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Abstract

Biological sequence nearest neighbor search plays a fun-
damental role in bioinformatics. To alleviate the pain of
quadratic complexity for conventional distance computa-
tion, neural distance embeddings, which project sequences
into geometric space, have been recognized as a promising
paradigm. To maintain the distance order between sequences,
these models all deploy triplet loss and use intuitive methods
to select a subset of triplets for training from a vast selection
space. However, we observed that such training often enables
models to distinguish only a fraction of distance orders, leav-
ing others unrecognized. Moreover, naively selecting more
triplets for training under the state-of-the-art network not only
adds costs but also hampers model performance.
In this paper, we introduce Bio-kNN: a kNN search frame-
work for biological sequences. It includes a systematic triplet
selection method and a multi-head network, enhancing the
discernment of all distance orders without increasing training
expenses. Initially, we propose a clustering-based approach
to partition all triplets into several clusters with similar prop-
erties, and then select triplets from these clusters using an
innovative strategy. Meanwhile, we noticed that simultane-
ously training different types of triplets in the same network
cannot achieve the expected performance, thus we propose
a multi-head network to tackle this. Our network employs
a convolutional neural network (CNN) to extract local fea-
tures shared by all clusters, and then learns a multi-layer per-
ception (MLP) head for each cluster separately. Besides, we
treat CNN as a special head, thereby integrating crucial lo-
cal features which are neglected in previous models into our
model for similarity recognition. Extensive experiments show
that our Bio-kNN significantly outperforms the state-of-the-
art methods on two large-scale datasets without increasing the
training cost.

Introduction
Biological sequence nearest neighbor search plays a fun-
damental role in bioinformatics research and serves as the
cornerstone for numerous tasks, including gene predic-
tion (Chothia and Lesk 1986), homology analysis (Sander
and Schneider 1991), sequence clustering (Steinegger and
Söding 2018; Li and Godzik 2021), etc. Traditional methods
for measuring global or local similarity between sequences
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rely on alignment based on dynamic programming. In this
paper, we focus on the global similarity between sequences,
evaluated by the widely used Needleman-Wunsch (NW) al-
gorithm (Needleman and Wunsch 1970). While the NW al-
gorithm is proficient in calculating sequence similarity with
precision, its inherent quadratic complexity poses signifi-
cant challenges for rapid analysis, particularly when dealing
with large-scale datasets comprising sequences that extend
to hundreds or even thousands of amino acids or nucleotides.

In recent years, embedding-based approaches have
emerged as a promising paradigm for expediting sequence
similarity analysis. These approaches involve projecting se-
quences into a geometric embedding space through an em-
bedding function, such that the distance between sequences
can be approximated by the distance in the embedding
space, which offers a computationally efficient alternative.
These approaches can be broadly divided into two categories
based on the core idea of the embedding function: rule-based
and neural network-based. Rule-based approaches (Sims
et al. 2009; Gao and Qi 2007; Ulitsky et al. 2006; Haubold
et al. 2009; Leimeister and Morgenstern 2014) often rely
on some predefined encoding rules. Several studies (Corso
et al. 2021; Chen et al. 2022) have indicated that, in multiple
tasks, these approaches exhibit inferior performance com-
pared to neural network-based ones. Given this context, we
will not delve into rule-based approaches, and instead con-
centrate on exploring neural network-based approaches.

Existing research on neural network-based meth-
ods (Zheng et al. 2019; Chen et al. 2022; Zhang, Yuan, and
Indyk 2019; Dai et al. 2020; Corso et al. 2021) primarily
focused on various components such as encoding models
and loss functions. These components are tailored to the
task for which the learned embeddings are used. Notably,
certain approaches (Zhang, Yuan, and Indyk 2019; Dai et al.
2020) focus on the learning objective aimed at preserving
distance orders within the embedding space to facilitate
kNN searches. To achieve this goal, these approaches
employ triplet loss (Weinberger and Saul 2009; Hermans,
Beyer, and Leibe 2017) and use intuitive methods to select
triplets in the form (Sacr, Spos, Sneg) for training, in which
Sacr is the anchor sequence, Spos is the positive sequence
that has smaller distance to Sacr than the negative sequence
Sneg . However, we found that the models trained by these
methods exhibit proficiency in distance order recognition
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Figure 1: The triplet selection methods used by
GRU (Zhang, Yuan, and Indyk 2019) and CNNED (Dai
et al. 2020). For GRU, the Top-N closest to the anchor
is positive and the others are negative; for CNNED, two
sequences are randomly selected from the Top-K closest to
the anchor, the closer is positive, and the farther is negative.
In this example we set N equal to 2 and K equal to 4.

for only a limited subset of triplets, rather than the entire
set. As illustrated in Figure 1, while certain order relations
may be accurately identified after encoding, overlooked
relations during training can substantially compromise the
results. Such complications stem from that each sequence
lacks a definitive category label, rendering existing tech-
niques ineffective in this context. It might be hypothesized
that increasing the number of triplets for training could
ameliorate this issue. However, our assessments within a
state-of-the-art network indicate that such problem has not
been alleviated while suffering additional training expanses.

In this paper, we introduce Bio-kNN, a biological se-
quence kNN search framework. Bio-kNN aims to notably
improve the recognition accuracy of distance order dis-
tributed throughout the whole space without augmenting
training expenses. The core idea of Bio-kNN is to par-
tition all triplets into several clusters based on certain
properties and learn a feature extraction network for each
cluster. Specifically, Bio-kNN features two main modules:
(1)Triplet selection method. A notable limitation of pre-
vious models is that only a subset of the triplets is consid-
ered during training. In this module, we consider all possi-
ble combinations of triplets. We partition the selection space
into small cells and merge cells with similar distance distri-
butions into several clusters. We then employ an innovative
strategy to select training triplets from these clusters with-

out external samples. (2)Multi-head network. We noticed
that merely adding more triplets in the SOTA network does
not improve the performance, we thus propose a multi-head
network to address it. Our network uses CNN as the back-
bone to extract local features, and learns a multi-layer per-
ception head for each cluster to extract global features. Fur-
thermore, we integrate previously overlooked local features
derived from the CNN, which are crucial in discernment.

To summarize, we made four contributions in this paper.

1. We consider the entire selection space instead of subsets,
and propose a clustering-based triplet selection method.

2. We notice that the performance of SOTA network de-
grades when simultaneously training different types of
triplets. A multi-head network is designed to alleviate it.

3. We treat CNN as a special head and integrate crucial local
features into our model for sequence similarity.

4. We conduct extensive experiments on two large-scale
datasets, and the results show that our method signifi-
cantly outperforms the state-of-the-art methods.

Related Work
Rule-Based Approaches. Numerous rule-based approaches
have been proposed over the past few decades, which can
be broadly classified into two categories. The first cate-
gory typically utilizes word frequency statistics with a pre-
defined length (Kariin and Burge 1995) or the information
content of word frequency distribution (Sims et al. 2009;
Gao and Qi 2007) as features to characterize sequence sim-
ilarity. On the other hand, the second category of meth-
ods is based on the concept of sub-strings (Ulitsky et al.
2006; Haubold et al. 2009; Leimeister and Morgenstern
2014). However, it should be noted that all these approaches
are data-independent, and their distance measures rely on
heuristic rules. Several studies have shown that these ap-
proaches exhibit weaker performance compared to neural
network-based approaches across various tasks.

Neural Network-Based Approaches. Notable efforts in
neural networks have been made to approximate distances
for biological sequences in recent years. SENSE (Zheng
et al. 2019) is the first attempt to employ neural networks
for comparison-free sequence analysis by utilizing a con-
volutional neural network. However, SENSE is restricted to
handling sequences of the same length. To address it, As-
Mac (Chen et al. 2022) was proposed, which employs an ap-
proximate string matching algorithm to extract relevant fea-
tures through neural network. Regrettably, the performance
of this approach degrades when dealing with protein se-
quences, primarily due to the massive search space involved.

A research domain closely aligned with our work fo-
cuses on edit distance embedding. The distinction lies in
the NW algorithm’s requirement to normalize the edit dis-
tance by a dynamically varying length, thereby amplifying
the complexity of discerning similarities. CGK (Ostrovsky
and Rabani 2007) embeds the edit distance into the ham-
ming space with a distortion of 2O(

√
log l log log l), however,

this algorithm is excessively intricate for practical applica-
tion. Zhang et al. (Zhang, Yuan, and Indyk 2019) propose a
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Figure 2: Motivating example. For the convenience of observation, the bottom subfigures are the results after comparing with
the model trained by randomly selecting triplets, i.e., for each Sacr, two sequences are randomly selected from the training set,
the closer to Sacr is Spos, and the farther is Sneg .

two-layer GRU structure to encode sequences, dividing the
training process into three stages and utilizing three differ-
ent loss functions. Nonetheless, the embedding dimension
generated by this method is relatively high, resulting in sub-
stantial memory consumption. CNNED (Dai et al. 2020) dis-
covers that an untrained random CNN performs comparable
to GRU models, leading to the belief that the CNN is more
suitable for the edit distance embedding than RNN-based
models. NeuroSEED (Corso et al. 2021) explores the poten-
tial of employing global and local transformers to encode
biological sequences, and experimental results also affirm
that convolutional models surpass feedforward and recurrent
models for biological sequence edit distance tasks. Further-
more, NeuroSEED proposes that the hyperbolic space can
better capture the data dependencies among biological se-
quences from the perspective of embedded geometry.

Motivating Example
In this section, we use an example to reveal the limitations of
existing methods. We first model the entire selection space
as an upper triangular area. Then we visualize the distribu-
tion of training triplets and the performance of the trained
model, thus we can easily observe the relationship between
them. Example details are as follows.

Example Setting
We first randomly select 3000 sequences from UniProtKB1

and use 1500 of them as the training set, while the remain-
ing 1500 as the test set. Then, we employ the state-of-the-
art pipeline proposed by CNNED (Dai et al. 2020) as the
common training framework, and replace the triplet selec-
tion method with five other methods respectively during
training, including two methods adopted by previous mod-
els: the methods used by CNNED (Dai et al. 2020) and
GRU (Zhang, Yuan, and Indyk 2019), and three methods de-
signed for comparison: Method-3, Method-4, and Method-5.

In Figure 2, we plot the distribution of triplets selected
by these five methods on the training set (top subfigures)
and the distance order recognition results on the test set
(bottom subfigures) respectively. The horizontal and verti-
cal coordinates (i, j) of each subfigure in Figure 2 are all

1https://www.uniprot.org/

determined by the triplet (Sacr, Spos, Sneg). For each Sacr,
we first sort other sequences according to the distance be-
tween them and Sacr from small to large to form a list, and
the indices i and j of Spos and Sneg in the list are used as
the abscissa and ordinate, respectively. The difference be-
tween the top and the bottom subfigures is the triplets used
for visualization: (1) We plot top subfigures according to the
triplets obtained in the training set by the five triplet se-
lection methods. The depth of the color indicates the fre-
quency of the corresponding triplet is selected. (2) For the
bottom subfigures, the triplets are all triplets combinations
in the test set, and these subfigures are used to visualize the
results of distance order recognition in the test set. We iter-
ated all triplet combinations in the test set to check whether
the distance between Sacr and Spos is smaller than the dis-
tance between Sacr and Sneg after encoding by model f ,
i.e., diste(f(Sacr), f(Spos)) < diste(f(Sacr), f(Sneg)),
the more frequency of the match, the more vivid the color.

Phenomenon
From Figure 2, we can observe three following phenomena,
including one expected and two inconsistent with the expec-
tation but interesting:

1. Expected. Figure 2(a)-(d) illustrate that sequence dis-
tance order recognition in the test set is highly correlated
with the training triplets. This phenomenon is expected,
as the more triplets the model learns for a region in the
training set, the better it helps distinguish the order of
that region in the test set. However, we can clearly ob-
serve that the model trained by these methods can only
recognize the order of a small part of the whole area.
This observation shows that the model is very limited in
identifying crucial regions that lie beyond its training re-
gion(e.g., let the model in Figure 2(a) recognize the or-
der of the region determined by Method-3). Such limita-
tion greatly affects the effectiveness of the model.

2. UnExpected. Inspired by phenomenon 1, an intuitive
idea is to select more training regions. We thus trained
Method-5, which simultaneously trains the regions se-
lected by Method-1, Method-3, and Method-4. However,
the recognition results are not consistent with our expec-
tation, as shown in the Figure 2(e), although certain re-
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gions have been trained, the corresponding regions in the
test set do not have better distance order recognition.

3. UnExpected. These figures also illustrate that the model
has a radiation effect on regions outside the training re-
gion, i.e. even if some regions are not selected, the model
is also better able to recognize the order of this region.
Furthermore, the radiation region produced by the train-
ing region in different positions varies greatly.

Method
To address the issues arising in phenomenon 2, we propose
Bio-kNN, which includes a triplet selection method and a
multi-head network. Its framework is shown in Figure 3.

Triplet Selection Method
Partition Selection Space. As shown in Figure 3(b), we par-
tition the entire selection space formed by the training set
into small cells. Specifically, we use the same setting as that
in the motivating example to model the entire selection space
as an upper triangular area, and the length of two legs of the
triangle is the number of sequences in the training set. In this
setting, for each Sacr, each point in the triangle represents a
triplet, where the abscissa represents the index of the Spos,
and the ordinate represents the index of the Sneg . Then,
we divide the horizontal and vertical axes into B groups
respectively based on an equal interval δ, where the hori-
zontal axis is divided into [[x0, x1), [x1, x2), ..., [xB−1, xB)]
and the vertical is [[y0, y1), [y1, y2), ..., [yB−1, yB)]. Thus
the upper triangular area is divided into

∑B
i=1 i small cells,

where most of the cells are grids and few are triangles. Then,
the coordinates of each cell can be described as (Xi, Yj),
where Xi means [xi, xi+1), and Yj means [yj , yj+1).

Distribution Statistics in Cell. For each cell after parti-
tioning, we use the interval of the coordinates to count the
horizontal and vertical distributions. This step is inspired by
phenomenon 3 in the motivating example, which shows that
some properties between adjacent regions may be similar.
In this step, we try to use the intuitive distance distribu-
tion as this property. It is worth noting that the possibility
of other properties is not ruled out, which can be studied in
the future. Next, we use an example to illustrate the details
of our approach. Suppose there is a cell with coordinates
(X500,600, Y700,800), we use each sequence in the training
set as Sacr in turn. For each Sacr, we sort other sequences in
the training set according to the NW distance between them
and Sacr from small to large to form a list l. We then count
the horizontal distance distribution between all sequences
in the list l[500 : 600] and Sacr for X500,600, while count
l[700 : 800] for Y700,800. In this way, the coordinates of each
cell can be further described as (Xi, Yj), where Xi means
count([xi, xi+1)), and Yj means count([yj , yj+1)). Subse-
quent cell coordinates will use this definition by default.

Distance Measurement between Cells. How to measure
the distance between cells with distributions as coordinates
becomes a new problem. Currently, there are many functions
to measure the distance between two distributions, such as
Kullback–Leibler divergence (Kullback and Leibler 1951),
Jensen-Shannon divergence (Fuglede and Topsøe 2004),
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Figure 3: The Framework of Bio-kNN.

Earth mover’s distance (EMD) (Rubner, Tomasi, and Guibas
2000), etc. However, we noticed that when two distributions
do not overlap, the KL divergence is meaningless, and the
JS divergence is a constant, so neither of these functions is
suitable for measuring the distance between cells in our ap-
plication scenario. Considering that EMD as a metric sat-
isfies non-negativity, symmetry, and triangle inequality, we
define the distance between two cells on the basis of EMD.
Specifically, given any two cells p and q, their coordinates
are (Xpi

, Ypj
) and (Xqi , Yqj ) respectively, then we define

the distance dcell(p, q) between p and q is:

dcell(p, q) = EMD(Xpi
, Xqi) + EMD(Ypj

, Yqj ) (1)

We prove that dcell(p, q) between cells is still a metric.
Theorem 1 The distance dcell computed by Equation 1 is a
metric. Given three any cells p, q, and r, we have:
(1) Non-negativity. If p != q, then dcell(p, q) > 0.
(2) Symmetry. dcell(p, q) = dcell(p, q).
(3) Triangle inequality. dcell(p, r)≤ dcell(p, q) + dcell(q, r)

Proof 1 According to the non-negativity and symmetry of
the EMD, it can be easily obtained that dcell also satisfies
the non-negativity and symmetry, so we will only prove the
triangle inequality of dcell.

dcell(p, r) = EMD(Xpi
, Xri) + EMD(Ypj

, Yrj )

≤ (EMD(Xpi , Xqi) + EMD(Xqi , Xri))

+ (EMD(Ypj
, Yqj ) + EMD(Yqj , Yrj ))

= (EMD(Xpi
, Xqi) + EMD(Ypj

, Yqj )

+ (EMD(Xqi , Xri) + EMD(Yqj , Yrj ))

= dcell(p, q) + dcell(q, r)

Cell Clustering. Our last step is to merge those cells that
have a similar distance distribution. We achieve this using
unsupervised clustering, which is naturally suited to distin-
guishing similar items such that distributions vary widely
across clusters, while the distribution of cells within a single
cluster is very close. In this paper, we do not propose a new
clustering algorithm, but directly deploy existing cluster-
ing algorithms. In following, we evaluated the performance
of commonly used clustering algorithms such as k-means
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(Forgy 1965), agglomerative(Murtagh and Contreras 2012),
and spectral clustering(von Luxburg 2007). Subsequent ex-
periments will show more detailed results.

Selection Strategy. Suppose there are m training se-
quences and n clusters are obtained based on the above
method. An intuitive selection strategy is that for each Sacr,
We randomly select one point from each of the n clusters at
each epoch, and the abscissa of these n points is the index
of the Spos, the ordinate is the index of the Sneg . However,
this strategy needs to select m∗n triplets for training at each
epoch. Clearly, the training cost of this strategy increases lin-
early with m and n, and it will bring burden to the expansion
of the dataset when n have a large value.

We employ a novel selection strategy that can achieve
good performance without adding more cost. Specifically,
before each epoch of training, we first randomly shuffle all
anchor sequences. Then for each batch, we divide all anchor
sequences in the current batch evenly into n lists, and assign
the n clusters to the n lists as candidate clusters respectively.
The strategy at this time is that for each Sacr, we only ran-
domly select a point from its corresponding candidate clus-
ters instead of all clusters, and the number of training triplets
for each epoch is also changed from m ∗ n to n.

Multi-Head Network
Network Structure. In recent years, several works (Dai
et al. 2020; Corso et al. 2021) have shown that convolutional
models outperform feedforward and recurrent models for se-
quence embedding, so our learning model utilizes the CNN
submodule in CNNED (Dai et al. 2020) as a general back-
bone. Subsequently, multiple multi-layer perceptron (MLP)
heads are deployed in parallel following the convolutional
layers, thereby facilitating the fusion of local features from
different perspectives to extract global features. In this struc-
ture, the number of heads is the same as the number of can-
didate clusters k. Each head has exactly the same structure
and is trained in parallel without communicating with each
other. The core idea of our multi-head model is that we hope
to learn one head for each candidate cluster, thus avoiding
potential contradictions between candidate selection clusters
during training. It is imperative to highlight that our model
exhibits an obvious distinction between the training and in-
ference phases, we introduce them separately below.

Training Phase. During the training phase as shown in
Figure 3(a), we first use the selection method introduced
in the previous section to select a triplet (Si

acr, S
i
pos, S

i
neg)

for each anchor sequence in a batch. Then, the one-hot em-
bedding representations (Xi

acr,X
i
pos,X

i
neg) of all these

triplets are simultaneously fed into the CNN, which is en-
coded as (yi

acr,y
i
pos,y

i
neg). After CNN encoding, the flow

of these triplets starts to fork, and triplets selected from dif-
ferent clusters are fed to different MLP heads. Specifically,
The embedding function of our multi-head network during
the training phase can be expressed as follows:

yi
acr,y

i
pos,y

i
neg = CNN(Xi

acr,X
i
pos,X

i
neg)

zi
acr, z

i
pos, z

i
neg = MLP i(yi

acr,y
i
pos,y

i
neg)

seq … …

…

CNN

Figure 4: Multi-head Network (Inference).

after all triplets are encoded by the model, the final loss is:

loss =
k∑

i=1

Loss(zi
acr, z

i
pos, z

i
neg) (2)

where k represents both the number of candidate selection
clusters and the number of heads, and Loss is the combina-
tion of triplet loss and MSE loss.

Inference Phase. As depicted in Figure 4, we feed all se-
quences into the trained neutral network one by one during
the inference phase. For each sequence, we use the one-hot
representation X of this sequence and encode it through
CNN, then feed the feature y output by CNN to all the
MLP heads simultaneously. The outputs [z1, ..., zk] of these
heads are then all cascaded together. In addition, we treat
CNN as a special head and concatenate the feature y output
by CNN to the end. We will explain the reason for cascad-
ing CNN features below. The embedding function during the
inference phase can be expressed as follows:

y = CNN(X) (3)

zi = MLP i(y) (4)

the representation of the sequence in embedding space is:

Embedding = [z1, ..., zk,y] (5)

CNN Serves as a Special Head. The core idea of our net-
work is to train distinct MLP heads for each candidate clus-
ter. Each of these heads aims to learn unique weights for the
local features extracted by the CNN, essentially learning the
most discriminative features that can distinguish different
sequences within each cluster. However, fine-grained details
can easily be ignored during learning. To alleviate the po-
tential impact of these fine-grained feature losses, we intro-
duce a compensation measure using CNN as a special head
in the inference stage. Specifically, we concatenate local fea-
tures with the final embedding, which is similar to the effect
of fully connected layers with identity matrix and frozen
weights. This approach effectively counteracts the adverse
consequences of fine-grained features being ignored.

Embedding Geometry. There are many studies using
various functions to calculate the distance between two em-
bedding vectors, including Euclidean distance (Dai et al.
2020), Jaccard distance (Zheng et al. 2019), Hyperbolic dis-
tance (Corso et al. 2021), etc. However, for the multi-head
network we designed, the final embedding of the sequence
is the concatenation of vectors output by multiple heads. In
order to make the features of each head play a bigger role
in the distance calculation, we use a new metric instead of
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directly using the Euclidean distance to calculate the dis-
tance between vectors. Specifically, we first calculate the Eu-
clidean distance between the vectors output by a single head,
and then sum the Euclidean distances of multiple heads as
the final distance. Suppose there are two embedding vectors
x = [x1, ...,xk,xcnn] and y = [y1, ...,yk,ycnn], then
the distance between them can be described as:

diste(x,y) = Euc(xcnn,ycnn) +
k∑

i=1

Euc(xi,yi) (6)

Experiments
Experimental Settings
Datasets. We evaluate our neural embeddings through the
utilization of two extensively recognized datasets(Dai et al.
2020; Zhang, Yuan, and Indyk 2019), i.e., the Uniprot and
Uniref. These datasets exhibit varying sizes and sequence
lengths, and their properties are shown in the Table 1. Con-
sistent with existing works, we partition each dataset into
distinct subsets, namely the training set, query set, and base
set. Both the training set and the query set are composed of
1,000 sequences, and the other items belong to the base set.

Dataset Uniprot Uniref
Alphabet Size 25 24

# Items 474741 395869
Avg-Length 376.47 442.84
Min-Length 2 201
Max-Length 4998 4998

Table 1: Dataset Statistics

Metrics. We follow existing works (Zhang, Yuan, and In-
dyk 2019; Dai et al. 2020) and use the task of nearest neigh-
bor search to evaluate the effectiveness of our model, i.e.
whether the distance order in the embedding space still pre-
serves. Specifically, we use: (1) Top-k hitting ratio (HR@k).
This metric is used to detect the overlap percentage of the
top-k results and the ground truth. (2) Top-1 Recall. This
one evaluates the performance of finding the most similar
sequence to the query sequence by different methods.

Baselines. We adopt previous network-based approaches
as baselines, including GRU (Zhang, Yuan, and Indyk 2019),
CNNED (Dai et al. 2020), NeuroSEED (Corso et al. 2021),
AsMac (Chen et al. 2022), where NeuroSEED can be fur-
ther divided into Global (Global T.) and Local Transformer
(Local T.). Since SENSE (Zheng et al. 2019) cannot be used
for unequal-length datasets, and its performance has been
proven to be weaker than AsMac, we will not use it as a
baseline. To demonstrate the effectiveness of the selection
method and multi-head network, we use Bio-kNN-Base to
denote the method without cascading CNN features, and re-
fer to the complete method as Bio-kNN.

Implementation Details. We use the EMBOSS1 to com-
pute the NW distance between sequences. In our implemen-

1https://www.ebi.ac.uk/Tools/emboss/

tation, we set the split interval δ = 100 and experimen-
tally tested the effect of various clustering algorithms and
the number of clusters. Besides, we directly used the CNN
submodule in CNNED. Code and datasets are available at
https://github.com/Proudc/Bio-KNN.

Experimental results
Clustering-Based Triplet Selection. Tables 2 and 3 show
the performance of Bio-kNN-Base under various cluster-
ing algorithms and the number of clusters, including k-
means, agglomerative (HAC), spectral clustering, and non-
clustering. These results show that:(1) With a fixed output
dimension (128), the performance of Bio-kNN-Base con-
sistently surpasses the non-clustering counterpart in various
algorithms and the number of clusters, reaffirming the in-
dispensability of segmenting the selection space. (2) HAC
shows superior performance within certain configurations in
contrast to the other two methods. This may be attributed to
the ability of HAC to handle outlier cells more efficiently
relative to other techniques, which also prompted us to use
the HAC by default in subsequent experiments.

# Clusters*(D/h) Method HR@1 HR@10 HR@50

1 ∗ 128 None 48.30 35.48 24.21
2 ∗ 64 K-Means 48.60 36.51 25.19
2 ∗ 64 HAC 48.60 36.51 25.19
2 ∗ 64 Spectral 48.60 36.51 25.19
4 ∗ 32 K-Means 49.90 38.58 26.98
4 * 32 HAC 50.50 39.13 27.28
4 ∗ 32 Spectral 49.00 36.60 25.23
8 ∗ 16 K-Means 49.70 37.90 26.00
8 ∗ 16 HAC 48.80 37.52 25.70
8 ∗ 16 Spectral 48.30 36.23 24.86

Note: D/h indicates the output dimension of each head.

Table 2: Uniprot: various clustering methods and # clusters

# Clusters*(D/h) Method HR@1 HR@10 HR@50

1 ∗ 128 None 28.30 24.39 15.60
2 ∗ 64 K-Means 31.10 26.91 17.54
2 * 64 HAC 33.90 29.88 19.58
2 ∗ 64 Spectral 29.30 25.88 16.84
4 ∗ 32 K-Means 30.70 25.83 16.63
4 ∗ 32 HAC 32.40 26.92 17.42
4 ∗ 32 Spectral 30.00 25.93 16.91
8 ∗ 16 K-Means 31.70 26.80 17.41
8 ∗ 16 HAC 32.20 26.57 17.34
8 ∗ 16 Spectral 31.20 25.67 16.90

Table 3: Uniref: various clustering methods and # clusters

Embedding Effectiveness. Table 4 presents an overview
of the performance exhibited by different methods concern-
ing the top-k similarity search task. As shown, on both
datasets, our method Bio-kNN significantly outperforms all
methods on all metrics. Using the Uniprot dataset as an ex-
ample, Bio-kNN yields a remarkable enhancement across
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Uniprot Uniref
Model HR@1 HR@5 HR@10 HR@50 HR@1 HR@5 HR@10 HR@50

AsMac 47.07 32.60 24.25 9.93 20.57 11.93 8.08 2.68
GRU 40.83 40.05 34.53 23.16 30.73 26.53 22.73 13.62

CNNED 47.70 40.43 34.58 23.37 35.13 32.51 28.55 18.72
Global T. 48.76 39.97 34.16 22.29 27.80 22.38 18.67 10.47
Local T. 49.10 40.11 34.27 22.43 27.07 21.23 17.94 10.20
Bio-kNN 54.00 48.31 42.69 30.28 37.60 36.18 32.51 21.13

Gap With SOTA +4.90 +7.88 +8.11 +6.91 +2.47 +3.67 +3.96 +2.41

Table 4: Embedding Results (repeat three times and report average results)
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Figure 5: Top-1 Recall curves for multiple methods.

metrics, ranging from 4.9% to 8.11% when compared to
the state-of-the-art counterparts. Notably, a substantial ma-
jority of metrics experience an augmentation of over 6%.
This non-negligible improvement is impressive given the
fact that, unlike previous methods that only focus on partial
subsets of triplets, Bio-kNN essentially partitions the entire
selection space and learns individual heads for each distinct
subspace. Besides, Bio-kNN incorporates the fine-grained
local features extracted by CNN, which further improves
its ability to distinguish similarities between sequences. We
plot the curves of Top-1 recall for various methods on dif-
ferent datasets in Figure 5. We observe that our model also
achieves significant performance gains on the task of finding
the most similar sequence compared to other methods.

Ablation Studies. Our Bio-kNN comprises three mod-
ules: clustering-based triplet selection, a multi-head net-
work, and CNN features. We conduct the following exper-
iments to validate the contributions of these modules: (1)
Considering that the necessity of segmenting the space has
been verified in Table 2 and 3, we exclusively explore spe-
cific segmentation methods. We thus independently evaluate
the segmentation outcomes on both sides of Figure 6. (2) Re-
placing the multi-head (M) network with a single-head (S)
network. (3) Omitting the features extracted by CNN.

The results in Table 5 demonstrate that neglecting any
of the three modules leads to a reduction in performance.
The reason is that we take into account the distance distri-
bution among cells when segmenting the selection space.
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(a) Uniprot: HAC-Based
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(b) Uniprot: Average-Based
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(c) Uniref: HAC-Based
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(d) Uniref: Average-Based

Figure 6: Segmentation Results of HAC(H) and Average(A)

Datasets Method HR@1 HR@10 HR@50

Uniprot

H + S + CNN 53.20 41.02 28.56
A + M + CNN 52.03 40.31 27.93
H + M 50.40 39.01 27.26
H + M + CNN 54.00 42.69 30.28

Uniref

H + S + CNN 35.63 30.31 19.75
A + M + CNN 35.43 30.19 19.60
H + M 33.67 28.95 18.86
H + M + CNN 37.60 32.51 21.13

Table 5: Ablation Studies Results

Separate heads are assembled for clusters with large dif-
ferences in distribution, making training more targeted. The
fine-grained features extracted by CNN also effectively en-
hance the model’s ability to distinguish sequence similarity.

Conclusion

We propose Bio-kNN for biological nearest neighbor search,
which includes a clustering-based triplet selection method
and a CNN-based multi-head network. It also incorporates
local features extracted by CNN. Experimental results show
that Bio-kNN outperforms the state-of-the-art.
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