The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

Incremental Density-Based Clustering with Grid Partitioning (Student Abstract)

Jeong-Hun Kim*!, Tserenpurev Chuluunsaikhan*!, Jong-Hyeok Choi?, Aziz Nasridinov'!

! Department of Computer Science, Chungbuk National University, Cheongju, 28644, South Korea, +82-43-261-3597
2 Bigdata Research Institute, Chungbuk National University, Cheongju, 28644, South Korea, +82-43-261-3597
{etyanue, teo, leopard, aziz} @chungbuk.ac.kr

Abstract

DBSCAN is widely used in various fields, but it requires
computational costs similar to those of re-clustering from
scratch to update clusters when new data is inserted. To
solve this, we propose an incremental density-based cluster-
ing method that rapidly updates clusters by identifying in ad-
vance regions where cluster updates will occur. Also, through
extensive experiments, we show that our method provides
clustering results similar to those of DBSCAN.

Introduction

DBSCAN (Ester et al. 1996) is a well-known density-based
clustering method for finding arbitrary shape clusters as well
as for detecting outliers. In DBSCAN, a cluster is defined
as a set of dense objects separated from other clusters by
sparse regions, and an object is dense if it has more than
1 neighbors within an e radius. The adjacent dense objects
propagate the same label to their neighbors. However, DB-
SCAN performs re-clustering from scratch when new data
is inserted. In particular, label propagation caused by new
data insertion degrades cluster update performance because
it requires executing e-range queries on many other objects
(Ouyang and Shen 2022). For example, neighbors to be di-
rectly updated by a new object x,, can be easily identified
using an e-range query. However, these neighbors propagate
labels to their neighbors again, which causes the e-range
query to be repetitively executed until no more updates oc-
cur. The key to an efficient way is to reduce the complexity
of the e-range query and the number of its executions.

To this end, some researchers have attempted to improve
the cluster update performance by identifying objects to be
updated in advance or by utilizing a data structure in which
density information is summarized (Ester et al. 1998; Mai
et al. 2020). Such approaches often yield approximate re-
sults that differ significantly from those of DBSCAN, with
computational costs similar to those of re-clustering from
scratch in the worst case.

To address the cluster update issue, we propose an incre-
mental DBSCAN (iDBSCAN) that efficiently updates clus-
ters based on grid partitioning, reducing processing time

“These authors contributed equally.

"The corresponding authors.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

16242

G T
Ngi I N I
A .. [1 %e
c. l{'] -§p+1 Wt
. ° 1 LI * : N I .
. v oo 0 X ! \ .

° | ' Te, ° pl, 3 le

e ® o i | > ."A'(’ |

. L 2 1

e o | \ . 1 J |

.o... . | \“,}‘___—:_./ € K

I .-]
I A -7 o.l .

| O)) A S M o 1

° .

Figure 1: An example of the update localization.

of the e-range query. Experimental results show that our
method achieves cluster update performance up to 163.3
times faster than that of DBSCAN.

Proposed Method

We describe the proposed method by focusing on cluster up-
dates by a new object, assuming that DBSCAN has been
performed. We divide the proposed method into three steps:
grid partitioning, update localization, and cluster update.

Grid Partitioning We first partition the data space into
grids to build a spatial index. Based on the grids, we ac-
celerate the e-range query by considering only objects in
grids adjacent to a target object. Let X be a set of n objects
{z1,...,x,} in the d-dimensional space, normalized from
zero to one. The grid length [is a maximum value among
{1/2P}52 less than €/ V/d. Each grid has a unique key, the
combination of the grid orders for each dimension.

Update Localization We localize cluster updates by iden-
tifying grids adjacent to a new object z, = {Zp1, ..., Tpd }-
To this end, we first obtain the grid orders of z,, for each
dimension through s; = |xp;/l](1 < ¢ < d). Hereafter,
we assemble the grid orders to find a grid G,, containing x,,.
Then, we identify the adjacent grid set /Ng included in the
+[e/l] range of the grid orders for G,,. In other words, Ng
is the grid set within the hyper-rectangular-shaped range sur-
rounding G,, as shown in Figure 1. Additionally, we prune

more grids in Ng that do not reach z,, utilizing the mini-
mum and maximum distances between grids to identify ad-
jacent grids within the exact e range. We calculate the mini-
mum and maximum distances, GD,,,;,, and GD,,, ..., between
grids as follows:

GDmin(Go,G) = | Y. ((li—dl—=1)x1)> (1)
4,5€G0,Gt
GDmaa(Go,G) = | Y, (([i—jl+1)=D)? ()

4,j€G0,Gt

where ¢ and j are the grid order for each dimension of
grids G, and G, respectively. Considering the location of
the grids, we select all G, that satisfy GD,pi,(Gp, Gz) <
€ (G, € Ng) as the final adjacent grids; these are denoted
by Ng. In addition, all G, satisfying GDy44(Gp, Gz) <
€ (Gz € Ng) are fully-connected with G,,.

Cluster Update We introduce an efficient cluster update
process utilizing the adjacent grid set Ng. First, we find
reachable objects through an e-range query on a new ob-
ject x,,. Since these reachable objects are included in G,, and
Ng, we reduce the complexity of the e-range query consid-
ering the specific grids and their objects only. In particular,
objects included in grids of Ng that are fully-connected with
G, can be regarded as reachable objects without distance cal-
culations. Hereafter, we determine the cluster label y,, of x,,
based on the reachable objects. Let Rp, R, and Ro be sets
of dense objects, border objects, and outliers among reach-
able objects of x,, respectively; C is a set of cluster labels
{1, ..., k}. We obtain the cluster label y,, as follows:

mianRD Yz, if RD 7é @
Yp =4 k+1, ifRp=0and |Ro| >n ()
outlier, otherwise

Next, we update the clusters by performing label propaga-
tion using x,,. This label propagation does not occur when
xp is an outlier, and when x,, forms a new cluster, i.e., y, =
k+ 1, all objects in R are assigned to the k + 1 cluster. On
the other hand, when), is assigned to an existing cluster, x,,
becomes a dense or border object. We assume that the cluster
label y,, of z, is ¢ € C. If |Rply>c + |RBly>c + |Ro| > w,
then x, is a dense object; otherwise it is a border object.
When z,, is a dense object, we propagate the cluster label
yp to all objects in Rp and to their neighbors. On the other
hand, when z,, is a border object, we traverse Vo € Rp 5,0
in the order of cluster labels, and repeat the same process as
x, to propagate the cluster label y of each object x. At this
time, since the e-range query for the label propagation is ex-
ecuted only in Vz € R, not in the entire dataset, the number
of queries becomes less than that of DBSCAN.

Experiments

We conduct experiments on three synthetic datasets with
various shapes, scales (n), dimensions (d), and noises (7).
Then, we compare the results of our method with those of

16243

Ours DBSCAN

Dataset RT MUT RT MUT ACC
(sec) (ms) (sec) (ms) (%)

circles (n = 10k) 0.84 0.84 66.10 66.10 99.9
circles (n = 30k) 7.76 1.94 924.00 308.00 99.9
blobs (d = 3) 8.30 16.60 38.03 76.06 97.7
blobs (d = 5) 1444 28.88 43.26 86.52 97.6
moons (n = 0.1) 0.19 0.37 12.54 25.09 99.2
moons (n = 0.2) 0.15 0.30 12.25 2449 98.7

Table 1: Clustering results on synthetic datasets. The default
settings for each dataset are n = 5k, d = 2, and p = 0.2.

DBSCAN to evaluate the cluster update performance. The
synthetic datasets are moons, circles, and blobs, and we gen-
erate these datasets using the scikit-learn Python library. For
each run of the experiments, we first perform DBSCAN on
90% of objects in a dataset and then insert the remaining
10% of objects sequentially. We utilize the same input pa-
rameters € and p for the proposed method and DBSCAN.
We use running time (RT), mean update time (MUT), and
clustering accuracy (ACC) as evaluation metrics. RT is the
accumulated time for all cluster updates, MUT is the mean
running time for a singular cluster update, and ACC is a ratio
consistent with DBSCAN. The results are shown in Table 1.
Our method outperforms DBSCAN by a significant margin
on all datasets. These results indicate that our method can
significantly reduce the complexity of the e-range query and
the number of its executions.

Conclusion and Future Work

This paper proposes iDBSCAN, which performs DBSCAN
by efficiently updating clusters based on grid partitioning.
In the future, we will expand the proposed method to update
clusters simultaneously for large transactions.

Acknowledgements

This paper was funded by the Basic Science Research Pro-
gram through the National Research Foundation of Korea
(Grant No: 2021R111A3042145).

References

Ester, M.; Kriegel, H.-P.; Sander, J.; Wimmer, M.; and Xu,
X. 1998. Incremental Clustering for Mining in a Data Ware-
housing Environment. In Proceedings of the 24rd Interna-
tional Conference on Very Large Data Bases, 323-333. San
Francisco, CA, USA.

Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X.; et al. 1996.
A density-based algorithm for discovering clusters in large
spatial databases with noise. In kdd, 226-231.

Mai, S.; Jacobsen, J.; Amer-Yahia, S.; Spence, I.; Tran, P.;
Assent, I.; and Nguyen, Q. V. H. 2020. Incremental density-
based clustering on multicore processors. [EEE Transac-

tions on Pattern Analysis and Machine Intelligence, 44(3):
1338-1356.

Ouyang, T.; and Shen, X. 2022. Online Structural Clustering
Based on DBSCAN Extension with Granular Descriptors.
Information Sciences, 607: 688-704.

