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Abstract

Federated Learning (FL) aims to achieve a global model via
aggregating models from all devices. However, it can diverge
when the data on the users’ devices are heterogeneous. To
address this issue, we propose a novel clustered FL method
(FPFC) based on a nonconvex pairwise fusion penalty. FPFC
can automatically identify clusters without prior knowledge
of the number of clusters and the set of devices in each cluster.
Our method is implemented in parallel, updates only a sub-
set of devices at each communication round, and allows each
participating device to perform inexact computation. We also
provide convergence guarantees of FPFC for general noncon-
vex losses. Experiment results demonstrate the advantages of
FPFC over existing methods.

Introduction
Clustered FL was proposed to address the potential weak-
ness of a global model by assuming that the devices can
be partitioned into clusters and that the devices from the
same cluster share the same model. CFL (Sattler, Müller,
and Samek 2021) recursively bipartitions the devices top-
down based on the similarity between devices’ gradients. It
requires the server to seek an optimal bipartition, which is
computationally expensive. IFCA (Ghosh et al. 2020) can
be viewed as the alternating minimization method. But it re-
quires the specification of the number of clusters.

In this paper, we apply a nonconvex function to penalize
the pairwise differences of models of devices and promote
zero differences, and in turn, clustering. We propose FPFC
to automatically determine the cluster-specific optimal mod-
els without any prior knowledge of the cluster structure.

Approach
Consider a FL setting with m devices and one server. Each
device has parameter ωi ∈ Rd, which incorporates possible
heterogeneity in parameters flexibly. We assume that m de-
vices form L disjoint clusters and devices in the same clus-
ter have the same parameters. Let G = {G1, . . . , GL} be
a mutually exclusive partition of [m]; then, ωi = αl for all
i ∈ Gl, where αl is the common value for the l-th cluster.
Our goal is to estimate L, identify the cluster membership
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of each device, and learn the underlying cluster-specific pa-
rameters (α1, . . . , αL). Our objective is:

min
ω
{F (ω) =

m∑
i=1

fi(ωi) +
1

2m

m∑
i=1

m∑
j=1

g(‖ωi − ωj‖, λ)}.

Here ω = (ω>1 , . . . , ω
>
m)>, fi(ωi) = 1

ni

∑ni

s=1 `(ωi; z
s
i ),

where `(ωi; zsi ) represents a preselected loss function cor-
responding to the data point zsi and parameter ωi. The sec-
ond term is a pairwise fusion penalty with hyperparameter
λ > 0, which promotes zero differences of parameters and
partitions the devices into clusters. Convex functions could
lead to biased estimates of parameters and can not correctly
recover clusters as shown in our experiments, here we focus
on the nonconvex SCAD penalty (Fan and Li 2001):

Pa(t, λ) =


λ|t|, |t| ≤ λ
aλ|t|−0.5(t2+λ2)

a−1
, λ < |t| ≤ aλ

λ2(a+1)
2

, |t| > aλ.

Since the SCAD penalty is not differentiable everywhere,
we approximate it by the differentiable surrogate:

P̃a(t, λ) =

(
λ

2ξ
t2 +

ξλ

2

)
I(|t| ≤ ξ) + Pa(t, λ)I(|t| > ξ),

where ξ < λ and I(·) is the indicator function. Let g̃(t, λ) =
P̃a(t, λ), we then apply a Douglas-Rachford splitting strat-
egy by introducing a set of new parameters θij = ωi − ωj .
The algorithm is presented in Algorithm 1. Different from
ADMM, we separate the minimization over ω into m sub-
problems solved in parallel and allow the ωi-minimization
to be solved inexactly by running Ti steps of local GD/SGD
updates. We also allow a small subset of devices to par-
ticipate in training. Each θk+1

ij -minimization has a closed-
form analytical solution and the server only needs to conduct
assignment operations. Because no prior knowledge of the
cluster is avaliable, we only perform clustering after conver-
gence. We put devices i and j in the same cluster if ‖θKij ‖ ≤
ν, where ν is a threshold and can be chosen from [ξ, 0.5]. Fi-
nally, we have L̂ estimated clusters Ĝ1, . . . , ĜL̂. The model

parameters for the l-th cluster is α̂l =

∑
i∈Ĝl

niω
K
i∑

i∈Ĝl
ni

.

Assumption 1. All fi(·) are continuously differentiable and
there exists a Lipschitz constant Lf > 0 such that

‖∇fi(x)−∇fi(y)‖ ≤ Lf‖x− y‖, ∀x, y ∈ Rd.
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Algorithm 1: Fusion Penalized Federated Clustering (FPFC)

Initialize ω0
1 = . . . = ω0

m, ζ0i = ω0
i , θ0ij = 0 and v0ij = 0.

for k = 0 to K − 1 do
1: Server randomly selects a subset of devices Ak.
2: Server sends ζki to each device i ∈ Ak.
3: [Local update] For each device i ∈ Ak: ωk,0i = ωki
for t = 0 to Ti − 1 do
ωk,t+1
i = ωk,ti − α[∇fi(ω

k,t
i ) + ρ(ωk,ti − ζ

k
i )]

end for
4: Each device i ∈ Ak sends ωk+1

i = ωk,Ti

i back to the
server.
5: [Server update] For i, j ∈ Ak (i < j), server com-

putes δk+1
ij = ωk+1

i − ωk+1
j +

vkij
ρ and updates

θk+1
ij = argmin

θij
g̃(‖θij‖) + ρ

2
‖ωk+1

i −ωk+1
j +

vkij
ρ
− θij‖2

vk+1
ij = vkij + ρ(ωk+1

i − ωk+1
j − θk+1

ij )

θk+1
ji = −θk+1

ij , vk+1
ji = −vk+1

ij .
For i /∈ Ak and j /∈ Ak: θk+1

ij = θkij , v
k+1
ij = vkij .

For i ∈ [m]: ζk+1
i = 1

m

∑m
j=1(ω

k+1
j + θk+1

ij −
vk+1
ij

ρ
).

end for

Assumption 2. (Boundedness) F ∗ = infω∈Rd F (ω) > −∞.

Assumption 3. There exist p1, ..., pm > 0 such that P (i ∈
Ak) = pi > 0 for all i ∈ [m].

This assumption implies that each device has a nonzero
probability to participate in training. Define the mapping
G(ω, θ, v) = θ − proxL0

(θ). Then, the condition 0 ∈
∂θL0(ω

∗, θ∗, v∗) is equivalent to G(ω∗, θ∗, v∗) = 0.
Theorem 1. Suppose Assumptions 1-3 hold. Assume there
exists L− > 0 such that ∇2fi � −L−I with µ = ρ −
L− > 0. If Ti, α, ξ, λ, a, and ρ are chosen such that Ti >

− 2 log 2
log c

, 0 < α ≤ 1
Lf+2ρ−L−

, ρ > max{ Lf

1−2c
T
2

, 2λ
ξ
, 2
a−1

, L−}

where c = 1 − α 2µ(Lf+ρ)
Lf+ρ+µ

and T = mini∈[m] Ti, then we
have the following statements:

1

K

K−1∑
k=0

E[‖∇ωL0(ω
k+1, θk+1, vk+1)‖2] ≤ C1[F (ω0)− F ∗ +mξλ/4]

K

E[‖G(ωk+1, θk+1, vk+1)‖2] ≤ m2λ2ξ2

(λ+ ξ)2

1

K

K−1∑
k=0

E[‖∇vL0[ω
k+1, θk+1, vk+1]‖2] ≤ C2[F (ω0)− F ∗ +mξλ/4]

K
,

where C1 = 1
p̂
[

6[(c
−T

2 −1)−2L2
h+ρ2

ρ−Lf−2(c
−T

2 −1)−1Lh

+ 12ρ3

ρ2−Lg̃ρ−2L2
g̃
], C2 =

L2
g̃

mρ(ρ2−Lg̃ρ−2L2
g̃)
, p̂ = mini∈[m]{pi}.

Preliminary Results
Implementation. We evaluate the performance of FPFC on
synthetic and two public datasets. We consider m = 100
devices which form L = 4 clusters and we follow the
settings in (Li et al. 2020) to generate synthetic data. For
MNIST/FMNIST, we follow the procedures in CFL (Sattler,

Acc Num ARI

LOCAL 84.97%± 0.06 × ×
FedAvg 30.35%± 0.05 × ×

Per-FedAvg 56.28%± 0.06 × ×
IFCA 60.42%± 0.17 2.33±0.94 0.47± 0.33
CFL 86.60%± 0.05 42.0±4.55 0.28± 0.11

FPFC-`1 83.85%± 0.06 5.67± 2.87 0.63± 0.21
FPFC 89.46%± 0.04 4.00±0.00 1.00± 0.00

Table 1: Experimental results on synthetic dataset.
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Figure 1: Experimental results on MNIST and FMNIST.

Müller, and Samek 2021) to create non-IID data settings.
We compare FPFC with several baselines and FPFC-`1 is a
variant of FPFC with a convex `1 penalty. We select testing
accuracy (Acc), number of identified clusters (Num) and ad-
justed Rand index (ARI) as evaluation metrics.
Results and Conclusions. Since LOCAL, FedAvg and Per-
FedAvg can not cluster, we do not report their Num and ARI
results. From Table 1 and Figure 1, FPFC outperforms all
six baselines in prediction and device clustering. These re-
sults reveal that FPFC can automatically determine the num-
ber and structure of clusters and optimal model within each
cluster. Future works may consider conducting extensive ex-
periments and incorporating privacy-preserving techniques.
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