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Abstract

Source detection in graphs has demonstrated robust efficacy
in the domain of rumor source identification. Although re-
cent solutions have enhanced performance by leveraging deep
neural networks, they often require complete user data. In
this paper, we address a more challenging task, rumor source
detection with incomplete user data, and propose a novel
framework, i.e., Source Detection in Graphs with Incomplete
Nodes via Positional Encoding and Attentive Fusion (GIN-
SD), to tackle this challenge. Specifically, our approach uti-
lizes a positional embedding module to distinguish nodes that
are incomplete and employs a self-attention mechanism to fo-
cus on nodes with greater information transmission capacity.
To mitigate the prediction bias caused by the significant dis-
parity between the numbers of source and non-source nodes,
we also introduce a class-balancing mechanism. Extensive
experiments validate the effectiveness of GIN-SD and its su-
periority to state-of-the-art methods.

Introduction
Source detection in graphs represents a fundamental chal-
lenge in mathematics and plays a vital role in rumor source
detection (Shah and Zaman 2011; Ling et al. 2022; Zhu
et al. 2022; Cheng et al. 2022). Early solutions, such
as LPSI (Wang et al. 2017), EPA (Ali et al. 2019), and
MLE (Pinto, Thiran, and Vetterli 2012), primarily rely on
source centrality theory (Prakash, Vreeken, and Faloutsos
2012; Shah and Zaman 2011) and maximum likelihood es-
timation in detecting sources. In recent years, with the ad-
vancement of deep learning techniques (Gao et al. 2022), re-
searchers have utilized deep neural networks to encode user
attributes and propagation information (Bian et al. 2020;
Wang, Jiang, and Zhao 2022; Ling et al. 2022), significantly
refreshing the state-of-the-art records.

However, current solutions for source detection are
premised on the strict assumption of having access to com-
plete user data, encompassing details such as the forwarding
frequency of all users and the time of information reception.
Indeed, acquiring such exhaustive user data is exceedingly
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Figure 1: Impact of incomplete nodes on source detection:
(a-c) graphs with incomplete node ratios of 0%, 10%, and
20%; (d) influence of varying incomplete node ratios on
the source detection accuracy for different methods. As the
proportion of incomplete nodes increases, the performance
of other methods declines more significantly, while our ap-
proach remains less affected.

challenging and sometimes impossible due to time con-
straints, resource limitations, and privacy protection mea-
sures (Du et al. 2017; Zhou, Jagmohan, and Varshney 2019).
No existing work, to our knowledge, considers the problem
of source detection in graph with incomplete nodes. In prac-
tice, when user data is incomplete, the majority of cutting-
edge solutions falter, as evidenced by the notable perfor-
mance decline shown in Fig. 1.

Source detection in graphs with incomplete nodes poses
three main challenges. First, in the process of node infor-
mation aggregation and transmission, the absent information
from incomplete nodes may be erroneously treated as valid
data from normal nodes, thus leading to significant feature
errors. Second, since the efficiency of information transmis-
sion varies among nodes, e.g., nodes with higher degrees
tend to relay information more rapidly, treating all nodes
uniformly hinders the training efficiency. Third, a marked
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imbalance between the quantities of source and non-source
nodes leads the model to favor the non-source set, overlook-
ing the source set, and thus creating a prediction bias. Intu-
itively, to handle the above three issues, we should 1) dis-
tinguish between incomplete and complete nodes; 2) focus
on nodes with superior information transmission capacity;
3) treat source/non-source nodes differently.

In this paper, we propose a novel source detection frame-
work in graphs with incomplete nodes (GIN-SD) through
positional encoding and attentive fusion. First, to distinguish
incomplete nodes, a positional embedding module is devel-
oped to exploit Laplacian Positional Encodings of the in-
fected subgraph, incorporating user states and propagation
information into the feature vectors of users. Second, to fo-
cus on nodes with greater information transmission capacity,
an attentive fusion module is introduced to employ the self-
attention mechanism to automatically allocate varying atten-
tion weights to different users. Finally, to treat source/non-
source nodes differently, we introduce a class balancing
mechanism that increases the weight of the source set while
decreasing the weight of the non-source set, enabling the
model to attend to both sets simultaneously. We validate
the effectiveness of our approach on eight publicly avail-
able datasets. Extensive experimental results demonstrate
that our approach is robust to missing nodes in a graph, out-
performing state-of-the-art methods.

Overall, our contribution is summarized as follows:

• We are the first to formulate the rumor sources detection
under incomplete user data and propose a novel approach
to address this issue.

• We devise a source detection method of rumors under in-
complete user data via positional encoding and attentive
fusion mechanism.

• We show by experiments that the superiority of the pro-
posed approach in the context of incomplete user data,
comparing to baseline methods.

Related Work
Infection Status-based Multi-source Detection
To efficiently address the Multiple Rumor Sources Detection
(MRSD) problem, several approaches have been developed.
Based on the source centrality theory (Prakash, Vreeken,
and Faloutsos 2012; Shah and Zaman 2011; Zhu, Chen, and
Ying 2017), LPSI selects locally prominent nodes through
label propagation without requiring prior information (Wang
et al. 2017). EPA iteratively calculates the infection time
of each node (Ali et al. 2019). However, these methods do
not adequately consider the heterogeneity of users and the
stochastic nature of information propagation. Utilizing ma-
chine learning techniques, GCNSI (Dong et al. 2019) and
SIGN (Li et al. 2021) take the states of all users as algorithm
inputs, whereas GCSSI focuses on the users infected during
the latest wave, known as the wavefront (Dong et al. 2022);
from the perspective of model architecture, ResGCN (Shah
et al. 2020) incorporates a residual structure that connects
GCN layers for message passing. However, these methods
fail to consider the randomness of information propagation

in heterogeneous networks, and the problem of class imbal-
ance significantly affects the precision of the algorithms. In-
corporating the propagation process, IVGD (Wang, Jiang,
and Zhao 2022) and SL-VAE (Ling et al. 2022) introduce
diffusion learning mechanisms that thoroughly consider the
heterogeneity of users and the stochasticity of information
propagation. It’s undoubt that obtaining detailed information
poses significant challenges due to cost constraints and pri-
vacy concerns. Moreover, all the aforementioned methods
heavily rely on network snapshot information, assuming the
availability of information for all users. However, obtaining
a complete network snapshot is immensely challenging due
to time constraints, cost limitations, and privacy considera-
tions (Du et al. 2017).

Positional Encodings and Attentive Mechanisms
The introduction of Graph Neural Networks (GNNs) has en-
abled the direct application of neural networks, previously
designed for Euclidean space, to be applied to graphs (non-
Euclidean space) (Scarselli et al. 2008). The advent of Graph
Convolutional Networks (GCNs) has further expedited the
advancement of machine learning methods on graphs (Kipf
and Welling 2017). GNNs and GCNs effectively learn node
representations by leveraging information from the nodes
themselves and their neighboring nodes. Moreover, Graph
Attention Networks (GAT) empower nodes to allocate dis-
tinct attention weights to different neighbors through a
multi-head attention mechanism (Veličković et al. 2017).
In fact, the models above learn structural node information
with invariant node positions (Srinivasan and Ribeiro 2019).

In recent years, the Transformer, originally proposed for
Natural Language Processing (NLP), has introduced Po-
sitional Encodings (PEs) for individual words (Han et al.
2021). Which ensures the uniqueness of each word while
preserving distance information. Recognizing the merits of
global learning based on PEs, PEs learning based on GNNs
has also emerged (You, Ying, and Leskovec 2019; Srini-
vasan and Ribeiro 2019; Dwivedi et al. 2020). For instance,
Dwivedi et al. (Dwivedi et al. 2020) employed Laplacian
eigenvectors (Belkin and Niyogi 2003) as PEs for nodes, en-
hancing the generative of PEs.

Building upon these, GIN-SD focuses on nodes with
greater information transmission capacity through a self-
attention mechanisms. Additionally, the Laplacian Posi-
tional Encodings of the infected subgraph, along with user
states and propagation information are embedded into the
user feature vectors to distinguish incomplete nodes.

Problem Formulation
Preliminary on Social Networks The social networks in
the physical world can be abstracted as G = (V,E), where
the nodes set V = {v1, v2, · · · , vn} represents the users; and
the edges set E = {(vi, vj) | vi, vj ∈ V, i ̸= j} indicates
the relationships between them. Based on V and E, the ad-
jacency matrix A (Aij ∈ {0, 1}n×n) of G is defined as:

Aij =

{
1, (vi, vj) ∈ E
0, otherwise. (1)
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Figure 2: Illustration of GIN-SD. (a) The network snapshot G′ serves as the input of GIN-SD. (b) The Positional Embedding
Module (PEM), where node positional information, along with state and propagation information, is embedded into feature
vectors. It is noteworthy that during the position embedding process, the infected subgraph is initially extracted from the
acquired snapshot, and the adjacency matrix of the infected subgraph is obtained. Subsequently, the symmetric normalized
Laplacian matrix is calculated, and the positional encoding of each node are derived through factorization. (c) The Attentive
Fusion Module (AFM) learns node representations through self-attention mechanisms. (d) The training loss is computed using
the class-balancing mechanism, and the detected source set ŝ is output during the testing phase.

Propagation Process of Social Networks Given the defi-
nition of G(V,E), the propagation process on G can be rep-
resented as a time series {X(t), t ≥ 0}, where X(t) denotes
the nodes states in G at time t. Specifically, the state X(t)
consists of two categories: G+ (positive) and G− (negative).

When t = 0, only source set is positive, i.e., {s ∈
G+, t = 0}. After the propagation is triggered by sources,
positive user vi decides whether to propagate the informa-
tion to its neighbors based on individual forwarding prob-
ability pi. Different classical models, such as influence-
based Independent Cascade (IC) model (Wen et al. 2017),
infection-based Susceptible-Infected (SI) (Barthélemy et al.
2004) and Susceptible-Infected-Recovered (SIR) (Parshani,
Carmi, and Havlin 2010) models, are proposed to simulate
the aforementioned propagation process.
Source Detection in Graphs with Complete Nodes As
the propagation unfolds and the rumor reaches a certain sig-
nificance threshold, specifically when θ% of the nodes in
the network are infected, a network snapshot G′(T, U, P )
is obtained includes: 1) network topology T ; 2) user infor-
mation U : user states, information forwarding frequency; 3)
propagation information P : reception time of information,
information propagator.

Based on the aforementioned definitions, the source de-
tection problem with complete nodes can be formalized as:

ŝ = f(G′(T, U, P )), (2)
where f(·) is the corresponding sources detection method-
ology, and ŝ represents the detected source set.
Source Detection in Graphs with Incomplete Nodes In
practice, source detection with complete nodes is exceed-

ingly challenging and sometimes impossible due to time
constraints, resource limitations, and privacy protection so-
lutions (Du et al. 2017; Zhou, Jagmohan, and Varshney
2019). Leading to incomplete user data in G′:

U ′ = (1− δ)U,P ′ = (1− δ)P, (3)

δ represents the incomplete ratio of user data. Hence the
source detection in graphs with incomplete nodes is formal-
ized as:

ŝ = f(G′(T, U ′, P ′)), (4)

Discussion Compared to source detection for scenario
with complete nodes, the missing information from incom-
plete nodes may mistakenly be considered as valid data from
normal nodes, leading to significant feature inaccuracies.
Hence, distinguishing incomplete nodes is necessary. Ad-
ditionally, the user heterogeneity and class imbalance prob-
lem in source detection hinder the effective fitting of mod-
els. Therefore, focusing on the nodes with greater infor-
mation transmission capacity and differentiating between
source and non-source sets becomes imperative.

Method
In this section, we describe our proposed framework, i.e.,
Source Detection in Graphs with Incomplete Nodes via
Positional Encoding and Attentive Fusion (GIN-SD). The
framework consists of two primary components: the Posi-
tional Embedding Module (PEM) and the Attentive Fusion
Module (AFM), as illustrated in Fig. 2.

Given the network snapshot G′ as input, PEM embeds
position-based user encodings, and then AFM learns node
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representations through a self-attention mechanism. Finally,
the loss is computed using a class balancing mechanism.

Positional Embedding Module (PEM)
Several different perspectives of features, including user
states, propagation information, and positional information,
are embedded into the node feature vectors.

User State Information (X1
i ) When θ% of users in the

network receive the rumor information and are influenced by
it, i.e., |G+| ≥ θ%∗n, we obtain the network snapshot G′, in
which the user states can be categorized into three sets: G+,
users influenced by the rumor; G−, users not influenced or
not receiving the rumor; and Ψ, users with lost information.
Therefore, for user vi, the state feature X1

i can be determined
by the following rules:

X1
i =

{
+1, vi ∈ G+

−1, vi ∈ G−
0, vi ∈ Ψ.

(5)

The Diffusion Information (X2
i ) Social platforms like

Facebook or Twitter include timestamps when users receive
messages, which is a crucial factor in source detection.
Therefore, for user vi, in conjunction with the timestamp ti,
we define the diffusion information X2

i as follows:

X2
i =

{
ti, vi ∈ G+

−1, otherwise. (6)

The Positional Information (X3
i ) Under the premise of

node information loss, the inter-nodal positional relation-
ships play a pivotal role in facilitating message propagation
at the global level. To address this, leveraging the general-
ization of Laplacian positional encodings, we utilize it as
the positional information embedded in the user feature X3

i
to distinguish incomplete nodes.

In contrast to computing the Laplacian PEs for the entire
network, we focus on calculating the Laplacian PEs for the
infected subgraph G′

+. Given a network snapshot G′, if user
vi did not receive the rumor or is not persuaded, the extrac-
tion process for the infected subgraph G′

+ is represented as:

A+ = Ji,n · A · JT
i,n, (7)

where An×n is the adjacency matrix of the network snap-
shot G′, and A(n−1)×(n−1)

+ is the adjacency matrix of the
infected subgraph after removing user vi, serving as the ba-
sis for subsequent removals. Ji,n denotes the n-dimensional
identity matrix with its i-th row removed. For example, if the
user with id-2 did not receive the rumor or not be persuaded,

J(n−1)×n
2,n =


1 0 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 . (8)

It is essential to note that the users with unclear states in
the Ψ set are retained, meaning G+ ⊂ G′

+, Ψ ⊂ G′
+, and

G− ∩G′
+ = ∅.

After abstracting the infected subgraph, the symmetri-
cally normalized Laplacian matrix is defined as:

Lsym
+ = I − D−1/2

+ A+D−1/2
+ , (9)

where D+ is the degree matrix of infected subgraph. Subse-
quently, factorization is performed on matrix Lsym

+ :

△Lsym
+

= ΓTλΓ, (10)

Γ and λ represent the eigenvector and eigenvalue matrices of
Lsym
+ , respectively. We select k smallest non-trivial eigen-

vectors as Γi for user vi’s positional information (k ≪ n).
In summary, the positional encoding X3

i for user vi can be
represented as:

X3
i =

{
Γi, vi ∈ G′

+(V,E)
−1, otherwise. (11)

As the proposed framework follows a heuristic approach,
the aforementioned user features can be further enriched.
For instance, given a infected user vi, in order to aug-
ment the discriminative capabilities, X1

i may be defined as
X1
i = (+1,−1). Furthermore, X2

i can be extended to encom-
pass both the timestamp of vi and the unique identifier (id)
of the information propagator, denoted as X2

i = (ti, idi),
where idi represents the id of the individual responsible for
disseminating the information to user vi. It is imperative to
emphasize that such an extensible feature engineering pro-
cess fosters the exploration of richer information representa-
tion, thereby potentially enhancing the overall efficacy and
robustness of the model in source detection tasks.

Finally, a concatenation procedure is employed to amal-
gamate the diverse user feature components, culminating in
the derivation of the ultimate user embedding vector:

Xi =
[
∥3x=1Xx

i

]
. (12)

Attentive Fusion Module (AFM)
Considering the efficiency of information transmission
varies among nodes, we focus on the nodes with greater
information transmission capacity. Specifically, considering
user vi and its neighbor vj , the attention coefficient eij at the
l-th layer of model is formulated as:

eij = a⃗LReLU
(

W(l)
(

X(l)
i ,X(l)

j

))
, (13)

where X(l) ∈ Rlw×n is the feature representation of users
and X(0) = X; lw signifies the number of elements in the
node feature vector. W(l) ∈ Rl′w×lw represents a trainable
parameter matrix, LReLU(·) is the activation function and
a⃗ ∈ R2l′w is a weight vector.

Following the definition of eij , the weight of user vj con-
cerning all neighbors of vi is computed as:

αij =
exp

(
a⃗T LReLU (W [Xi∥Xj ])

)∑
vk∈N(vi)

exp (⃗aT LReLU (W [Xi∥Xk]))
, (14)

where N(vi) denotes the neighbors of node vi; ∥ represents
the vector concatenation operation; and (·)T symbolizes the
transposition. The final representation output for user vi is:

X′
i =

∑
vj∈N(vi)

αijWXj . (15)
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In pursuit of augmenting the expressive power of the dif-
fusion model and promoting the stability of the self-attention
learning process, we deploy K distinct and independent at-
tention mechanisms, dedicated to capturing diverse aspects
of information propagation. Subsequently, these K mech-
anisms are concatenated to form a comprehensive and en-
riched representation:

X′′
i = ∥Kk=1σ

(
X′k
i

)
. (16)

To achieve dimension alignment, we perform a mean
pooling operation on the individual attention channels at the
ultimate layer of the model:

X′′′
i = σ

(
1

K

K∑
k=1

X′k
i

)
. (17)

This operation consolidates the diverse learned information
from the attention mechanisms, harmonizing their represen-
tations and yielding a cohesive and coherent output for each
node. Finally, the model yields an (n× 2)-dimensional ma-
trix, wherein each row’s two elements undergo a softmax(·)
transformation:

S(z⃗)i =
ezi∑
j e

zj
, z⃗ = X′′′

i . (18)

It is important to emphasize that our focus is not on devis-
ing a novel attention mechanism, but rather on introducing
an innovative attentive fusion module. This module aims to
allocate attention coefficients to nodes dynamically, encom-
passing those that are incomplete, contingent on their infor-
mation transmission capacity. This constitutes our primary
contributions in this context.

Loss Function and Training
To rectify the class imbalance problem and ensure equitable
attention across all sets, we propose a class-balancing mech-
anism. For the source set s and the non-source set V − s, we
introduce a fixed constant ξ:

ξ =
|s|

n− |s|
, (19)

where n and |s| represent the number of elements in sets V
and s respectively. The constant ξ equalizes the weights of
all samples and align their mathematical expectations to 1,
thereby promoting unbiased and comprehensive learning.

Through integrating this class-balancing mechanism into
our model, we construct a novel loss function that is formu-
lated as follows:

Loss =
∑
vi∈s

Li + ξ
∑

vj∈(V−s)

Lj + λ∥w∥2, (20)

where L represents the cross-entropy loss; for sample x and
its label y, L(x, y) = − log(x)× y. The last term in Eq. (20)
denotes the L2 regularization.

The integrated GIN-SD, incorporating PEM and AFM,
focuses on distinguishing incomplete nodes while priori-
tizing nodes with higher information transmission capacity.
Additionally, the class balancing mechanism further ensures
differential treatment of source/non-source sets. This syn-
ergy enables effective information extraction and efficient
source detection.

Experiments
Experimental Setting
Implementation Given the independent nature of each
user’s social behavior and the short-term property of ru-
mors, we randomly select 5% of the users as sources to
construct incomplete graph about rumor propagation. Then,
we employ the heterogeneous Independent Cascade (IC)
model to simulate rumor dissemination, where each user’s
forwarding probability p is drawn from a uniform distribu-
tion U(0.1, 0.5). The propagation is halted when 30% of the
users are influenced by the rumor, and the network snapshot
is obtained with proportion of δ incomplete nodes. The train-
ing and testing set have a sample ratio of 8 : 2 and the learn-
ing rate is set to 10−3. The number of attention layer equals
to 3. For small-scale networks (G1-G2), the number of at-
tention heads is set to 4, and the number of neurons in the
hidden layer is 800. For medium-scale networks (G3-G7),
the corresponding numbers are set to 2 and 500 respectively
for the consideration computational constraints. As to the
large-scale network (G8), the number of attention heads is
assigned to 1, and the number of neurons in the hidden layer
equals to 500. All experiments are conducted on a worksta-
tion with a single NVIDIA RTX 3090Ti GPU.

Datasets Eight real-world datasets of different scales are
utilized to evaluate the performance of each method, in-
cluding Football (Girvan and Newman 2002), Jazz (Gleiser
and Danon 2003), Facebook (Leskovec and Mcauley
2012), Twitch-ES (Rozemberczki, Allen, and Sarkar 2021),
LastFM (Rozemberczki and Sarkar 2020), Enron (Klimt
and Yang 2004), Github (Rozemberczki, Allen, and Sarkar
2021) and DBLP (Yang and Leskovec 2012). The specific
characteristics are presented in Table 1.

Evaluation Metrics The widely used Accuracy (Acc) and
F-Score (Wang et al. 2017) are selected as the fundamen-
tal evaluation metrics to assess the efficacy of the methods.
Acc quantifies the proportion of correctly classified samples
among the entire sample population, while F-Score com-
prises two components: Precision and Recall. Precision
quantifies the proportion of true sources within ŝ, denoted as
|ŝ∩ s| / |ŝ|, while Recall gauges the proportion of detected
sources in s, represented as |ŝ ∩ s| / |s|. These metrics pro-
vide a comprehensive and rigorous assessment of the meth-
ods’ performance in capturing the veracity and completeness
of source detection results.

Network |V | |E| ⟨k⟩
G1 Football 115 613 10.66
G2 Jazz 198 2742 27.70
G3 Facebook 4039 88234 43.69
G4 Twitch-ES 4648 59382 25.55
G5 LastFM 7624 27806 7.29
G6 Enron 36692 183831 10.02
G7 Github 37700 289003 15.33
G8 DBLP 317080 1049866 6.62

Table 1: Characteristics of the considered datasets.
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Football Jazz Facebook Twitch-ES Github DBLP
Methods Acc F-Score Acc F-Score Acc F-Score Acc F-Score Acc F-Score Acc F-Score
LPSI 0.812 0.323 0.794 0.302 0.811 0.014 0.795 0.008 0.783 0.002 0.755 0
EPA 0.783 0.303 0.806 0.295 0.798 0.010 0.783 0.002 0.792 0.001 0.763 0
GCNSI 0.831 0.284 0.829 0.271 0.835 0.004 0.820 0.003 0.811 0.001 0.807 0
SIGN 0.809 0.513 0.794 0.495 0.819 0.452 0.790 0.443 0.775 0.373 0.768 0.248
GCSSI 0.779 0.495 0.786 0.447 0.807 0.423 0.797 0.427 0.783 0.386 0.771 0.265
ResGCN 0.824 0.502 0.795 0.475 0.816 0.440 0.823 0.429 0.790 0.379 0.785 0.251
IVGD 0.897 0.729 0.904 0.684 0.882 0.661 0.837 0.625 0.819 0.580 0.804 0.533
SL-VAE 0.887 0.716 0.846 0.672 0.865 0.651 0.827 0.618 0.803 0.542 0.810 0.516
GIN-SD 0.956 0.839 0.934 0.715 0.968 0.761 0.970 0.764 0.912 0.694 0.895 0.690

Table 2: Source detection performance in graphs with 10% incomplete nodes. The best results are highlighted in bold.

Football Jazz LastFM Enron Github DBLP
Methods Acc F-Score Acc F-Score Acc F-Score Acc F-Score Acc F-Score Acc F-Score
LPSI 0.798 0.206 0.775 0.220 0.792 0.006 0.773 0.001 0.751 0 0.733 0
EPA 0.771 0.195 0.759 0.216 0.768 0.007 0.752 0 0.738 0 0.718 0
GCNSI 0.782 0.157 0.779 0.176 0.780 0.001 0.761 0 0.750 0 0.746 0
SIGN 0.795 0.282 0.784 0.253 0.802 0.231 0.773 0.217 0.762 0.205 0.763 0.184
GCSSI 0.772 0.259 0.785 0.236 0.795 0.210 0.781 0.201 0.778 0.194 0.764 0.150
ResGCN 0.816 0.264 0.782 0.241 0.804 0.227 0.814 0.212 0.783 0.215 0.781 0.164
IVGD 0.872 0.506 0.859 0.496 0.867 0.509 0.820 0.426 0.809 0.424 0.780 0.413
SL-VAE 0.874 0.492 0.839 0.501 0.846 0.516 0.813 0.447 0.791 0.415 0.785 0.398
GIN-SD 0.897 0.721 0.904 0.635 0.914 0.657 0.921 0.694 0.854 0.605 0.846 0.613

Table 3: Source detection performance in graphs with 20% incomplete nodes. The best results are highlighted in bold.

Baselines Eight recently proposed representative source
detection methods are considered as baselines, including
LPSI (Wang et al. 2017) and EPA (Ali et al. 2019) based on
source centrality theory; GCNSI (Dong et al. 2019), SIGN
(Li et al. 2021), GCSSI (Dong et al. 2022) and ResGCN
(Shah et al. 2020) that consider user states; IVGD (Wang,
Jiang, and Zhao 2022) and SL-VAE (Ling et al. 2022) which
incorporate user and propagation information.

Comparison with State-of-the-art Methods
To validate the effectiveness of GIN-SD, we conduct com-
prehensive comparisons with benchmark methods on eight
datasets (G1-G8) for two scenarios with δ being equivalent
to 0.1 and 0.2. The results are summarized as in Table 2 and
Table 3 respectively. Through the experimental analysis, we
have derived several key observations:

Firstly, all methods exhibit commendable Acc perfor-
mance, whereas the F-Score appears relatively lower. This
disparity stems from the class imbalance issue, where non-
source samples significantly outnumber the source samples.
In other words, the larger the difference between Acc and F-
Score, the more the model is affected by the class imbalance
problem. Notably, three benchmark methods (LPSI, EPA,
and GCNSI) exhibit relatively typical performance charac-
teristics. Furthermore, models that incorporate the learning
mechanism of information diffusion processes outperform
their counterparts, as evidenced by the significantly superior
performance of the latter three methods compared to the ini-
tial six. Additionally, the influence of user information loss
is evident, as all benchmark methods manifest a substantial

decline in performance compared to their optimal results.
This decline stems from the challenge posed by incomplete
nodes, hindering the simulations’ convergence and yielding
errors in the model’s predictions. In conclusion, among all
methods, GIN-SD emerges as the optimal performer. No-
tably, in contrast to models that overlook the propagation
process, GIN-SD exhibits an average improvement of 32%,
and the enhancement ranges from 5% to 18% based on the
models consider the propagation process. This substantial
improvement is attributed to the salient enhancements intro-
duced by GIN-SD, including: 1) leveraging positional infor-
mation to distinguish incomplete nodes, 2) employing atten-
tion mechanism to enable the model’s targeted focus on dis-
tinct nodes, and 3) introducing a class-balancing mechanism
to tackle the class imbalance problem.

Performance on Early Rumor Sources Detection
Due to the amplified and persistent harm incurred by the
rumors propagation in society, it is of vital significance to
identify the sources at the early stages of rumor dissemina-
tion to curtail further spreading. To evaluate the efficacy of
distinct methodologies in the context of early rumor sources
detection, we initial the source detection procedure when the
rumor’s influence extends to 10% to 30% of users, with an
increment of 5%. The incomplete node ratio δ is set to 0.1.
The results are presented in Fig. 3.

The findings reveal a discernible trend: as the scale of ru-
mors expands, all methods exhibit a decrease in source de-
tection precision. This underscores the imperative of timely
source detection during the early phases of rumor propa-
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Figure 3: The performance of different methods in early ru-
mor sources detection.

gation, considering both the potential societal ramifications
and the inherent challenges in identifying sources. More-
over, across diverse scenarios, GIN-SD consistently attains
the highest level of source detection precision, serving as
empirical evidence supporting the efficacy and rationale of
GIN-SD’s class-balancing mechanism, as well as its incor-
poration of PEM and AFM modules.

Impact of Incomplete Ratio
To further explore the effects of user information loss on
source detection, we systematically vary the incomplete
node ratio, i.e., δ in the range of 0 to 0.25 with a step size
0.05. The experimental results are depicted as in Fig. 4.

The results reveal a pronounced degradation in source de-
tection accuracy for all methods as incomplete nodes inten-
sifies. This deterioration is primarily attributed to the pertur-
bation caused by user information loss, impeding the effec-
tive convergence of the models. Furthermore, the accuracy
of the GCSSI method, which does not consider the propa-
gation process, is notably lower than other considered meth-
ods. In contrast, GIN-SD exhibits a remarkable superiority
which amplifies with the increase of δ, thus substantiating
its high applicability and resilience.

Ablation Study and Analysis
To validate the necessity of each module in GIN-SD, we
conduct ablation studies targeting its components and sum-
marize the results in Table 4. The variants are designed as:

• GIN-SD w/o P utilizes a zero vector to replace the user’s
positional encodings, i.e., X3

i = [0]n×k in Eq. (11).
• GIN-SD w/ P’ calculates the proportion of correctly

identified nodes among those that are sources and have
missing information, i.e., (ŝ ∩Ψ) / (s ∩Ψ).

• GIN-SD w/o A removes the attention mechanism, i.e.,
X′
i =

∑
vj∈N(vi)

WXj in Eq. (15).

Facebook LastFM Github
Methods Acc F-Score Acc F-Score Acc F-Score
w/o P 0.823 0.413 0.815 0.404 0.798 0.339
w/ P’ 0.426 - 0.415 - 0.397 -
w/o A 0.942 0.743 0.923 0.705 0.908 0.651
w/ AS 0.801 0.223 0.782 0.210 0.769 0.179
w/ AL 0.907 0.716 0.891 0.683 0.854 0.617
w/o B 0.825 0.223 0.817 0.205 0.809 0.198
GIN-SD 0.968 0.761 0.950 0.726 0.912 0.694

Table 4: The performance of different variants for GIN-SD.

Figure 4: The impact of varying degrees of user information
loss on source detection accuracy.

• GIN-SD w/ AS assigns higher attention weights to nodes
with smaller degrees, i.e., αij ∝ 1/|N(vj)| in Eq. (14).

• GIN-SD w/ AL assigns higher attention weights to nodes
with larger degrees, i.e., αij ∝ |N(vj)| in Eq. (14).

• GIN-SD w/o B removes the class-balancing mechanism,
i.e., ξ = 1 in Eq. (20).

Positional Embedding We validate the importance of po-
sitional embedding through evaluating the variants GIN-SD
w/o P and GIN-SD w/ P’; according to the experimental out-
comes, the impact of incomplete nodes on GIN-SD w/o P is
prominently pronounced, resulting in discernible deviations
in the model’s accuracy. Moreover, the performance of GIN-
SD w/ P’ in accurately discerning incomplete source nodes
to a certain degree underscores the efficacy of incorporating
positional information.
Attentive Fusion We investigate the significance of at-
tentive fusion by comparing GIN-SD with GIN-SD w/o A,
GIN-SD w/ AS and GIN-SD w/ AL; based on their perfor-
mance, GIN-SD w/ AS performs the worst due to an exces-
sive focus on nodes with small degrees and limited infor-
mation transmission capabilities. While GIN-SD w/ AL ex-
hibits a higher proficiency, however, the presence of bridge
nodes with strong information transmission capacity but not
necessarily high degrees (Beers et al. 2023) limits its per-
formance. Despite the exceptional performance of GIN-SD
w/o A within the variant range, its uniform attention co-
efficients prevent it from reaching the superior capabilities
demonstrated by the baseline GIN-SD framework.
Class-balancing Mechanism The importance of class-
balancing mechanism is validated through the relatively in-
ferior performance of GIN-SD w/o B amongst the entire ar-
ray of variants, which underscores the critical role played by
the class balance mechanism in the source detection task.

Conclusion
This paper poses a new challenge for rumor source detec-
tion in graphs with incomplete nodes and has proposed a
novel framework, GIN-SD, to tackle this problem. The key
idea involves distinguishing incomplete nodes by leveraging
position-based encoding of user features, followed by adap-
tive allocation of attention coefficients using a self-attention
mechanism based on information transmission capacity. Ad-
ditionally, a class balancing mechanism is devised to address
prediction bias in the model. Extensive experimental results
validate the effectiveness and superiority of our solution.
We hope that this work, which introduces a new dimension
to the field, will inspire further researches into robust deep
learning models for source detection.
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