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Abstract

Learning domain-invariant representations is a major task of
out-of-distribution generalization. To address this issue, re-
cent efforts have taken into accounting causality, aiming at
learning the causal factors with regard to tasks. However,
extending existing generalization methods for adapting non-
stationary time series may be ineffective, because they fail to
model the underlying causal factors due to temporal-domain
shifts except for source-domain shifts. To this end, we pro-
pose a novel model DyCVAE to learn dynamic causal fac-
tors. The results on synthetic and real datasets demonstrate
the effectiveness of our proposed model for the task of gener-
alization in time series domain.

Introduction
Out-of-distribution generalization task has been researched
over decades, generally, machine learning paradigms often
fail in test data which is not independent and identically dis-
tributed with training data (Torralba and Efros 2011). It is
overreliance on correlation among features rather than cau-
sation that causes this issue. To address this problem, re-
cently invariant causal representation studies (Arjovsky et al.
2019; Ahuja et al. 2021; Ilse et al. 2020) have gain more and
more attention. Nevertheless, these models fail to work well
for time series.

The phenomenon of temporal-domain shifts is ubiquitous,
since the real world is constantly evolving. Additionally, the
source-domain shifts still exist as discussed in domain gen-
eralization study. For instance, data may be collected from
many heterogeneous sources, and different samples might be
measured by different devices. Recent work (Gagnon-Audet
et al. 2022) points out that the combination of these two
distribution shifts leads conventional domain generalization
methods ineffective. Therefore, it is necessary to construct
a new method accounting for both two shifts in a unified
viewpoint.

In this paper, we propose a novel model named Dynamic
Causal Factors Variational Auto-Encoder (DyCVAE) based
on variational inference, addressing the non-stationary time
series generalization task. To be specific, we employ a deep
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generative model to learn three latent factors, including dy-
namic causal, dynamic non-causal, and static non-causal
factors. Finally, extensive experiments with our model on
synthetic and real data show that state-of-the-art results are
achieved.

Methodology
Definition. Given the training data Dtrain =
{(xi

1:T ,y
i
1:T )}Ki=1, where xi

1:T ∈ X is the i-th non-
stationary time series input, and yi ∈ Y is the corresponding
labels, where T denotes the length of time series. We denote
P train(x,y) and P test(x,y) as the distribution of training
and test set, respectively. The goal is training a model
h : X → Y whose risk is minimum on an unseen but related
target domain Dtest: RDtest(h) = E(x,y)∼P test [ℓ(h(x),y)],
where ℓ : Y × Y → R+ is a loss function.
Model architecture. We first separate latent factor into
three latent factors zc1:T , zn1:T , zs, denoting dynamic causal,
dynamic non-causal, and static non-causal factors, respec-
tively. We assume these three factors are independent, thus
the joint prior distribution can be factorized as

pθ(z) = pθ(z
s)

T∏
t=1

pθ(z
c
t |zc<t)pθ(z

n
t |zn<t). (1)

The conditional priors of dynamic factors are defined as
sequential priors and are implemented by two sequential
neural network pθ(z

c
t |zc<t) = N (µ(zc<t),σ(z

c
<t)) and

pθ(z
n
t |zn<t) = N (µ(zn<t),σ(z

n
<t)), and the prior of static

factors is defined as a normal distribution pθ(z
s) = N (0, I).

We then define a probabilistic generative model for the
joint distribution over both observed and latent variables.
Note that {x1:T , z

s, zn1:T } ⊥ y1:T |zc1:T , we have following
factorization:

pθ(x,y, z) = pθ(y1:T |zc1:T )︸ ︷︷ ︸
prediction

pθ(x1:T , z
c
1:T , z

n
1:T , z

s)︸ ︷︷ ︸
generation

,

(2)
where the first term denotes the predictive part of dynamic
causal factors zc1:T . The causal factors learning was also
adopted by recent domain generalization works (Lv et al.
2022). The second term denotes the generative process for
non-stationary time series.
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Datasets Fourier TCMNIST LSA64

ERM 9.55 ± 0.25 10.27 ± 0.14 48.78 ± 1.12
IRM 9.35 ± 0.09 10.04 ± 0.03 46.31 ± 1.51
IB-ERM 10.08 ± 0.37 9.99 ± 0.01 57.28 ± 1.88
IB-IRM 9.97 ± 0.61 10.05 ± 0.05 53.71 ± 1.95
VREx 9.74 ± 0.26 10.04 ± 0.03 46.11 ± 2.88
SD 9.70 ± 0.18 9.99 ± 0.00 50.74 ± 1.72
DIVA 9.60 ± 0.33 10.08 ± 0.31 58.24 ± 0.66
LSSAE – 10.04 ± 0.05 –
DyCVAE 9.55 ± 0.41 11.02 ± 0.83 61.97 ± 0.35

Table 1: Overall performance comparisons.

Given observed data x and y, our model employs varia-
tional inference strategy to learn an approximate posterior of
three latent factors qϕ . We train it like how VAE (Kingma
and Welling 2014) optimized. Generally, we maximize the
likelihood and optimize the objective function of latent fac-
tors as:

max
θ

EP tr [pθ(x1:T ,y1:T )] . (3)

Inspired by the existing work about time series gener-
ation (Yingzhen and Mandt 2018; Zhu et al. 2020), there
are two structures about the posterior distribution qϕ over
latent variables with regard to dynamic and static factors,
i.e., full structure, which infers dynamic factors through
static one; and factorized structure which infers dynamic
factors without static factors. As for our proposed method,
not only should we take dynamic and static relations into
consideration but also separating causal and non-causal re-
lations is needed. To achieve better disentanglement perfor-
mance (Zhu et al. 2020), we adopt factorized structure to
infer dynamic and static factors. The inference part of our
proposed model is as follows:

qϕ(z|x) = qϕ(z
s|x1:T )

T∏
t=1

qϕ(z
c
t |x<t)qϕ(z

n
t |x<t), (4)

where the qϕ(z
s|x1:T ), qϕ(z

c
t |x<t) and qϕ(z

n
t |x<t) are

Gaussian distributions parameterized by sequential models.

Experiments
Datasets & Baselines. To examine our proposed method,
we conduct experiments on both synthetic and real-world
data provided by a recent benchmark (Gagnon-Audet et al.
2022). We compare our proposed model with 8 baselines,
which can be divided into two categories: model-agnostic
methods, including ERM, IRM (Arjovsky et al. 2019), IB-
ERM & IB-IRM (Ahuja et al. 2021), VREx (Krueger et al.
2021) and SD (Pezeshki et al. 2021); and deep generative
methods including DIVA (Ilse et al. 2020) and LSSAE (Qin,
Wang, and Li 2022). To ensure fair comparison, our model
and all baselines share the feature extractor and predictor
with the same hyper-parameters.
Performance Comparison. Since test domains are not
available when training models in OOD setting, it is essen-
tial how to select the right model by validation. Here we

adopt train-domain validation which is complied with do-
main generalization setting. The results of baselines and our
proposed model are reported in Table 1. Note that LSSAE
fails to work on datasets without label series. Overall, our
proposed model outperforms all baselines on two datasets
which are more complex than Fourier relatively. We attribute
this improvement to learned dynamic causal factors.
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