Exploring the Relative Value of Collaborative Optimisation Pathways (Student Abstract)
DOI:
https://doi.org/10.1609/aaai.v37i13.27028Keywords:
Machine Learning, Model Compression, Keyword Spotting, Collaborative Optimisation, On-device InferenceAbstract
Compression techniques in machine learning (ML) independently improve a model’s inference efficiency by reducing its memory footprint while aiming to maintain its quality. This paper lays groundwork in questioning the merit of a compression pipeline involving all techniques as opposed to skipping a few by considering a case study on a keyword spotting model: DS-CNN-S. In addition, it documents improvements to the model’s training and dataset infrastructure. For this model, preliminary findings suggest that a full-scale pipeline isn’t required to achieve a competent memory footprint and accuracy, but a more comprehensive study is required.Downloads
Published
2024-07-15
How to Cite
Sreeram, S. (2024). Exploring the Relative Value of Collaborative Optimisation Pathways (Student Abstract). Proceedings of the AAAI Conference on Artificial Intelligence, 37(13), 16336-16337. https://doi.org/10.1609/aaai.v37i13.27028
Issue
Section
AAAI Student Abstract and Poster Program