poblete 2011; Kwon et al.
2013). In recent years, with the advent of deep learning,
more effective approaches have emerged, resulting in signif-
icant improvements in rumor detection performance. These
approaches can be broadly categorized into four classes, in-
cluding time-series based methods (Ma et al. 2016; Yu et al.
2017; Liu and Wu 2018) which model text content or user
profiles as time series, propagation structure learning meth-
ods (Ma, Gao, and Wong 2018; Bian et al. 2020; Wei et al.
2021; Sun et al. 2022b) which consider the propagation
structures of source rumors and their replies, multi-source
integation methods (Karimi et al. 2018; Birunda and Devi
2021) which combine multiple resources of rumors includ-
ing post content, user profiles, heterogeneous relations be-
tween posts and users, multi-modal fusion methods (Wang
et al. 2018; Jin et al. 2017) which incorporate both post con-
tent and related images to effectively debunk rumors.

The significance of propagation structure information has
been increasingly recognized in the field of rumor detection
research. Numerous SOTA models bank on learning the rep-
resentations of RPTs utilizing GNNs. Ma, Gao, and Wong
(2018) designed a bottom-up and top-down tree-structured
recursive neural network to extract information from RPTs.
In a similar vein, Bian et al. (2020) applied a bidirectional
GCN alongside a root node feature enhancement technique
to address rumor detection tasks. Furthermore, Sun et al.
(2022b) incorporated contrastive loss with adversarial train-
ing to learn representations robust to rumor noise. These
studies bear testament to the efficacy of propagation struc-
ture learning in accurately identifying rumors.

Graph Contrastive Learning
The advancement of deep learning has instigated progress
across numerous studies predicated on neural message pass-
ing algorithms (Gilmer et al. 2017). These algorithms learn
graph representations in a supervised manner and have at-
tained SOTA results across a wide array of tasks (Kipf et al.
2018; Xie and Grossman 2018; Chen et al. 2019). In recent

(a) False-Rumor (b) True-Rumor

Figure 1: The stances in rumor propagation trees.

years, graph self-supervised learning methods have grad-
ually emerged to leverage unlabeled data for addressing
the problem of scarce labeled data, with most of them be-
ing graph contrastive learning methods. Contrastive learning
methods have been widely applied in the domain of image
representation learning (He et al. 2020; Chen et al. 2020),
and subsequently extended to the realms of text (Giorgi et al.
2020; Shi et al. 2019; Fang et al. 2020) and graph data
(Velickovic et al. 2019; Sun et al. 2019). Graph contrastive
learning methodologies have evolved from initial methods
premised on mutual information maximization (Velickovic
et al. 2019; Sun et al. 2019) to contemporary methods based
on graph augmentation (Hassani and Khasahmadi 2020; You
et al. 2020, 2021). Graph contrastive learning methods based
on graph augmentation first employ diverse graph augmen-
tation strategies (such as node drop, edge perturbation, etc.)
to acquire varying views of a given graph, thereafter con-
structing positive and negative samples in the contrastive
loss. Ultimately, graph representations are learned by mini-
mizing the contrastive loss. To accommodate different types
of graph datasets, several research studies have focused on
adaptive graph augmentation (Zhu et al. 2021; You et al.
2021; Yin et al. 2022). RAGCL represents a novel adaptive
graph augmentation approach for rumor detection to learn
robust and discriminative representations of RPTs.

Analysis on Propagation Tree
As shown in Figure 1, current propagation structure learn-
ing based rumor detection methods are devoted to collect
support (S), deny (D), question (Q), comment (C) and other
stances between a reply and its source post, and pairs of
replies (Ma, Gao, and Wong 2018). For different classes of
claims, there exist noticeable differences in their stance pat-
terns, which can serve as discriminative features for rumor
identification. For instance, the true stance of a D-D relation
is S, whereas the true stance of a D-S relation is D. Cur-
rent propagation structure learning methods exploit stance
features between sequential nodes on the same branch of
the tree structure for rumor detection (Bian et al. 2020; Sun
et al. 2022b). Nonetheless, these features are dependent on
the depth structure of RPTs. But, are RPTs truly deep?

In the present study, we conduct a thorough exploration
of the structural properties inherent to RPTs, deploying a
statistical approach. The datasets under scrutiny consist of
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Figure 2: A rumor propagation tree.

Weibo (Ma et al. 2016), DRWeibo1, Twitter15, and Twit-
ter16 (Ma, Gao, and Wong 2017). Further, we survey two
large-scale unlabeled public datasets, namely UWeibo2 and
UTwitter3. Data from these datasets originate from popular
posts on Weibo and Twitter platforms, mirroring the univer-
sal traits of claims within social media environments. The
statistical results are shown in Table 1. The entries beneath
the dotted line in Table 1 denote the mean count of replies, 1-
level replies, 2-level replies, deeper (>2) replies, and 1-level
replies with subsequent replies per claim in the dataset, re-
spectively. The statistics lead us to the ensuing conclusions.
• RPTs resemble wide trees rather than deep ones. 1-

level replies constitute the majority of all replies within
RPTs, with proportions of 65.1%, 77.8%, 70.7%, and
64.2% for the four labeled datasets respectively.

• Only a minimal portion of 1-level replies within RPTs
spawn subsequent replies. Amongst all 1-level replies
in RPTs, only a fraction give rise to further replies, with
percentages of 9.7%, 6.4%, 10.4%, and 10.8%.

• Deep replies within a RPT are seldom observed. Deep
replies make up a tiny fraction of all replies in RPTs, with
percentages of 13.8%, 4.4%, 17.3%, and 23.4%. This in-
fers that the model is constrained to learning the afore-
said stance features from a limited set of replies.

Both UWeibo and UTwitter datasets also exhibit these
three characteristics, signifying that these traits are pervasive
attributes of claims on social media platforms. The above
observations paint the generalized structure of a RPT, as il-
lustrated in Figure 2. It’s noticeable that only nodes enclosed
within the box in Figure 2 carry the aforementioned stance
features, while most of the nodes in the tree are 1-level nodes
without further reply (no deep structure).

Based on the above observations, we can conceptualize
a RPT as a highly imbalanced graph, with imbalances re-
flected in the following two aspects:
• The root node of a RPT features highly dense connec-

tions, whereas connections at the remaining nodes are
exceedingly sparse.

• The intensive discussions and informative portions of a
RPT are predominantly found within a limited number
1https://github.com/CcQunResearch/DRWeibo
2https://github.com/CcQunResearch/UWeibo
3https://github.com/CcQunResearch/UTwitter

of 1-level replies (the two green nodes in Figure 2). In
contrast, the majority of the 1-level replies that lack fur-
ther deeper responses also lack discriminative features
that can aid in rumor identification.

Such characteristics are determined by users’ habits of us-
ing social media and the order in which platforms display
comments. In general, users are inclined to reply directly to
source posts rather than to other users’ comments. Addition-
ally, platforms such as Weibo and Twitter tend to sort replies
based on popularity rather than the chronological order of
posting. This contributes to the imbalance in the informa-
tion distribution within a propagation tree. With the aim of
enhancing our model’s focus on the intense and informative
discussions of RPTs and reducing the influence of a large
number of unresponded 1-level replies, we put forward our
RAGCL method. The objective of RAGCL is to stress the
importance of comments within RPTs that have intensive
replies, while also focusing on root nodes by directing the
aggregation of information from other nodes towards these
roots, considering the wide structures of RPTs.

Method
We will present the design of RAGCL in this section.

Notation
The rumor detection task can be defined as a graph-level
classification task. Specifically, we denote a labeled claim
dataset as C = {c1, c2, · · · , cm}, where ci represents the
i-th claim and m represents the number of labeled claims.
Each labeled claim c = (y,G) consists of its ground-truth
label y ∈ {N,R} (i.e., Non-rumor or Rumor) or fine-
grained label y ∈ {N,F, T, U} (i.e., Non-rumor, False Ru-
mor, True Rumor, Unverified Rumor) and its propagation
structure G = (V,E), where V and E represent the set of
nodes (a source post and comments of the claim) and edges
(the relations between pairs of replies or source post and a
reply), respectively. The set of propagation structure graphs
corresponding to all claims is G = {G1, G2, · · · , Gm}.
The goal of rumor detection task is to learn a classifier
f : G −→ Y (Y = {y1, y2 · · · ym}) from dataset C.

Framework
From the aforementioned analysis, it is important to learn
discriminative features from nodes with deep structures
(e.g., the nodes in the box in Figure 2). These nodes and
their corresponding edges possess a conspicuously higher
importance compared to the nodes located outside the box.
Based on this idea, we introduce RAGCL, an adaptive graph
contrastive learning framework purposefully engineered for
rumor detection. RAGCL assigns varying levels of impor-
tance to nodes and edges within a RPT based on a selected
node centrality measure. Subsequently, varying probabilities
of drop or mask, informed by these scores, are employed
to adaptively generate two graph augmented views of the
RPT, utilizing node drop, attribute mask, or edge drop op-
erators. The contrastive loss is subsequently minimized to
learn the tree’s representation. A comprehensive illustration
of the RAGCL process is presented in Figure 3.
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Statistic Weibo DRWeibo Twitter15 Twitter16 UWeibo UTwitter
language zh zh en en zh en
# claims 4664 6037 1490 818 209549 204922

# non-rumors 2351 3185 374 205 - -
# false rumors 2313 2852 370 205 - -
# true rumors - - 372 207 - -

# unverified rumors - - 374 201 - -
# avg reply 803.5 61.8 50.2 49.1 50.5 82.5

# avg 1-level reply 522.9(65%) 48.1(78%) 35.5(71%) 31.6(64%) 36.4(72%) 48.5(59%)
# avg 2-level reply 169.3(21%) 11.0(17%) 5.9(12%) 6.0(12%) 10.2(20%) 21.5(26%)
# avg deeper reply 111.2(14%) 2.7(5%) 8.7(17%) 11.5(24%) 4.0(8%) 12.5(15%)

# avg responded 1-level reply 50.7 3.1 3.7 3.4 4.1 8.0

Table 1: Statistics of the datasets.

Figure 3: The framework of RAGCL.

Augmentation Principle
Node centrality is an index to measure the importance of
nodes in a graph. There are three recommended node cen-
trality measures used by RAGCL, including degree cen-
trality (Shaw 1954), betweenness centrality (Freeman 1977)
and PageRank centrality (Brin and Page 1998).

• Degree centrality takes the degree of nodes as the mea-
sure of node centrality. The idea is that a post with multi-
ple replies is important in a RPT. RAGCL uses the node
out-degree of top-down graph of a RPT as the measure
of degree centrality.

• Betweenness centrality calculates all shortest paths of
any two nodes in a graph. A node becomes prominent in
terms of betweenness centrality if a multitude of these
paths transit through it. RAGCL utilizes either top-down
or bottom-up graphs to ascertain betweenness centrality.

• PageRank centrality is commonly used in web page
ranking. Its basic idea is that the importance of a page on
Internet depends on the quantity and quality of inbound
links. RAGCL leverages the bottom-up graph of a RPT
to compute PageRank centrality.

Given our prior analysis on the structural characteristics
of RPTs, we have summarized the following three principles
for assigning importance scores to nodes and edges.

• Principle 1: Given the pivotal role of source posts (Bian

et al. 2020; Sun et al. 2022b), the root nodes of RPTs are
exempt from the data augmentation procedure.

• Principle 2: Nodes and edges with deep replies within
RPTs (referenced within the boxed portion of Figure 2)
should be preserved to the greatest extent feasible.

• Principle 3: In the deep parts of RPTs, the nodes in low-
level should be retained in data augmentation more than
its deeper successor nodes, because the successor nodes
are basically discussed around their parent nodes, so they
should hold relatively lower importance.

Other node centrality measures, such as eigenvector cen-
trality (Bonacich 1972), Katz centrality (Katz 1953), and
closeness centrality (Sabidussi 1966), are deemed unsuitable
for RPTs due to inherent characteristics which preclude ad-
herence to the aforementioned principles. The node colors in
Figure 2 show the magnitude of node centrality that should
be obtained according to the above principles. Furthermore,
to ensure compliance with Principle 2, RAGCL assigns the
root node of a RPT the minimum value from among all
node centralities within the graph, given its dense charac-
teristic. Throughout the data augmentation process, the im-
portance of an edge in RAGCL is gauged by the centrality
of the edge’s two constituting nodes. An excessively high
root node centrality could artificially inflate the importance
of edges connecting the root node with unresponded 1-level
replies, thereby contravening Principle 2.
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Adaptive Graph Augmentation
RAGCL conducts adaptive data augmentation according to
node centrality, yielding two augmented views of the RPT. It
primarily utilizes three unique data augmentation operators:
node dropping, attribute masking, and edge dropping. Dur-
ing the training phase, two out of these three operators are
selected. RAGCL employs node centrality to assign impor-
tance scores to nodes and edges, after which it computes the
probability of dropping or masking for data augmentation.

Node Dropping Consider a propagation graph G of any
given claim within dataset C. Given a node centrality mea-
sure φc(·) : V → R+, V is the space where node v is located,
and the final node centrality value of node v is represented
by φc(v). Node dropping in RAGCL involves assigning a
drop probability pnv to each node v and removing a portion of
nodes (along with the edges connected to these nodes) from
the node set V in accordance with this probability to yield an
augmented view. It is noteworthy that the root node is never
dropped in this operation. The node importance score wn

v is
set as node centrality value, that is, wn

v = φc(v). Given that
the value of node centrality might vary across several orders
of magnitude, snv = log wn

v is set to alleviate the influence
of densely connected nodes. The node drop probability is
derived following the subsequent normalization procedure.

pnv =
snmax − snv
snmax − un

s

· pn, (1)

where pn is a hyperparameter governing the overall proba-
bility of node dropping, and snmax and un

s represent the max-
imum and mean values of snv , respectively.

Attribute Masking Attribute masking in RAGCL is de-
fined as substituting the feature vectors of a fraction of the
nodes in V with a zero vector. The root node is exempt
from this operation. Attribute masking does not entail node
removal; hence, edges connected to masked nodes are re-
tained. The mask probability for a node v is also pnv .

Edge Dropping We adopt the top-down graph of RPTs in
RAGCL. Edge dropping involves setting a drop probability
peuv for each edge (u, v), subsequently utilizing this proba-
bility to remove certain edges from the edge set E to produce
an augmented view. peuv should reflect the edge’s impor-
tance, implying that the peuv of an essential edge should be
lower than that of a less critical edge. Note that the central-
ity of a root node is assigned the minimum centrality value
among all nodes in a graph. The importance score we

uv is
defined as the mean centralities of its two connecting nodes.

we
uv = (φc(u) + φc(v))/2. (2)

The drop probability is then derived based on the im-
portance score of edge (u, v). Analogously, we set seuv =
log we

uv to mitigate the impact of densely connected nodes.
The probability is then ascertained similarly as follows.

peuv =
semax − seuv
semax − ue

s

· pe, (3)

where pe is a hyperparameter utilized to regulate the overall
probability of edge dropping, and semax and ue

s represent the
maximum and mean values of seuv , respectively.

Contrastive Loss Optimization
The data augmentation of a propagation graph G yields two
augmented views, namely G1 and G2. These views are pro-
cessed through a GCN (Kipf and Welling 2016) encoder to
obtain two representations: hG1 and hG2 . Within RAGCL,
the unsupervised contrastive loss on the graph set G, corre-
sponding to the dataset C, is formulated as follows:

Lunsup =− EP[sim(hG1
, hG2

)]

+ EP[log(EP̃exp(sim(hG1
, h

′

G2
)))

+ log(EP̃exp(sim(h
′

G1
, hG2

)))],

(4)

where P denotes the distribution adhered to by G; G repre-
sents an input sample drawn from P; G

′
is a negative sample

drawn from P̃ = P; sim(x1, x2) = xT
1 x2/||x1|| ||x2|| is the

cosine similarity.
RAGCL employs Lunsup as the regularization term of the

supervised loss Lsup (calculated by hG), and optimizes the
following loss function during the training phase.

L = Lsup + λ · Lunsup, (5)

where λ is an tunable hyperparameter.

Experiments
In this section, we present main experimental results. Exper-
iments on the effects of hyperparameters are in the supple-
mentary material.

Experimental Configuration
We conducted experiments on four real-world benchmark
datasets, Weibo, DRWeibo, Twitter15 and Twitter16, to eval-
uate RAGCL’s performance. Weibo and DRWeibo are Chi-
nese binary classification datasets, and Twitter15 and Twit-
ter16 are English multiple classification datasets. Table 1
shows the statistics of the datasets.

We make comparisons with the following baselines.
PLAN (Khoo et al. 2020) is based on Transformer. Its

StA-PLAN version incorporates RPT structural information.
BiGCN (Bian et al. 2020) leverages two GCN encoders,

a top-down and a bottom-up, and root node feature enhance-
ment strategy to classify rumor.

UDGCN is a variant of BiGCN, it takes undirected graph
of a RPT as the model input, and only one GCN encoder that
applies root node feature enhancement strategy is used.

GACL (Sun et al. 2022b) performs rumor classification
based on contrastive learning and adversarial training.

DDGCN (Sun et al. 2022a) can model multiple types of
information in one unified framework.

The experiment setting details will be explained in the
supplementary material. The experimental results are the
average results of 10 random split of the datasets. We re-
port the best performance of RAGCL that can be achieved
with different node centrality and data augmentation com-
bination. The source code of RAGCL is available at https:
//github.com/CcQunResearch/RAGCL.
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Results and Discussion
Results in Table 2 and 3 show that RAGCL outperforms the
baselines on all datasets. PLAN performs relatively poorly
on all datasets and consumes more GPU resources due to
Transformer architecture, which points to the necessity of
adopting GNN architecture. BiGCN is a typical model built
on the deep structure of RPT, which presupposes that the
information flow in RPTs presents as a top-down propa-
gation and a bottom-up dispersion process. However, our
research findings indicate that the RPT actually manifests
as a wide structure. This suggests that, for tree structures
like RPT, in addition to the depth-directional information
flow, the imbalanced distribution of information in the width
direction is also an important characteristic, which is cur-
rently overlooked by existing techniques. Although GACL
uses BERT (Devlin et al. 2018) to extract initial feature vec-
tors, it does not improve significantly over other baselines.
This may suggest that rumor detection models are insensi-
tive to the way initial features are extracted, and what is
more crucial is the high-level model’s ability to learn the
interactions between nodes. Additionally, GACL utilizes su-
pervised contrastive learning to learn the claim representa-
tion, while RAGCL, which adopts unsupervised contrastive
loss, also achieves superior performance. The application of
unsupervised loss allows the model to learn good represen-
tations without relying on labels. This suggests that it is fea-
sible to use RAGCL to further enhance the rumor detection
capability of the model by pretraining on large-scale, unla-
beled dataset from social media platforms (such as UWeibo
and UTwitter). We leave this for future research.

Ablation Study
We conducted a series of ablation experiments to verify the
influence of different factors on the model performance.

Unresponded 1-level Replies In order to validate the im-
pact of unresponded 1-level replies within RPTs, we con-
ducted experiments on the four datasets depicted in Fig-
ure 4. We eliminated α% of unresponded 1-level replies in
each RPT, subsequently utilizing BiGCN (Bian et al. 2020)
for classification. With the increase of α, it is observed that
the model performance remains steady, or even improves to
some extent. This indicates that these unresponded 1-level
replies, as we previously conjectured, have less significance
or may even serve as noise within rumor classification pro-
cess, thus RAGCL is justified in dropping them.

Data Augmentation Combinations Table 4 presents the
impact of different data augmentation combinations, where
we report the accuracy for each dataset. The experimental re-
sults show that using attribute masking in Chinese datasets
(Weibo and DRWeibo) will reduce the model performance.
For English datasets, various data augmentation combina-
tions have minimal effect on the results. Different data aug-
mentation combinations all achieve significant performance
gains over using only GCN for supervised classification
without applying contrastive loss. Furthermore, the results
also indicate that adaptive data augmentation outperforms
random data augmentation, providing further validation of
the reliability of our theory.

Figure 4: The influence of unresponded 1-level replies.

Node Centrality Measures We conducted the experi-
ments in Table 5 to explore the influence of different node
centrality measures. We report the accuracy that RAGCL
achieves with different node centrality measures and the av-
erage time cost (in seconds) to calculate each RPT central-
ity. Degree centrality can be calculated rapidly, thus yield-
ing efficient determination of node centrality within sizable
datasets. However, its exclusive focus on edge number fails
to satisfy Principle 3, thereby highlighting a limitation of
degree centrality. For instance, a parent node and one of its
children possessing identical reply counts will be assigned
the same centrality. In fact, degree centrality also achieves
relatively poor performance. Betweenness centrality aligns
well with the three principles. For RPTs, the betweenness
centrality is a very intuitive index to measure the importance
of nodes. A node with numerous successor nodes will have
many shortest paths traversing through it, leading to a cor-
respondingly elevated betweenness centrality. However, the
computation of betweenness centrality is more complex and
time-intensive than the other measures. PageRank central-
ity, on the other hand, not only aligns well with the basic
principles but also benefits from a relatively swift calcula-
tion process, making it more conducive to RAGCL’s training
phase. We also examined the effect of eigenvector centrality,
Katz centrality, and closeness centrality to verify the validity
of our three guiding principles. Given their individual char-
acteristics, these measures fail to meet Principle 2 and 3,
resulting in subpar performance. Additionally, their compu-
tational complexity is relatively high. Therefore, we do not
recommend using these centrality measures in RAGCL.

Graph Direction RAGCL is compatible with top-down
and bottom-up directed graphs as well as undirected graphs.
We investigated the impact of different types of graph in Fig-
ure 5. The results show that using undirected graphs leads to
a performance decline. This could be due to the fact that
during the forward propagation process of GNNs, densely
connected nodes at the root node will see each other in their
neighboring field of view. These nodes mutually aggregate
each other’s information, ultimately resulting in a loss of
node feature uniqueness, causing an over-smoothing prob-
lem (Li, Han, and Wu 2018; Cai and Wang 2020; Oono and
Suzuki 2019). On the other hand, top-down and bottom-up
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Method Class Weibo DRWeibo
Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

PLAN R 0.915±0.007
0.908 0.923 0.915 0.788±0.005

0.786 0.760 0.771
N 0.923 0.907 0.914 0.793 0.813 0.802

BiGCN R 0.942±0.008
0.919 0.968 0.942 0.866±0.010

0.869 0.849 0.858
N 0.967 0.918 0.942 0.863 0.882 0.872

UDGCN R 0.940±0.007
0.914 0.971 0.942 0.861±0.010

0.839 0.871 0.855
N 0.969 0.910 0.938 0.882 0.852 0.867

GACL R 0.938±0.006
0.936 0.940 0.938 0.870±0.009

0.865 0.856 0.860
N 0.940 0.936 0.938 0.874 0.882 0.878

DDGCN R 0.948±0.004
0.924 0.979 0.951 0.878±0.005

0.872 0.864 0.868
N 0.976 0.917 0.946 0.883 0.891 0.887

RAGCL R 0.962±0.005 0.956 0.968 0.962 0.894±0.004 0.893 0.877 0.885
N 0.969 0.957 0.963 0.895 0.909 0.902

Table 2: Experimental results on Weibo and DRWeibo dataset.

Method
Twitter15 Twitter16

Acc. N F T U Acc. N F T U
F1 F1 F1 F1 F1 F1 F1 F1

PLAN 0.819±0.004 0.839 0.854 0.817 0.759 0.843±0.005 0.855 0.851 0.858 0.805
BiGCN 0.844±0.005 0.856 0.844 0.863 0.809 0.880±0.009 0.793 0.912 0.947 0.849
UDGCN 0.840±0.005 0.848 0.847 0.864 0.799 0.875±0.009 0.783 0.902 0.954 0.839
GACL 0.846±0.007 0.859 0.845 0.866 0.812 0.891±0.004 0.802 0.929 0.945 0.872

DDGCN 0.835±0.006 0.840 0.850 0.856 0.791 0.893±0.004 0.807 0.931 0.946 0.871
RAGCL 0.867±0.005 0.891 0.867 0.869 0.835 0.905±0.003 0.836 0.923 0.963 0.882

Table 3: Experimental results on Twitter15 and Twitter16 dataset.

Aug1 Aug2 Weibo DRWeibo Twitter15 Twitter16
- - 0.927 0.844 0.822 0.846

Node Dropping (random) Attr Masking (random) 0.940 0.861 0.837 0.865
Node Dropping Attr Masking 0.953 0.892 0.867 0.896
Node Dropping Edge Dropping 0.962 0.894 0.864 0.902
Attr Masking Edge Dropping 0.952 0.888 0.864 0.905

Table 4: The influence of combinations of data augmentation.

Centrality T(n)
Weibo Twitter15

Acc. Time Acc. Time
Degree O(1) 0.953 0.82 0.860 0.13

Betweenness O(n3) 0.958 8.12 0.867 1.34
PageRank O(n) 0.962 1.37 0.865 0.22

Eigenvector O(n3) 0.939 9.23 0.850 1.62
Katz O(n3) 0.943 9.37 0.849 1.67

Closeness O(n3) 0.935 7.72 0.841 1.44

Table 5: The influence of node centrality measures.

directed graphs are able to effectively block excessive infor-
mation flow between nodes at the root node.

Conclusion
This study introduces RAGCL, an adaptive graph con-
trastive learning method specifically for rumor detection.
By taking into consideration the structural characteristics of

(a) Weibo (b) Twitter15

Figure 5: The impact of information flow direction.

RPTs, we propose three adaptive data augmentation meth-
ods based on node centrality and provide guiding princi-
ples for designing these methods. Our experimental results
demonstrate that RAGCL surpasses current SOTA methods
on all datasets, showcasing its superior performance.
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