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Abstract

We explore the downstream task performances for graph
neural network (GNN) self-supervised learning (SSL) meth-
ods trained on subgraphs extracted from relational databases
(RDBs). Intuitively, this joint use of SSL and GNNs should
allow to leverage more of the available data, which could
translate to better results. However, we found that naively
porting contrastive SSL techniques can cause “negative trans-
fer”: linear evaluation on fixed representations from a pre-
trained model performs worse than on representations from
the randomly-initialized model. Based on the conjecture that
contrastive SSL conflicts with the message passing layers of
the GNN, we propose InfoNode: a contrastive loss aiming to
maximize the mutual information between a node’s initial-
and final-layer representation. The primary empirical results
support our conjecture and the effectiveness of InfoNode.

Introduction
The success story of large language models hinges on self-
supervised learning (SSL). Deep neural networks (DNNs) in
other domains have similarly benefited from different SSL
techniques, including some based on image augmentations.

Relational database (RDB) are typically modeled with
fully-supervised, non-deep machine learning (ML): one first
“flattens” the RDB to a single table, enabling ML mod-
els accepting “tabular data”, a domain that has recently
been called “the last unconquered castle for deep learning”
(Kadra et al. 2021). Yet DNNs need not restrict themselves
to tabular inputs: they may leverage more of the original
RDB’s structure, an hypothesis supported by graph neural
networks (GNNs) work (Cvitkovic 2020). However, publi-
cations on deep graph-based models for RDB data remain
rare: even with access to extra graph information, systemat-
ically beating tree models on RDBs flattened with deep fea-
ture synthesis (DFS) remains a challenge (Cvitkovic 2020).

SSL presents another opportunity for DNNs: we often
have access to numerous unlabeled RDB entries in addi-
tion to the few labeled ones. However, under certain circum-
stances, pretraining on unlabeled data (followed by linear
probing) can perform worse than an untrained model, in-
cluding some seemingly “reasonable” choices of SSL strat-
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egy (details in Appendix1). Following these observations,
we conjecture that the contrastive pretraining on RDB data
is very sensitive to the view construction.

Contributions. To the best of our knowledge, we are the
first to approach classification tasks on RDB using GNNs
while leveraging unlabeled data using SSL pretraining. We
empirically show that, while the use of SSL may confer
some advantages for some datasets, SSL can actually lead
to severe performance decrease, i.e., negative transfer. We
introduce InfoNode, which helps to certain extent.

Self-supervised Learning on RDB Graph
In this section, we discuss three SSL pretraining strategies—
Generative, InfoNode and Hybrid—on the RDB graph. In
addition, we also observe that existing graph contrastive SSL
methods can bring in severe negative transfer issue.

Generative SSL. Denoising tasks are one of the most
widely-used generative SSL methods. Here we mask-out a
small fraction of the node attributes by replacing them by
random values. Concretely, for each node i, a binary mask
vector β of the same length as Ai is generated, a node j
of the same type as i is randomly selected from the current
batch, and the masked attributes are A′

i = β·Ai+(1−β)·Aj .
The objective is then to recover the original attributes A
from the noisy representation h′T = MPNN(A′, E). The
loss LG is a sum of mean squared errors for the continuous
attributes and of cross entropies for the categorical ones.

Contrastive SSL: InfoNode. “Over-smoothing” is a
well-known issue with GNNs: node-level representations
may become indistinguishable and prediction performance
may thus severely degrade as the number of layers increases.
Conjecturing that it may be desirable for a node to “remem-
ber about itself”, we introduce InfoNode: a node’s initial
(h0

i ) and final (hT
i ) representations become two views for

a contrastive loss (hg is the graph embedding):

LC-InfoNode = E(i,g)∈Pos
[
σ(f(h0

i ,h
T
i ) + σ(f(hT

i ,hg)
]

(1)

+ E(i′,j′)∈Neg
[
1− σ(f(h0

i′ ,h
T
j′ )

]
+ E(i′,g′)∈Neg

[
1− σ(f(hT

i′ ,hg′ )
]
.

Hybrid objective. We follow Liu et al. (2022), where
combining contrastive and generative SSL can augment the
pretrained representation. Writing α0 and α1 the coefficients
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*Work done during internship at ServiceNow Research.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

16266



SSL
pretraining Model Acquire (160k) Home Credit (307k) KDD Cup (619k)

S=10% S=100% S=10% S=100% S=10% S=100%

Untrained GCN 54.36 ± 0.12 54.16 ± 0.22 52.00 ± 0.08 56.37 ± 1.72 51.78 ± 1.03 58.95 ± 0.45
(random init) PNA 58.71 ± 0.73 61.68 ± 0.33 55.75 ± 1.96 62.76 ± 0.96 56.08 ± 2.43 62.05 ± 1.29

Generative GCN 56.78 ± 0.08 58.19 ± 0.11 55.85 ± 0.00 62.52 ± 0.05 59.38 ± 0.05 64.38 ± 0.01
PNA 64.85 ± 0.12 66.34 ± 0.06 61.53 ± 0.04 67.43 ± 0.04 65.65 ± 0.01 69.11 ± 0.06

InfoNode GCN 53.76 ± 0.06 54.12 ± 0.09 54.78 ± 0.00 56.00 ± 0.04 52.69 ± 0.02 53.98 ± 0.08
PNA 51.51 ± 0.33 51.64 ± 0.22 55.09 ± 0.49 55.80 ± 0.40 51.81 ± 0.42 53.12 ± 0.12

Hybrid GCN 56.02 ± 0.15 58.19 ± 0.11 55.69 ± 0.02 59.79 ± 0.09 57.33 ± 0.01 60.21 ± 0.02
PNA 65.42 ± 0.00 66.60 ± 0.03 59.35 ± 0.07 66.46 ± 0.15 64.52 ± 0.07 70.24 ± 0.02

Table 1: Main results with linear probing. In all cases, a linear classifier is trained on the representations of frozen models.
For Untrained, the models are still in their randomly-initialized state. In the remaining rows, models are first pretrained with
different SSL strategies before being frozen. Using InfoNode alone may cause performances to drop.

for the generative and contrastive objectives, the resulting
objective function is:

L = α0 · LG + α1 · LC-InfoNode. (2)

Experiments and Discussion
Pipeline. We adopt the pretraining and linear-probing
pipeline, i.e., we will do SSL pretraining first, then we will
fix the encoder and only fine-tune the prediction head. We
adopt linear-probing because it can directly reflect the ex-
pressiveness of the pretrained model.

Datasets and evaluation. We consider the same 3 RDB
datasets as in Cvitkovic (2020), all pre-processed with
RDBTOGRAPH. For these datasets, the predicted labels are
binary and imbalanced, motivating the use of ROC-AUC. In
addition, we use the whole training dataset for unsupervised
pretraining, and then sample S% for downstream.

Backbone models and baselines. For the backbone
GNNs (Kipf and Welling 2016), we consider GCN and PNA.
The readout function is an attention module. For the pre-
training methods, we first consider an untrained version (i.e.,
without any pretraining). Then we consider the generative
SSL, contrastive SSL, and the hybrid of the two.

Main results. Table 1 reports linear probing (LP) results
as an indicator of the quality of the representations learned
by different SSL strategies. Generative SSL shows quite
consistent improvements. Interestingly, contrastive methods
taken on their own perform rather poorly from this linear
probing perspective. The learned representations are at best
comparable to random representations, and in many cases
are much worse (“negative transfer”). While not being par-
ticularly impressive, the hybrid SSL results do not show
this counter-intuitive behavior. This generative/contrastive
dichotomy is less visible in fine tuning (Appendix), possi-
bly because the models are given the opportunity to “un-
learn” bad representations. This observation also holds for
the other contrastive pretraining methods on graph, yet our
proposed InfoNode can alleviate the negative transfer issue
better. Please see Appendix for more details.

Analysis. According to our hypothesis, leveraging unla-
beled data with SSL should typically improve downstream

task performances. Of course, we were aware that there is no
free lunch: due to its inductive biases, a model may be good
for some tasks and bad for others. However, we believe that
our results are not just random edge cases, but instead re-
veal a more systematic SSL failure mode. E.g., similar phe-
nomenon has been observed in molecular graphs (Liu, Guo,
and Tang 2022). In particular, we posit that RDB data dis-
tributions contain traps—“interesting-looking noise”—that
some SSL strategies may “fall for”, and that “better” mod-
els may be more prone to these traps. As an illustration of
how such traps may exist, consider a single-table RDB with
3 non-label columns—so a graph made of an isolated node
with 3 properties—and suppose that its probability distri-
bution factorizes as P(A) = P(A00) P(A01, A02). Given
unlabeled data samples A, the “best” that any SSL strategy
could do is to learn P(A00) and P(A01, A02). The ability
to uncover the presence of mutual information I(A01;A02)
between the corresponding datum is one of the characteris-
tics typically associated with “good” SSL models, but such
models may neglect A00, and A00 may be all that matters
for some downstream tasks. More details are in Appendix.

Conclusion and Future Direction. In this work, we pro-
pose a novel contrastive pretraining method, InfoNode, to al-
leviate the inherent issue of GNN. Primary experiments mo-
tivate further investigations as to the mechanisms involved.
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