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Abstract

The paper presents an attempt to bridge the gap between ma-
chine learning and symbolic reasoning. We build graph neu-
ral networks (GNNs) to predict the solution of the Maximum
Satisfiability (MaxSAT) problem, an optimization variant of
SAT. Two closely related graph representations are adopted,
and we prove their theoretical equivalence. We also show
that GNNs can achieve attractive performance to solve hard
MaxSAT problems in certain distributions even compared
with state-of-the-art solvers through experimental evaluation.

Introduction
The satisfiability problem of propositional logic formulas
(denoted as SAT) has a significant impact on many areas
of computer science and artificial intelligence, which is also
the first problem proved to be NP-complete. The Maximum
Satisfiability (MaxSAT) problem is an optimization variant
of SAT, which aims to maximize the number of satisfied
clauses. Thanks to recent advances in deep learning, espe-
cially those for non-Euclidean structures, there have been
initial efforts to represent and solve combinatorial prob-
lems including SAT through data-driven approaches (Ben-
gio, Lodi, and Prouvost 2021). Since the characteristics of
problem instances in practice are usually domain-specific,
these approaches are possible to produce better results than
general-purpose solvers by learning from benchmarks.

NeuroSAT (Selsam et al. 2019) is a pioneering work
which shows that GNNs can learn to predict the satisfia-
bility of SAT problems, and leads to a series of improve-
ments. In order to better explore the ability of GNNs on
this task, we target the work as learning to predict the so-
lution of the MaxSAT problem. The advantage is that as an
optimization problem, we can measure the quality of solu-
tions more quantitatively. First, we build two GNN models,
called GMS-N and GMS-E, based on two kinds of clause
variable-incidence graphs separately. These two GNNs are
proven to be theoretically equivalent. Next, we train both
models on synthetic MaxSAT benchmarks produced by dif-
ferent generating functions. The results show that both mod-
els achieve >0.99 approximation ratios on small instances
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Figure 1: Two kinds of clause variable-incidence graphs to
represent the CNF formula φ := (x1 ∨ x2 ∨ x3) ∧ (x1 ∨
¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) with 3 variables and 3 clauses.

with tens of variables, and they also have attractive general-
ization to much larger and more difficult problems.

Model Description
Clause Variable-Incidence Graph (CVIG) is a common rep-
resentation for CNF formulas, which is a bipartite structure
to establish the relationship between literals and clauses.
There are mainly two kinds of CVIGs which have been used
in previous works. The first one is node-splitting CVIG (NS-
CVIG), which represents the two relevant literals (xi,¬xi)
as two nodes. The other one is edge-splitting CVIG (ES-
CVIG), which contains two types of edges, connecting the
clauses with positive and negative literals separately. An ex-
ample is shown in Figure 1.

The GNN models generally follow the message passing
process. Considering the bipartite structure, in each layer the
process is divided into two steps executed in sequence.

For NS-CVIG, the k-th layer of GNN is formalized as

C
(k)
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where L(k)
i , C

(k)
j are the embeddings of literal li and clause

cj in the k-th layer, and E is the set of edges.
For ES-CVIG, there are two sets of edges, which can be
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Figure 2: The average percentage of satisfied clauses by our GNN models and state-of-the-art MaxSAT solvers on a set of testing
problems with up to 1,600 variables. GNNs are trained on benchmarks coming from the same distribution with the testing ones,
but with only 60 variables. The results indicate that GNNs are promising and generalize well to much larger problems.

denoted as E+ and E−. The k-th layer of GNN is
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Finally, to adapt the models to solve the MaxSAT prob-
lem, we use a binary classifier PRED to generate a number
pi ∈ [0, 1] for each variable xi after K GNN layers. The
models are trained by minimizing the binary cross entropy
loss against the ground truth.

Specifically, we establish the equivalence of these two
GNN models based on NS-CVIG and ES-CVIG:

Proposition 1 Given a GNN N1 based on NS-CVIG, there
exists a GNN N2 based on ES-CVIG, such that for every
MaxSAT instance φ, N1(φ) = N2(φ), and vice versa.

Summary and Future Work
We implement the above two GNN models and abbreviate
them as GMS-N and GMS-E. Given the number of vari-
ables n, the number of clauses m and the clause size k,
we produce the synthetic MaxSAT problems by running
two representative generators with different distributions:
(a) Uniform distribution (Mitchell, Selman, and Levesque
1992), which samples the clauses uniformly and indepen-
dently. The datasets are denoted by UF(k,n,m); (b)
Power-Law distribution (Ansótegui, Bonet, and Levy 2009),
a non-uniform generating function which aims to simulate
the characteristics of real-world (industrial) instances. The
datasets are denoted by PL(k,n,m).

By training GMS-N and GMS-E on 4 datasets (n = 60)
separately, we find that the average approximation ratios are
>0.99 on the validation sets in all cases, and both models
generalize well to a broad range of clause-variable propor-
tions. We also generate a series of testing sets with the same

distribution as the training sets, but the number of variables
n ∈ [100, 1600] is much larger. Since the optimal objectives
of these large problems are clearly unsolvable, we compare
the percentage of satisfied clauses instead of the approxima-
tion ratio. In addition to the GNN models, we also run 3
efficient MaxSAT solvers: a complete solver MaxHS and 2
incomplete solvers Loandra and SATLike, which have won
top awards in the unweighted track of the MaxSAT com-
petition. For each instance, every solver is executed for 5
minutes and the best found solution is recorded. From Fig-
ure 2, we surprisingly find that GMS-N and GMS-E could
generalize very well on the large problems, even compared
with these state-of-the-art solvers. This suggests that GNNs
are expected to be promising alternatives to help solve more
challenging MaxSAT problems.

For future work, we plan to investigate the capability of
GNNs to solve partial MaxSAT problem, a more challeng-
ing variant in which all hard clauses must be satisfied. Ex-
tension, proof and implementation details can be found at
https://github.com/minghao-liu/GMS.
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