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Abstract

Recent machine reading comprehension datasets include ex-
tractive and boolean questions but current approaches do not
offer integrated support for answering both question types.
We present a front-end demo to a multilingual machine read-
ing comprehension system that handles boolean and extrac-
tive questions. It provides a YES/NO answer and highlights
the supporting evidence for boolean questions. It provides an
answer for extractive questions and highlights the answer in
the passage. Our system, GAAMA 2.0, achieved first place on
the TYDI QA leaderboard at the time of submission. We con-
trast two different implementations of our approach: includ-
ing multiple transformer models for easy deployment, and a
shared transformer model utilizing adapters to reduce GPU
memory footprint for a resource-constrained environment.

Introduction
Current machine reading comprehension (MRC) systems
(Alberti, Lee, and Collins 2019; Chakravarti et al. 2019; Fer-
ritto et al. 2020) typically feature a single model targeted at
supplying short extractive answer spans, but boolean ques-
tions demand non-extractive YES/NO answers, as well as
supporting evidence. We demonstrate here a system that,
given a question, predicts the expected answer type, pro-
vides direct YES/NO answers with supporting evidence to
boolean questions, and provides short answers to extractive
questions.

We highlight several capabilities, beyond those of a tra-
ditional extractive MRC system, that are necessary for our
demonstration. It must be able to: 1) distinguish boolean and
extractive questions, 2) generate a non-extractive YES/NO
answer if the question is boolean, and 3) recognize unan-
swerable questions regardless of whether they produce ex-
tractive or non-extractive answers.

These new capabilities are needed because the develop-
ment of MRC has been driven by training with extractive
datasets (Rajpurkar et al. 2016; Kwiatkowski et al. 2019),
while boolean questions have been explored in isolation
(Clark et al. 2019). Therefore, extractive questions are typ-
ically handled by a pointer network which locates the start
and end token of the answer span in the passage. On the
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Figure 1: System diagram: Pale blue boxes are the compo-
nents of a traditional MRC system; dark blue boxes are the
additional components that are necessary for proper han-
dling of both boolean and extractive questions.

other hand, boolean questions are handled by a binary clas-
sifier that classifies an entire passage with a YES or NO
answer, ignoring the need to also provide concise support-
ing evidence for the answer. While these models are indi-
vidually well-understood, we elucidate the design consid-
erations that are necessary to present these capabilities to
the user in an integrated manner. In addition, we investi-
gate parameter sharing via adapters (Houlsby et al. 2019a)
as a modeling choice to reduce the GPU memory footprint
of the system in a resource-constrained environment. Our
demo presents GAMMA 2.0 which adds the capability to
answer both extractive and boolean questions in one in-
tegrated multilingual system. Other QA demos which do
not support boolean questions include (Chakravarti et al.
2019; Ferritto et al. 2020; Yang et al. 2019; Yang, Fang,
and Lin 2017; Zhang et al. 2021; Zhao and Lee 2020). Fi-
nally, our system backend achieves state-of-the-art results on
the TYDI QA leaderboard. The performance of GAAMA
2.0 is in Table 1. Our source code is incorporated into
https://github.com/primeqa/primeqa.
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System Components
A diagram of the system is illustrated in Figure 1. Here we
describe the components of our system.

GAAMA: A reading comprehension system that extracts
a candidate answer span from a question/document pair
(Ferritto et al. 2020). The model is trained with TYDI
QA (Clark et al. 2020) which provides both extractive and
boolean questions. Each question has a short answer and an
answer passage. As in prior work, the model is trained with
the short answer for extractive questions. In contrast to prior
work, we also supplement with a long answer passage span
as evidence for boolean questions. This enables us to pro-
duce evidence needed by the boolean answer classifier to
produce a non-extractive YES/NO answer. At runtime, this
component is agnostic to the difference between boolean and
extractive questions, producing only a span of extracted text.

Question Type Classifier: A multi-lingual transformer-
based (MBERT (Devlin et al. 2019)) classifier that takes
as input the question, and returns a label that distinguishes
boolean and extractive questions. It was trained and evalu-
ated on the answerable subset of the TYDI QA questions.
The classifier achieves an F1 score of 99.2/94.6 on boolean
and extractive questions respectively for TYDI QA dev.

Boolean Answer Classifier: A transformer-based binary
classifier (Conneau et al. 2020) that predicts a YES or NO an-
swer to the question. It is only invoked if the question type
classifier has determined that the question is boolean. We
trained the classifier using upstream system output: boolean
questions from TYDI QA data, as selected by our question
type classifier, along with the corresponding system output
text extracted by the GAAMA component. In addition, we
supplemented the TYDI QA training data with a variation of
BoolQ that has extended context. Our boolean answer clas-
sifier obtains a YES/NO F1 of 91.0/44.5 on the TYDI QA
dev set (NO questions are rare in TYDI QA).

Score Normalizer: A logistic regression classifier using
the output of the question type classifier and the span
score of the GAAMA system as features. It scales the
score produced by GAAMA for the answer span to the
[0, 1] interval by generating a probability of whether the
question/passage pair is marked as answerable. This score
is thresholded to determine whether the question is an-
swerable or not. The initial distribution of scores is strik-
ingly different for boolean and extractive questions, causing
many boolean questions to be unanswered. Normalization
increases the percentage of answerable YES/NO questions
above the threshold from 23% to 70%.

Parameter Sharing Approach
In the baseline implementation of our system, each of the
transformer-based classifiers is fine-tuned independently for
its particular task, and loaded in its entirety to the GPU. This
implementation is convenient because the components can
be developed and deployed independently, e.g. as microser-
vices in separate docker containers. The communication be-
tween the microservices can be easily handled by the flow

System Dev System Test
GAAMA 2.0 72.6 GAAMA 2.0 72.35

GAAMA 68.6 GAAMA-DM-Syn-ARES 68.06
PoolingFormer 67.65

Table 1: End-to-End minimal answer F1 scores on half of the
TYDI QA dev set and full test set on the official leaderboard
(submitted as GAAMA-Syn-Bool-Single-Model.)

GAAMA configs F1 # params (×106) size (MiB)

Separate 72.6 1680 3204
Adapters 73.0 563 1074

Table 2: A comparison of GAMMA 2.0 using separate mod-
els and adapters. The F1 score is the minimal answer of the
end-to-end system on half of the TYDI QA dev set.

compiler of (Chakravarti et al. 2019). On the other hand, de-
ploying multiple transformer-based classifiers is expensive,
since GPU memory is a constrained resource.

To address this concern, we experiment with adapter-
based models (Houlsby et al. 2019b). With this approach,
there is only one transformer model, which is fine-tuned for
span extraction (MRC). We implement the query type classi-
fier and the boolean answer classifier with adapters inserted
into our span extractor model, using the framework of (Pfeif-
fer et al. 2020). Each adapter adds < 1% additional param-
eters to the combined model. Only these adapter parameters
are fine tuned for their respective components. The adapter-
based components achieve comparable accuracy to the fully
fine-tuned transformer components, and require much less
GPU memory at runtime. The F1 scores are similar for both
approaches, while the adapter system reduces our memory
footprint significantly as shown in Table 2.

Conclusion

We present a demonstration of a machine reading compre-
hension system that can answer both boolean questions and
factoid questions in an integrated system. When a question is
boolean, it provides a direct YES/NO answer and highlights
the supporting text. When a question is extractive it high-
lights the answer span found in the text. These new capabil-
ities require adding additional components to a traditional
MRC system: a question type classifier, a boolean answer
classifier and a score normalizer. Each component is an es-
sential part of a system designed to answer multiple question
types. Our back-end system achieves a four point improve-
ment over the comparable system without boolean questions
and achieves state-of-the-art results on the TYDI QA leader-
board. Finally, we contrast the merits of two different im-
plementation approaches. In one, we implement each of the
components in a separate microservice for flexibility. In the
other, we apply a single transformer via adapters to reduce
the GPU memory footprint and associated expense.
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