The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

Efficient Dynamic Batch Adaptation (Student Abstract)

Cristian Simionescu, George Stoica

”Alexandru Ioan Cuza” University
cristian@nexusmedia.ro, sgeorge.sstoica99 @ gmail.com

Abstract

In this paper we introduce Efficient Dynamic Batch Adap-
tation (EDBA), which improves on a previous method that
works by adjusting the composition and the size of the current
batch. Our improvements allow for Dynamic Batch Adapta-
tion to feasibly scale up for bigger models and datasets, dras-
tically improving model convergence and generalization. We
show how the method is still able to perform especially well
in data-scarce scenarios, managing to obtain a test accuracy
on 100 samples of CIFAR-10 of 90.68%, while the baseline
only reaches 23.79%. On the full CIFAR-10 dataset, EDBA
reaches convergence in ~120 epochs while the baseline re-
quires ~300 epochs.

Introduction

As current hardware has evolved allowing the use of big-
ger batch sizes in order to speed up the training, several re-
searchers studied how to enable the usage of bigger batches
in efficient ways. Using the inverse relation between learn-
ing rate and batch size, some studies went in the direction
of increasing the batch size instead of using other meth-
ods of decreasing the learning rate (Devarakonda, Naumov,
and Garland 2017) (Khan et al. 2020) (Liu et al. 2019)
(Simionescu, Stoica, and Herscovici 2022).

When we have access to bigger datasets deep learning
models become more powerful. However, in data scarce en-
vironments deep learning methods are not able to perform
as well, even with the usage of transfer learning. More-
over, several niche domains do not find transfer learning
suitable for their usage. In this regards, the work done
by (Simionescu, Stoica, and Herscovici 2022) goes in this
direction since their proposed algorithm Dynamic Batch
Adaptation (DBA), is able to learn and generalize well pro-
vided few samples from a dataset.

Related Work

DBA, introduced in (Simionescu, Stoica, and Herscovici
2022), is a method of dynamically choosing the composi-
tion of a batch size, by selecting a subset of samples to be
used for updating the weights of the network according to
a certain criteria. This was done by maintaining per-sample

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

16328

gradients during backpropagation of the current batch. Con-
sequently, the per-sample gradients were used to minimize
a margin-based loss which consists of a model metric, an
indicator of the current fitness of the model, and a gradi-
ent metric, which measures how suitable for updating is a
subset of per-sample gradients from the current batch. They
propose a selection that searches for a subset of the gradi-
ents that minimizes the absolute value of the margin-based
loss, which is later used in the update step. Moreover, the
subset of gradients is calculated separately for each layer of
the model.

The method was validated on the MNIST dataset which
shows DBA to greatly outperform baseline methods in the
context of a extremely data scarce environment (using small
subsets of MNIST), managing to achieve 97.79% test ac-
curacy training on only 1% of the MNIST dataset, with no
data augmentation, representing a relative error rate reduc-
tion of 81.78% compared to the standard optimizers, SGD
(Stochastic Gradient Descent) and Adam.

However, Dynamic Batch Adaptation method has multi-
ple drawbacks. By using per-sample gradients and calculat-
ing the backpropagation with regards to each sample from
the batch, it increases the number of parameters of the model
by a factor of batch size, and the computation is slower due
to the lack of parallelization of the gradient selection pro-
cess. This makes the method unusable for deeper models in
terms of both memory and compute time.

In this paper, we address these issues, greatly improving
the performance of DBA, designing a better selection pro-
cess, adjusting the metrics used to select the gradients and
scaling the method on bigger models and larger datasets, CI-
FAR10 and CIFAR100. We named the new method EDBA
(Efficient Dynamic Batch Adaptation).

Improvements

We have decided to remove the selection of gradients used
for update on each layer in order to reduce the additional
parameters needed and the computation time required for
computing per-sample gradients. In EDBA, we replace the
selection of per-sample gradients on each layer by doing an
initial forward step though the model, we use this to calcu-
late per-sample gradients for only the last layer. As a result
we are able to apply a selection method on those per-sample
gradients, those samples are thereafter taken and used in an

Test Accuracy %

Dataset Method 100% of Data 10% of Data 1% of Data 100 Samples
CIFAR10 Baseline 92.014+0.115 71.654 +0.087 40.516 +1.358 23.796 £ 1.092
CIFAR10 EDBA 92.196 + 0.219 91.648 £ 0.171 91.514 4-0.224 90.688 1 0.168
CIFAR100 Baseline 67.308+0.197 29.628 £0.862 8.404 +£ 0.403 —
CIFAR100 EDBA 70.550 £+ 0.097 69.138 - 0.264 68.852 4 0.341 —

Table 1: Results using 2% of the data

usual forward and backpropagation step. By doing this, we
reduced the cost of calculating per-sample gradients and the
selection process for each layer in DBA to a forward step for
the entire batch and a single selection process applied on the
last layer in EDBA.

We have replaced the selection process used in DBA, a
sequential removal or addition of samples, with a new pro-
cedure. We choose which samples from the current batch to
use by randomly generating subsets of the entire batch us-
ing an uniform distribution, and selecting the subset which
minimizes a margin-based loss. We use the same margin-
based loss as DBA, the slope between the model metric and
the gradient metric using the exponential running average of
the two values as seen in 1.

ModelMetric — Model Metricegy
GradMetric — GradM etricesy

The model metric is the loss of the model calculated for
the current batch, while the gradient metric is the norm of
the per-sample gradients on the last layer. Since the gradient
metric is the only one that can change, our selection process
chooses a subset which has the gradient metric following
the evolution of the model loss the closest. Intuitively, our
selection method chooses a subset of samples which would
generate an appropriate update, meaning that the gradient
metric will be selected in accordance of how well fitted the
model is. At the beginning of training when the loss is high,
it will allow for higher gradient magnitudes and will tend
to prefer smaller batches, while toward the end of training,
when the loss is small, it will be forced to raise the batch size
and filter out noisy samples in order to keep the step magni-
tude small. That is due to the fact that when the samples in a
subset have different directions, the norm of the mean of the
gradients is closer to zero.

Similarly to DBA, we increase and decrease the batch size
as needed. However we look at margin-based loss statistics
directly to make the decision not at the historical number of
gradients chosen.

-1 (N

Experiments

We have done our experiments using PreResNet56 on CI-
FAR10 and CIFAR100. We have used SGD as an optimizer,
with a learning rate of 0.001, Nesterov momenntum of 0.9
and weight decay of 0.00001. We used an initial batch size of
100, with EDBA being able to modify it as needed. We have
only used random crop and horizontal flip data augmenta-
tions, and our experiments were done on 1%, 10% and the

16329

whole dataset for both datasets. In addition, for CIFAR10
we also trained using 100 samples. All our experiments were
repeated using 5 random seeds. The baseline we compared
with, used the same configuration, with the exclusion of the
EDBA algorithm.

We have observed a great improvement in accuracy com-
pared to the baseline the less samples we use, as seen in Ta-
ble 1. We empirically show that our method of batch filtering
helps the model to maintain a good direction and generalize
very well with few samples. The batch size is capped at both
ends by 10 and 1000, the later being adjustable depending
on the hardware used for training. Additionally, EDBA will
converge considerably faster when using the full datasets,
reaching convergence in ~80-120 epochs while the baseline
requires ~300-350 epochs.

Conclusion and Future Work

We have improved DBA and have achieved high accuracy in
data scarce scenarios for bigger datasets. Our results show
that batch filtering brings enormous benefit in such scenar-
ios. Furthermore, our method enabled achieving high accu-
racy in less epochs using dynamically adjustable batch size,
decreasing the number of epochs needed until convergence.

Our next direction of research includes testing EDBA us-
ing noisy datasets and check whether our sample selection
method is able to filter noisy samples and outliers when
training. We also intend to test our method on non computer
vision tasks and do a performance and speed analysis of our
method compared with other methods used in data scarce
scenarios.

References

Devarakonda, A.; Naumov, M.; and Garland, M. 2017. Ad-
abatch: Adaptive batch sizes for training deep neural net-
works. arXiv preprint arXiv:1712.02029.

Khan, W.; Ali, S.; Muhammad, U. K.; Jawad, M.; Ali, M.;
and Nawaz, R. 2020. AdaDiffGrad: An Adaptive Batch
Size Implementation Technique for DiffGrad Optimization
Method. In 2020 14th International Conference on Innova-
tions in Information Technology (IIT), 209-214. IEEE.

Liu, B.; Shen, W.; Li, P.; and Zhu, X. 2019. Accelerate mini-
batch machine learning training with dynamic batch size fit-
ting. In 2019 International Joint Conference on Neural Net-
works (IJCNN), 1-8. IEEE.

Simionescu, C.; Stoica, G.; and Herscovici, R. 2022. Dy-
namic Batch Adaptation. arXiv preprint arXiv:2208.00815.

