
DFEE: Interactive DataFlow Execution and Evaluation Kit

Han He*, 1, Song Feng†, 2, Daniele Bonadiman2, Yi Zhang2, Saab Mansour2

1 Emory University
2 AWS AI Labs

han.he@emory.edu, {sofeng, dbonadim, yizhngn, saabm}@amazon.com

Abstract
DataFlow has been emerging as a new paradigm for build-
ing task-oriented chatbots due to its expressive semantic rep-
resentations of the dialogue tasks. Despite the availability
of a large dataset SMCalFlow and a simplified syntax, the
development and evaluation of DataFlow-based chatbots re-
main challenging due to the system complexity and the lack
of downstream toolchains. In this demonstration, we present
DFEE, an interactive DataFlow Execution and Evaluation
toolkit that supports execution, visualization and benchmark-
ing of semantic parsers given dialogue input and backend
database. We demonstrate the system via a complex dialog
task: event scheduling that involves temporal reasoning. It
also supports diagnosing the parsing results via a friendly in-
terface that allows developers to examine dynamic DataFlow
and the corresponding execution results. To illustrate how
to benchmark SoTA models, we propose a novel bench-
mark that covers more sophisticated event scheduling scenar-
ios and a new metric on task success evaluation. The codes
of DFEE have been released on https://github.com/amazon-
science/dataflow-evaluation-toolkit.

Introduction
The representation of dialogue states and agent actions plays
a key role in task-oriented dialogue systems as it defines
user requests and agent behaviors. Popular representations
include intent slots (Pieraccini et al. 1992), continuous rep-
resentations (Bordes, Boureau, and Weston 2017), program
synthesis (Gulwani, Polozov, and Singh 2017) and Dia-
log2API (Chen et al. 2020). Fixed symbolic representa-
tions are more trainable while distributed continuous rep-
resentations are more extendable. As a structured yet flexi-
ble representation, DataFlow composes functions and data
into a computational graph that interactively gets gener-
ated, revised and executed (Andreas et al. 2020). It has been
shown to outperform traditional methods on compositional
actions, complex anaphora and exception handling. Though
lots of prominent features complemented DataFlow, they in-
evitably increase the complexity of downstream implemen-
tations. Recently, (Meron 2022) proposes OpenDF to sim-
plify SMCalFlow (Andreas et al. 2020) annotations for a

*Work done during an internship at AWS AI Labs.
†Corresponding author.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Execute
Engine Parser

When is my final?

 :start(

 FindLastEvent(

 constraint= Event?()))

ParseCode

Operate

GUI Chatbox
User Calendar

Agent Response

Gold Calendar

:start(

 FindLastEvent(

 has_subject(final)))

Gold Code

Execution Accuracy: 100%

Exact Match: 0%

When is my final

The Final Presentation is at 3

Beer for 1 hour right after it

I’ve put that on your calendar

①

② ③

④

⑤

)LQG/DVW(YHQW

FRQVWUDLQW

(YHQW

VWDUW

Compare

Figure 1: DFEE modules: 1© Chat, 2© Dialog2API, 3© API
Execution, 4© Exact Match, 5© Execution Accuracy.

more readable syntax. However, developers still cannot di-
rectly use OpenDF to generate executable Python programs
for a downstream task due to lack of a complete toolchain.

We present the DFEE toolkit, an interactive system
that supports execution, evaluation and visualization of
DataFlow graphs for event scheduling tasks. Our system al-
lows developers to interact using natural language utterances
and to inspect the executed DataFlow graphs along with re-
sponses in real time. We demonstrate our system based on
a real-world application of DataFlow-based chatbot, virtual
assistant for event scheduling that requires temporal reason-
ing. To better assess the DataFlow, we enhance the evalu-
ation by supporting a new metric and a novel benchmark
dataset that is challenging to SoTA models.

Our contributions are therefore three-fold: (1) we release a
live DataFlow chatbot that allows researchers and practition-
ers to compile human language into DataFlow graphs and
observe realtime responses; (2) we also propose and sup-
port execution accuracy as a metric on DataFlow for end-
to-end evaluation of semantic parsers; (3) we demonstrate
our benchmarking toolkit on a task and a new dataset that
challenge the SoTA models.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

16443

Evaluation
Prior work adopts Exact Match (EM) as the sole met-
ric to evaluate DataFlow programs (Roy et al. 2022).
However, we observe that the same semantics could be
represented with different programs due to API imple-
mentations or execution processes. For instance, a sim-
ple temporal phrase “10 at night” could be parsed to
3 different APIs from SMCalFlow: NumberPM(10),
HourMilitary(22) or HourMinutePm(hour=10,
minute=0). Thus, we propose a new metric and a dataset
to demonstrate the necessity of evaluating end-to-end exe-
cution results via our system.

Metrics To better assess the DataFlow programs, we pro-
pose to support a new metric - Execution Accuracy (EA).
It is defined as the portion of turns correctly executed. A
correctly executed turn has to make the agent generate the
same response as the oracle response and ensure the back-
end database matches the oracle one.

Benchmark To support a more complete evaluation of
both EM and EA on the exemplar task, a dataset consist-
ing of 1000 dialogues is created by appending temporal rea-
soning utterances to SMCalFlow dialogues. It provides the
annotations on the DataFlow graphs and the expected exe-
cution results based on a database as an oracle. Specifically
for the dataset in the calendar domain, we design a set of
calendar events before and after the execution per each turn.

Model
We train and evaluate seq2seq (Roy et al. 2022) and transi-
tion parsers (Zhou et al. 2022) on the BenchCLAMP (Roy
et al. 2022) split of SMCalFlow. Both kinds of parsers take
as input the last turn and the current user utterance. Another
BART model (BART-Ours) is also trained on OpenDF sim-
plified version to evaluate the impact of program syntax.

Model Overall Non-Tmp Tmp Sec
T5† 80.2 80.4 53.3 27.2

BART † 81.0 81.2 60.0 1.7
RoBERTa ‡ 76.5 76.6 53.8 0.1
BART-Ours 82.9 83.1 53.3 1.1

Table 1: EM accuracy and latency in seconds (sec) on
BenchCLAMP testset, non-temporal (Non-Tmp) and tem-
poral (Tmp) turns. † and ‡ indicate our experiments of
seq2seq (Roy et al. 2022) and transition (Zhou et al. 2022)
models respectively. All transformers are large versions.

As shown in Table 1, BART-Ours outperforms BART by
1.9, aligning with the finding by Meron (2022). The tran-
sition based parser RoBERTa is optimized for latency but
not accuracy. So, we opt for BART-Ours for the later exper-
iments and use it as the default parser in the DFEE system.

System
We modularize the system into three components: semantic
parser, execution engine, and user interface. These compo-
nents are connected via HTTP requests such that they are

SM Non-Tmp SM Tmp Our Tmp
Operation EM EA EM EA EM EA

all 80.5 84.5 66.3 56.5 3.7 28.4
Create 84.5 87.4 78.0 69.5 7.6 24.7
Query 77.8 95.9 56.5 30.4 3.3 26.4
Update 45.7 71.4 25.0 25.0 2.2 43.7
Delete 75.0 86.4 0.0 50.0 0.6 12.8
Others 71.5 68.3 N/A N/A N/A N/A

Table 2: EM and EA of BART-Ours on SMCalFlow (SM)
and our dataset focused on temporal reasoning (Our Tmp).

swappable. This decoupled design enables the developers to
plug-and-play new parser components for benchmarking re-
gardless of the model or programming language.

We build our execution engine upon the OpenDF frame-
work and enhance it in two ways to significantly improve
its usability: (1) adding the fulfillment of the necessary APIs
for event scheduling tasks; (2) adding worker processes to
support multiple concurrent access to the system.

Our system provides two interfaces: (1) one is the conver-
sational GUI with the visualization of parsing results, i.e.,
converting dialogue input to an executable program (APIs);
(2) one is for CLI on benchmarking our proposed Execution
Accuracy of the parsing results.

GUI for Dialog2API As illustrated in Figure 1, the flow
of our GUI is outlined below: one enters an utterance in
the chat; the utterance is parsed into a piece of DataFlow
code (Dialog2API); the code is executed and the resulting
DataFlow graph is visualized; the updates to user’s database
are reflected to the calendar; the agent response generated
during execution is displayed on the chat.

CLI for evaluation We provide a CLI for benchmarking
EM and end-to-end EA of a model. To benchmark a new
model, the developers can either provide an online REST-
ful API URL, or offline parsed DataFlow expressions. The
expressions (either parsed or provided) will be executed on
our system and the execution and evaluation results will be
returned. To demonstrate its functionality, we benchmark
BART-Ours on SMCalFlow and our own dataset in Table 2.

The model performed significantly worse on the tempo-
ral turns, especially on our challenging benchmark that con-
tains diverse scenarios and conversational language styles,
appealing for future attention to temporal reasoning and ro-
bustness. EA for each operation is generally higher than EM
accuracy, due to the fact that there are many possible ways to
express the same semantics, which indicates that EM might
be insufficient for evaluating DataFlow programs.

Conclusion
We presented a novel DataFlow execution and evaluation kit,
DFEE. This interactive system has shown to be user-friendly
and extendable due to its modularized structure. We further
proposed Execution Accuracy metric for SMCalFlow and
benchmarked a SoTA parser on a richly annotated dataset.
We hope our system can facilitate the future development of
robust semantic parsers and intelligent dialogue systems.

16444

References
Andreas, J.; Bufe, J.; Burkett, D.; Chen, C.; Clausman, J.;
Crawford, J.; Crim, K.; DeLoach, J.; Dorner, L.; Eisner, J.;
Fang, H.; Guo, A.; Hall, D.; Hayes, K.; Hill, K.; Ho, D.;
Iwaszuk, W.; Jha, S.; Klein, D.; Krishnamurthy, J.; Lanman,
T.; Liang, P.; Lin, C. H.; Lintsbakh, I.; McGovern, A.; Nis-
nevich, A.; Pauls, A.; Petters, D.; Read, B.; Roth, D.; Roy,
S.; Rusak, J.; Short, B.; Slomin, D.; Snyder, B.; Striplin, S.;
Su, Y.; Tellman, Z.; Thomson, S.; Vorobev, A.; Witoszko, I.;
Wolfe, J.; Wray, A.; Zhang, Y.; and Zotov, A. 2020. Task-
Oriented Dialogue as Dataflow Synthesis. Transactions of
the Association for Computational Linguistics, 8: 556–571.
Bordes, A.; Boureau, Y.-L.; and Weston, J. 2017. Learning
End-to-End Goal-Oriented Dialog. In International Confer-
ence on Learning Representations.
Chen, X.; Ghoshal, A.; Mehdad, Y.; Zettlemoyer, L.; and
Gupta, S. 2020. Low-Resource Domain Adaptation for
Compositional Task-Oriented Semantic Parsing. In Pro-
ceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 5090–5100. On-
line: Association for Computational Linguistics.
Gulwani, S.; Polozov, O.; and Singh, R. 2017. Program
Synthesis. Foundations and Trends® in Programming Lan-
guages, 4(1-2): 1–119.
Meron, J. 2022. Simplifying Semantic Annotations of
SMCalFlow. In Proceedings of the 18th Joint ACL -
ISO Workshop on Interoperable Semantic Annotation within
LREC2022, 81–85. Marseille, France: European Language
Resources Association.
Pieraccini, R.; Tzoukermann, E.; Gorelov, Z.; Gauvain, J.-
L.; Levin, E.; Lee, C.-H.; and Wilpon, J. 1992. A speech
understanding system based on statistical representation of
semantics. In [Proceedings] ICASSP-92: 1992 IEEE Inter-
national Conference on Acoustics, Speech, and Signal Pro-
cessing, volume 1, 193–196 vol.1.
Roy, S.; Thomson, S.; Chen, T.; Shin, R.; Pauls, A.; Eisner,
J.; and Durme, B. V. 2022. BenchCLAMP: A Benchmark for
Evaluating Language Models on Semantic Parsing. ArXiv,
abs/2206.10668.
Zhou, J.; Eisner, J.; Newman, M.; Platanios, E. A.; and
Thomson, S. 2022. Online Semantic Parsing for Latency
Reduction in Task-Oriented Dialogue. In Proceedings of the
60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 1554–1576. Dublin,
Ireland: Association for Computational Linguistics.

16445

