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Abstract

The recent advance in graph neural networks (GNNs) has
inspired a few studies to leverage the dependencies of vari-
ables for time series prediction. Despite the promising results,
existing GNN-based models cannot capture the global dy-
namic relations between variables owing to the inherent lim-
itation of their graph learning module. Besides, multi-scale
temporal information is usually ignored or simply concate-
nated in prior methods, resulting in inaccurate predictions. To
overcome these limitations, we present CGMF, a Continuous
Graph learning method for Multivariate time series Forecast-
ing (CGMF). Our CGMF consists of a continuous graph mod-
ule incorporating differential equations to capture the long-
range intra- and inter-relations of the temporal embedding se-
quence. We also introduce a controlled differential equation-
based fusion mechanism that efficiently exploits multi-scale
representations to form continuous evolutional dynamics and
learn rich relations and patterns shared across different scales.
Comprehensive experiments demonstrate the effectiveness of
our method for a variety of datasets.

Introduction
Multivariate time series (MTS) have important impacts in
many aspects of daily life, and their forecasting plays a sig-
nificant role on a plethora of modern applications, ranging
from climate analysis, traffic and urban flows, to electric-
ity industry and financial markets. A large body of research
works have targeted the improvements of performance in
MTS forecasting.

Recent advances in deep learning, especially graph neural
network (GNN), spurred a few studies on modeling the MTS
through exploiting the ability of GNN in learning neighbor-
hoods’ contexts. For example, recent graph-based models
such as MTGNN (Wu et al. 2020) extract the unidirected
or bidirectional relations among variables that captures the
spatial-temporal dependencies within the time series.

Despite the encouraging results made by existing GNN-
based works, there are certain issues that limits their per-
formance: (1) Most GNN-based methods only consider the
static graph (Wu et al. 2020) for memory efficiency – i.e.,
they employ the time-invariant graph structure between vari-
ables without the dynamic relations. (2) Time series in real
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world usually shows various patterns in multi-scale obser-
vations. Existing methods usually handle multi-scale rep-
resentations by simple concatenation or linear units (Wu
et al. 2020; Lin et al. 2019). In general, these operations can
hardly learn informative cross-scale interactions.

In this paper, we propose a novel method, named
Continuous Graph Multivariate Forecasting (CGMF), aim-
ing to address the aforementioned limitations. It establishes
temporal dynamic correlations from multi-scale representa-
tions and exploits underlying connections between graphs
and differential equations while inferring the temporal evo-
lution. Thus, CGMF provides a direct way to simulate the
dynamics of multivariate time series in the continuous space.
Extensive experiments conducted on real-world data show
that our model achieves the state-of-the-art results.

Methodology
Problem Definition. Given a MTS X1:T = {Xt}t∈[1:T ],
where Xt = {x(i)

t }i∈[1:N ] denotes N variables at time t, and
x
(i)
t ∈ RM is composed of M observations of i-th variable.

Given X1:T , our goal is to produce the forecastings for each
variable τ time steps ahead, given its historical observations,
i.e., ŶT+τ = CGMF(X1:T ).
Framework. There are three main modules in our proposed
CGMF. The first module, employing the convolutional units,
serves as an encoder that transform the MTS input into
multi-scale embeddings for further processing. In the sec-
ond component, we establish the dynamic temporal graph
between variables and learn the long-range intra- and inter-
relations over time series by introducing a continuous GNN.
We treat the last component as the decoder, which fuses
multi-scale representations to obtain the cross-scale knowl-
edge and output forecastings.
Intra- and Inter-relations Learning. Unlike (Wu et al.
2020) that only considers static graph, we model time series
with the dynamic temporal graph, which means the relation-
ships between each variable is time-varying. Given multi-
scale temporal embeddings {h(i)

1 , · · · ,h(i)
Ts
} ∈ RTs×N×d at

scale s, we first reshape them into an 2-dimensional matrix
as RTsN×d and apply self-attention to obtain the score ma-
trix A ∈ RTsN×TsN . For memory efficiency, we keep the
top k weights for each variable in matrix for further infer-
ence. Then, we incorporate ordinary differential equations
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Method Metric
Solor Energy Traffic Electricity
3 24 3 24 3 24

ARIMA
RSE 0.2546 0.8608 0.5998 0.6260 0.1008 0.1273

CORR 0.9624 0.5387 0.7756 0.7463 0.8801 0.8590

GRU
RSE 0.2130 0.5063 0.5479 0.5804 0.1246 0.1420

CORR 0.9753 0.8764 0.8360 0.8191 0.8665 0.8549

Informer
RSE 0.2391 0.7819 0.5476 0.5861 0.1479 0.1492

CORR 0.9750 0.8895 0.8346 0.8057 0.8768 0.8692

MTGNN
RSE 0.1808 0.4459 0.4239 0.4672 0.0753 0.0955

CORR 0.9802 0.9026 0.8893 0.8807 0.9447 0.9231

STODE
RSE 0.1952 0.4468 0.4785 0.5063 0.0879 0.1027

CORR 0.9776 0.8859 0.8752 0.8587 0.9318 0.9126

CGMF
RSE 0.1768 0.4310 0.4133 0.4526 0.0729 0.0931

CORR 0.9835 0.9034 0.8942 0.8811 0.9478 0.9253

Table 1: Performance comparisons across three real-world
datasets. Best performance is in bold font.

into canonical GNN to aggregate node knowledge and the
solver can be formulated as:

ODE-Solver(h0
t , l

′, L) = h0
t +

∫ L

0

gs(l
′,hl′

t ; Ā)dl′ (1)

where h0
t = ht denoting the embedding at every scale, and

gs(·) can be any feed-forward network with the input Āhl′

t .
Here we let gs(hl′

t ; Ā) = Āhl′

t without additional learned
parameters. It not only improves the efficiency in the compu-
tation of integral approximation but also aggregates the lin-
ear features among all nodes. After infinite aggregations, the
representation hL

t contains long-range correlations between
nodes on the graph without over-smooth phenomenon.
Cross-scale Representation Fusion. We now pay atten-
tion to the fusion of representation at all scales. We pro-
pose a controlled differential equation-based method to bet-
ter operate the cross-scale representation fusion. Given the
multi-scale representations H, we consider all representa-
tions and their intervals to simulate the evolutional process.
The evolved representations E = {et}t∈[1:T ] can be calcu-
lated by the following continuous dynamics:

et = z0 +

∫ t

0

gc(t
′, ζ(et′ , {hs,t′}s∈S))dZt′

= z0 +

∫ t

0

gc(t
′, ζ(et′ , {hs,t′}s∈S))

dZt′

dt′
dt′, (2)

where z0 is the initial state of the input time series X1:T

calculated by a backward GRU. Z ′
t′ , consisting of a series

of continuous vectors, are produced by the natural cubic
spline (Kidger et al. 2020) with respect to z1:T for the dif-
ferentiability. With this equations, we can directly generate a
continuous trajectory according to time and representations
at all scale, which automatically extracts the trend, level and
patterns of the time series across multiple scales. Finally, we
use a MLP layer to make forecastings at future τ steps, i.e.,
ŶT+τ = MLP({H,E}).

Experiments
Datasets & Baselines. We conduct experiments on three
public real-world datasets (Wu et al. 2020): Solar Energy,

Traffic, and Electricity. We compare CGMF with the follow-
ing baselines: ARIMA, GRU, Informer (Zhou et al. 2021),
MTGNN (Wu et al. 2020), and STODE (Fang et al. 2021).
Performance Comparison. Table 1 summarizes the experi-
mental results. We observe that CGMF achieves superiority
and draw the following important conclusions: (1) Consis-
tent with our expectations, long-term forecasting is more dif-
ficult since the model has to better understand levels, trends,
and periodicity with respect to the time series. However,
CGMF improves a lot and performs more stably in this sit-
uation. Our multi-scale embedding and fusion mechanisms
extract the expressive cross-scale information that includes
short- and long-term patterns, which effectively addresses
this issue. (2) STODE also incorporates neural ODE into
node relations learning module, but it is designed for spatial-
temporal tasks (e.g., traffic flow prediction) and requires pre-
defined structured information. Its non-linear ODE solver
with learnable parameters is hard to converge, resulting in
inaccuracy and time inefficiency.

Conclusion
In this paper, we proposed CGMF, a generative model
that can disentangle three latent factors through constrain-
ing mutual information for better generalizing across non-
stationary time series. Extensive empirical results demon-
strated its superior performance over conventional domain
generalization methods in both source and temporal general-
ization tasks. Additionally, the learned dynamic causal fac-
tors can improve the performance of conventional domain
generalization methods under the non-stationary setting, be-
cause the dynamic and static factors can be mixed up easily
and can be excluded from causal factors.
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