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Abstract

Gathering information from multi-perspective graphs is an
essential issue for many applications especially for protein-
ligand binding affinity prediction. Most of traditional ap-
proaches obtained such information individually with low in-
terpretability. In this paper, we harness the rich information
from multi-perspective graphs with a general model, which
abstractly represents protein-ligand complexes with better
interpretability while achieving excellent predictive perfor-
mance. In addition, we specially analyze the protein-ligand
binding affinity problem, taking into account the heterogene-
ity of proteins and ligands. Experimental evaluations demon-
strate the effectiveness of our data representation strategy on
public datasets by fusing information from different perspec-
tives.

Introduction
As an important step in the process of drug design, protein-
ligand binding affinity prediction task has also attracted
great attention in the fields of deep learning and biochem-
istry in recent years. By abstracting the spatial structure of
protein-ligand complexes into different forms such as se-
quences, graphs, 3D grids and others, the existing prediction
models have achieved good performance(Du et al. 2022).
However, we found that these studies were only limited to
certain parts of the complex structure, without comprehen-
sive, multi-perspective and specialized analysis, which often
led to poor interpretability, and is the last thing to face in the
process of drug development.

The core of this task is to capture different influence fac-
tors of binding affinity from the structure of complex, such
as intramolecular and intermolecular forces of ligand and
protein, local information of binding pocket and complete
protein structure information. Therefore, we propose HaPPy
strategy by Harnessing the wisdom from multi-Perspective
graphs for Protein-ligand binding affinity prediction. Specif-
ically, we represent the spatial structure of the complex into
four parts: ligand graph, protein pocket graph, interactive bi-
partite graph, and protein sequence, and then use different
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Figure 1: The overall framework of our strategy

encoders to encode them, attempting to extract different fea-
tures that affect binding affinity, the overall framework of
our strategy is shown in Figure 1. Through the comprehen-
sive utilization of information from different perspectives,
our model provides a comprehensive description of protein-
ligand complex structures, which then demonstrates compet-
itive predictive performance and reflects the effects of differ-
ent information.

Strategy
The key of our strategy is to find some data representation
structures for each part of the protein-ligand complex that
accurately describes the properties, then harness the advan-
tage from different perspectives.

Homogeneous Graph Neural Network Encoder It is a
very intuitive and major approach to encode a molecule
as a graph, atoms as nodes, and chemical bonds as edges.
We represent the ligand and the partial protein structure in
the binding pocket as two undirected graphs Gligand and
Gpocket. The reason why the complete protein structure can
not be represented as a graph is that it contains thousands
of atoms and chemical bonds, which will result in a huge re-
source consumption. And the protein structure in the binding
pocket has the most important impact on ligand binding. For
the ligand graph and the protein pocket graph, the nodes in
the graph follow the same distribution, so the current major
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homogeneous graph neural network(Kipf and Welling 2016)
can be used to encode the entire graph. Simply put, this type
of homogeneous graph neural network iteratively updates its
own node information by aggregating the feature informa-
tion of neighbor nodes and edges. For the node u, the form
can be described as:
hk
u = U(hk−1

u , AG(M(hk−1
v , hk−1

u , euv))), v ∈ N (u) (1)
where hk

u is the feature vector of the k-th layer, and N is
the set of neighbors of u. And it contains three functions,
update function (U ), aggregation function(AG), and mes-
sage passing function(M ). By passing information between
atoms within a molecule, we can naturally capture their in-
tramolecular forces.

Protein Sequence Encoder In order to reduce the limita-
tion of considering only part of the protein structure, we use
pre-trained protein language model (Elnaggar et al. 2020)
to obtain global information of the protein from amino acid
sequence, because protein is essentially an amino acid se-
quence, and different amino acid sequences determine dif-
ferent protein structures.

Bipartite Graph Neural Network Encoder We construct
an interactive bipartite graph Ginter based on the cutoff dis-
tance between atoms to capture the interactive information.
It is precisely because bipartite graphs discard information
about the relationships between nodes belonging to the same
set, so that it only focuses on the interactive information be-
tween different sets. For bipartite graphs, the nodes in dif-
ferent sets follow different distributions and contain differ-
ent properties. Therefore, message passing needs to be per-
formed on two groups of nodes respectively, which can be
described as:

hk
u = Uu(h

k−1
u , AG(Mu(h

k−1
v , hk−1

u , euv))), v ∈ N (u) (2)

hk
v = Uv(h

k−1
v , AG(Mv(h

k−1
u , hk−1

v , evu))), u ∈ N (v) (3)

In addition, to obtain the global embedding of bipartite
graphs focusing on intermolecular forces, we do pooling at
the edge level rather than pooling directly at the node level.

Readout Module Through different encoders, we obtain
four embedding vectors from different perspectives, taking
into account different information. These four embedding
vectors are concatenated to obtain the embedding vector of
the entire protein-ligand complex, which is sent to the mul-
tilayer perceptron to predict the affinity.

Experimental Evaluation
We use the same dataset and training strategy as the baseline
models (Wang et al. 2021), and the comparison results are
shown in table 1. It can be found that the prediction results
of our model reach a very good level, and our MAE value is
reduced by 3.7% relative to the best baseline model.

In addition, through the experimental results in Figure 2, it
can be found that after removing the information from some
perspectives, the prediction performance of the model de-
creases, and the information of different perspectives has its
own role. In conclusion, our model achieves the best per-
formance when constructing graphs at the atomic level and
considering information from all perspectives.

Model MAE↓ RMSE↓ SD↓ R↑
Pafncy 1.129 1.418 1.375 0.775

DeepDTA 1.148 1.443 1.445 0.749
DeepDTAF 1.073 1.355 1.337 0.789
OnionNet 0.983 1.287 1.282 0.781

DPLA 0.972 1.255 1.248 0.820
Ours 0.936 1.228 1.221 0.827

Table 1: Result on PDBbind v2016 core set

Figure 2: The influence from different perspectives
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