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Abstract

Given a million-scale dataset of who-calls-whom data con-
taining imperfect labels, how can we detect existing and new
fraud patterns? We propose TGRAPP, which extracts care-
fully designed features and provides visualizations to assist
analysts in spotting fraudsters and suspicious behavior. Our
TGRAPP method has the following properties: (a) Scalable,
as it is linear on the input size; and (b) Effective, as it allows
natural interaction with human analysts, and is applicable in
both supervised and unsupervised settings.

Introduction
Given millions of phone calls with source and destina-
tion numbers, timestamps and duration, how can we locate
anomalous activities and fraudsters? How can we assist spe-
cialists in detecting, visualizing and understanding different
anomalies on large-scale who-calls-whom graphs?

Our goal is to help analysts sift through millions of phone
calls to: (a) spot suspicious nodes, quickly and (b) provide
explanations, e.g., through visualization. Explainability is
vital, as companies must give good reasons for blocking a
phone number that is suspected of fraud.

We propose TGRAPP with following properties:
• Scalable: TGRAPP scales linearly with the database size;
• Effective: TGRAPP spots suspicious nodes, while being

Explainable, with meaningful visualizations; Automatic,
not requiring parameter tuning; and Interactive, allowing
drill-down and deep dives for suspicious nodes.

Figure 1(B) shows TGRAPP in action: Figure 1(B-ii) pro-
vides a heat-map scatterplot, where some nodes demonstrate
anomalous behavior in that they are extremely regular, along
the 45-degree line; Figure 1(B-iii) is the result of deep-dive
(our Module-iii of TGRAPP), showing the parallel-axis plot,
where every one of these nodes have exactly 1-second dura-
tion.

Figure 1(B-‘corroboration’) demonstrates domain expert
corroboration of our analysis, who confirmed that this is a
so-called ’camouflage’ attack: fraudulent actors use decoys
with automated domestic traffic to obfuscate their fraudulent
international traffic. The numbers used are non-fraudulent
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phone numbers that have been co-opted via Telephonic De-
nial of Service.

We emphasize that we use real-world anonymized call
data rather than common benchmark fraud datasets.

Reproducibility: Code and synthetic datasets are open-
sourced at https://github.com/mtcazzolato/tgrapp.

Related Work
There is a lot of work on Anomaly detection (Akoglu, Tong,
and Koutra 2015; Liu, Ting, and Zhou 2008; Lee et al.
2021); on dense sub-graph detection, which are usually sus-
picious (Hooi et al. 2016; Shin, Eliassi-Rad, and Faloutsos
2016); on unsupervised clustering, that group nearby points
and indicates groups and trends in the dataset (Hamerly and
Elkan 2003; Ester et al. 1996; Ankerst et al. 1999; Belth et al.
2020; Belth, Zheng, and Koutra 2020); on (semi-)supervised
methods, when only some of the nodes have labels (Ester
et al. 1996; Ankerst et al. 1999; Hamerly and Elkan 2003);
on time-evolving graphs (Kazemi et al. 2020; Lee et al.
2020); on graph visualization (Stolper et al. 2014; Chau
et al. 2011; Zheng et al. 2022); and on call graphs (de Melo
et al. 2010; Akoglu, de Melo, and Faloutsos 2012).

However, none of these methods fulfill all the properties
presented in the Introduction that TGRAPP offers.

The Proposed Demo: TGRAPP
Figure 1(A) shows TGRAPP and its modules.
• Module i: Feature extraction,
• Module ii: Static and interactive visualization – (a)

heatmaps and (b) scatter matrix of selected features,
• Module iii: Deep dive capabilities – (a) for a single node,

cumulative in/out degree and number of calls, and cu-
mulative in/out call duration per hour; (b) for a group
of nodes, adjacency matrix, parallel coordinates, graph
spring model.

• Module iv: Attention Routing - it highlights the outliers
and micro-clusters, in importance order.

Features
We use node-level features: if a given node is a fraudster, we
want to capture its behavior, and spot patterns and deviations
from the typical behavior of a non-fraudulent subscriber.
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Figure 1: TGRAPP in action, spotting fraudsters. The pipeline in (A) shows the steps followed by TGRAPP, and in (B) we
present the resulting visualizations. After (i) feature extraction, TGRAPP provides tools for visualizing (ii) combinations of
features in scatter plots. The Lasso Selection allows users to select a set of nodes to dive deep. TGRAPP constructs (iii) an
EgoNet with selected nodes, showing the adjacency matrix, parallel coordinates and the EgoNet using the Spring Layout. The
(iv) attention routing module provides tools for detecting fraud in the given dataset.

Static Case. There are countless features we can ex-
tract for each node: PageRank, radius, several between-
ness measures, clustering coefficient, linear embeddings
(PCA/SVD/Laplacian), non-linear embeddings (GCNs), to
name a few. For scalability, and explainability, we chose the
in- and out- versions of: (a) the degree of each node (count
of distinct sources/destinations), (b) the weight (sum of min-
utes), and (c) the count (total number of phone calls). More-
over, we used the so-called core number of each node, in-
dicating how well-connected that node is (see, e.g., (Shin,
Eliassi-Rad, and Faloutsos 2018) for the exact definition).

Dynamic/Time-Evolving Case. The inter-arrival times
(‘IAT’) of events often reveal fraudsters: for example, tele-
marketers will call a new number every few minutes, with a
small variance.

The dynamic features we propose for every node are the
robust versions of mean and standard deviation, and specif-
ically: for Inter-Arrival Time (IAT): median-IAT, IQR-IAT;
for incoming/outgoing call duration: median call duration,
IQR call duration.

Visualizations
TGRAPP is effective by optimizing for explainability and in-
teractivity through visualization. There are two challenges:
1. Curse of Dimensionality: We must visualize a medium-

dimensionality space in an effective manner.
2. Scalability: We must plot, and interact with, a million of

data points.
To address them, for Curse of Dimensionality, we use

only a few carefully designed features, as discussed in Sec-
tion ; for Scalability, we propose two solutions:
1. heatmaps (as in Figure 1(B-ii)) which eliminate duplicate

points and over-plotting issues, and

2. filtering of low-activity nodes (say, with less than c phone
calls total).

We implemented three main modes of interaction:
• Label Hovering: When analysts hover over a node, a la-

bel card will show the node ID (hash), and feature values.
• Labeled Node Highlighting: When there are labeled

frauds, the plot will automatically highlight the labeled
frauds. Analysts can configure opacity or color for high-
lighting.

• Brushing and Linking: When analysts select a region
in the paired plots by dragging the mouse, all the plots
will be updated lively, so that only the selected region is
shown on the plots.

Finally, for further explainability, we allow for visualiza-
tion of a subgraph, e.g., induced subgraph of a set of suspi-
cious nodes. If the subgraph is small, we propose the spring
model; otherwise, we plot the adjacency matrix after careful
reordering of rows and columns, as in Figure 1(B-iii)

Complexity Analysis

TGRAPP is O(|E|), that is, linear on the number of edges E.
Proof omitted for brevity.

Conclusions
TGRAPP aims to help human analysts detect fraud in billion-
scale call graphs, by being:
1. Scalable: it scales linearly with the input size
2. Effective: it works on real world data and it is: Explain-

able thanks to our plots; and Automatic (no need for pa-
rameter tuning).

Reproducibility: TGRAPP is open-sourced on
https://github.com/mtcazzolato/tgrapp.
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