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Abstract
Code style refers to attributes of computer programs that af-
fect their readability, maintainability, and performance. En-
terprises consider code style as important, and enforce style
requirements during code commits. Tools that assist in cod-
ing style compliance and transformations are highly valuable.
However, many key aspects of programming style transfer
are difficult to automate, as it can be challenging to specify
the patterns required to perform the transfer algorithmically.
In this paper, we describe a system called CodeStylist which
uses neural methods to perform style transfer on code.

Introduction
Style is an important component of natural language. Chang-
ing the style of text involves shifting its tone while keeping
the underlying information intact. Similarly, programming
languages have style (Kernighan and Plauger 1982), with
many enterprises enforcing style requirements to make code
more readable (dos Santos and Gerosa 2018), maintainable,
and performant. Some coding style attributes are related to
the visual appearance of the code such as line length, inden-
tation, blank lines, etc. However, many key style attributes
are beyond code formatting. For example, the use of func-
tional features such as list comprehensions is a well-known
element of the ’Pythonic’ style (Alexandru et al. 2018). We
focus our discussion of coding style on such attributes.

As examples of more complex code style requirements,
enterprises frequently encourage the use of comments and
documentation about classes and methods. Certain language
guidelines such as casing for method or variable names are
also examples of style that are frequently considered desir-
able. Use of some language-specific features such as using
generators, or object oriented techniques to encapsulate data
(e.g., use of classes) are often part of style guidelines. None
of these types of style changes can be performed fully auto-
matically by state of the art symbolic methods; hence IDEs
such as Eclipse or PyCharm do not offer these transforma-
tions. We describe a system in this work called CodeStylist
which uses neural methods to perform style transfer on code.

To build neural style transfer models for code, we rely
on extensive work in code language modeling, where large
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numbers of programs from open source repositories are used
to pre-train models over code (Ahmad et al. (2021), Wang
et al. (2021), Feng et al. (2020)), and these models have in
turn, been used in a variety of downstream tasks such as code
translation, or generation of code from natural language
(Szafraniec et al. (2022), Chen et al. (2021)). To our knowl-
edge, CodeStylist is the only system that exploits these lan-
guage models to perform the rather complex task of code
style transfer. Our approach is based like many others in this
space fine tuning Wang et al. (2021) using a multi-task train-
ing regimen, where the system is simultaneously trained on
transforming multiple aspects of code. We also have models
specific to each style transfer task, which in general perform
a bit better than the multi-task training model. CodeStylist
models have been trained for Python, although the process is
general, and can be adapted to any programming language.

Specifically, CodeStylist can perform the following sets
of style transfers:
• Casing. For classes, variables and method names, convert

them to snake case, as per Python PEP 8 guidelines (van
Rossum Guido 2001).

• Documentation. For methods and classes in a script, add
documentation.

• Comments. For methods, and overall scripts, add com-
ments.

• List Comprehension. Translate for loops into list com-
prehensions, whenever it is possible to do so.

• Classes. Take a set of functions and generate a class
structure from it.

Background
For more complex style related refactoring of code, most
of the existing tools either require a lot of manual config-
uration or are semi-automatic (Mens and Tourwe 2004).
Fully-automatic tools are limited in the languages they sup-
port and the transformations they handle. For example, code
re-formatting is mostly automatic across programming lan-
guages. However, refactoring such as variable renaming, ex-
tracting constants and methods requires users to select the
code parts being modified and provide the exact details of
the transformation.

Neural models have been used for text style transfer (Ri-
ley et al. 2020; Toshevska and Gievska 2021; Tikhonov et al.
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Figure 1: CodeStylist Overview

2019) and are quite effective for the task; but none to our
knowledge target code style transfer.

System Description
CodeStylist takes in a code snippet and a list of transfor-
mations to perform as inputs, as shown in Figure 1. Then a
model is chosen based on the selected style transformation/s
and is used to generate the transformed code. Figure 1 lists
few of the the types of transforms supported by the model
on the left, and illustrates the actual inference of a combined
model for a single prompt.

The input code is tokenized into multiple sub-words. If
multiple transformations are being performed, a tokenized
prompt is prepended to the input code. The model then uses
the tokenized prompt and source code to generate output
code such that semantic information is preserved from the
input and the only changes are those corresponding to the
desired target style.

Model Design
We fine-tuned CodeT5 (Wang et al. 2021) on a parallel cor-
pora that contains source-target code pairs for each of the
transformations. We used code samples from GitHub and
created a parallel corpus for each transformation by finding
examples of the target feature and converting it to the source
feature (e.g., converting list comprehensions to for loops).
The model learnt to perform the desired transformation by
generating the original code given the transformed version.

For each of the performed transformations, a separate
instance of the model was trained. For multiple transfor-
mations, a combined model was trained using a multi-task
learning setting.

System Output
The current user interface to display the functionality of
CodeStylist is in the form of a Jupyter Lab notebook. If a
script is entered into a cell with code, and a transform se-
lected, the system outputs the transformed code.

Figure 2 shows the overall output of the system, with
the multi-task model. Original code snippets were added

class ReprGen(ReprGen):
def init(sourcefile, targetfile, tagsfile,

returnfiles=True):↪→
data = parsefiles(sourcefile,

targetfile, tagsfile,
returnfiles=returnfiles)

↪→
↪→
def init(self, sourcefile, targetfile,

tagsfile, returnfiles=True):↪→
data = self.parsefiles(sourcefile,

targetfile, tagsfile,
returnfiles=returnfiles)

↪→
↪→

@staticmethod
def parsefiles(sourcefile, targetfile,

tagsfile, returnfiles=True):↪→
with codecs.open(sourcefile,

encoding='utf8') as source:↪→
sourcelines = []

for line in source:
sourcelines.append(line.split())
sourcelines = [line.split() for

line in source]↪→
with codecs.open(targetfile,

encoding='utf8') as target:↪→
targetlines = []

for line in target:
targetlines.append(line.split())
targetlines = [line.split() for

line in target]↪→
with codecs.open(tagsfile,

encoding='utf8') as tags:↪→
tagslines = []

for line in tags:
tagslines.append(line.split())
tagslines = [line.split() for

line in tags]↪→
return {'target':

targetlines,'source':
source_ines, 'tags': tagslines}

↪→
↪→

def generate(dataobj=None):
def generate(self, dataobj=None):

Figure 2: List comprehension + Class transfer examples:
highlighted text is the original text, changed text follows
highlighted block.

in the figure to highlight the transformations performed by
the model. Note how static methods are left unchanged, but
init is changed to be a class method (although not named
with the correct convention). Note also the change of the for
loop into a list comprehension. In general, CodeStylist per-
forms quite well, but in some cases it fails to generate the
desired output.

Conclusion
CodeStylist is a novel system for automatic code style trans-
fer using neural fine tuned models. None of the style changes
performed by CodeStylist are currently performed by any
existing IDEs or tools. While there are clearly improvements
that can be made, CodeStylist shows great promise in au-
tomating coding style transfers. Our system demo is avail-
able at Google Colab: https://tinyurl.com/code-style-demo.
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