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Abstract

Accurately predicting human mobility is a critical task in
location-based recommendation. Most prior approaches fo-
cus on fusing multiple semantics trajectories to forecast the
future movement of people, and fail to consider the distinct
relations in underlying context of human mobility, resulting
in a narrow perspective to comprehend human motions. In-
spired by recent advances in disentanglement learning, we
propose a novel self-supervised method called SelfMove for
next POI prediction. SelfMove seeks to disentangle the po-
tential time-invariant and time-varying factors from massive
trajectories, which provides an interpretable view to under-
stand the complex semantics underlying human mobility rep-
resentations. To address the data sparsity issue, we present
two realistic trajectory augmentation approaches to help un-
derstand the intrinsic periodicity and constantly changing in-
tents of humans. In addition, a POI-centric graph structure is
proposed to explore both homogeneous and heterogeneous
collaborative signals behind historical trajectories. Experi-
ments on two real-world datasets demonstrate the superiority
of SelfMove compared to the state-of-the-art baselines.

Introduction
Understanding human mobility enables exploring the infor-
mative semantics and mutual interactions behind human his-
torical check-ins. Recent efforts based on deep neural net-
works such as recurrent networks have achieved significant
success in learning human behavioral patterns and individ-
ual preferences (Guo et al. 2020; Wu et al. 2020). For in-
stance, PLSPL (Wu et al. 2020) extends LSTM to model hu-
man short-term sequential preferences while VaNext (Gao
et al. 2019) learns the contextual features of POIs behind
human historical check-ins via a variational attention mech-
anism. However, there are still drawbacks in existing meth-
ods: (1) the implicit semantic entanglement poses the risk
of uncovering individual human mobility habits that hardly
change over time; (2) the sparse sequential check-ins raise
the stakes for obtaining good representations of human mo-
bility; and (3) the intricate heterogeneous semantics affil-
iated with the POIs are not exploited well. In this work,
we present a novel approach called SelfMove that operates

*Corresponding Author (qianggao@swufe.edu.cn).
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the sequential variational autoencoder with mutual informa-
tion regularization to guide the training of evidence lower
bound (ELBO). In addition, we provide two trajectory aug-
mentation strategies to alleviate the sparsity issue of human
check-in data. Besides, a POI-centric Graph (PGraph) struc-
ture is devised to capture both homogeneous and heteroge-
neous collaborative signals behind historical trajectories.

Methodology
Problem Definition. Given a user’s historical trajectory T
and her recent trajectory T = {l1, l2, · · · , ln}, our task is to
predict the next POI ln+1.

POI embedding with PGraph. We first leverage POI-
centric Graph (PGraph) to obtain the informative POI repre-
sentations. PGraph mainly preserves four contextual seman-
tics, including consecutive, geographical, time-aspect, and
activity-aspect interests underlying entire historical trajecto-
ries. Each aspect can be built into a correlation matrix A.
For heterogeneous semantics, the interest behind each POI
(e.g., li) can be formulated as

ei = tanh (AiW) , (1)
where W is a trainable matrix. For the homogeneous seman-
tics in PGraph, e.g., consecutive POIs, we exploit a graph
neural network such as GAT (Veličković et al. 2018) to ag-
gregate the features across all neighbors. Finally, we fuse
both homogeneous and heterogeneous semantics into a uni-
fied representation for each POI.

As Fig. 1 shows, we learn the disentangled representations
zr1:n (i.e., {zr1 , zr2 , · · · , zrn}) and zs of a trajectory, where
zr1:n aims at exploring the dynamics of time-dependent in-
tents while zs is to learn time-independent periodicity.

Contrastively Disentangled Learning. According to
variational Bayes, we choose Gaussian N (0,1) as p(zs),
and use a standard GRU to model N (µ(z<τ ), σ

2(z<τ )) as
p(zr1:n). Then we employ another GRU to generate each
posterior distribution. To generate clean disentanglement of
zr1:n and zs, we exploit self-supervised trajectory learning
by adding three Mutual Information(MI) terms to regularize
the latent space, which can be defined as
Objective: max

p,q
El1:n∼pDEq(z1:n|l1:n)[log p (l1:n | z1:n) (2)

− α(KL [q (zs | l1:n) ∥p(zs)] +KL [q (zr1:n | l1:n) ||p (zr1:n)])
+ β(MIq (z

s; l1:n) +MIq (z
r
1:n; l1:n))− γMIq (z

r
1:n; z

s) ,
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Figure 1: Overview of contrastively disentangled learning.

where α, β, and γ are weight coefficients and z1:n =
(zs, zr1:n). In implementation, we employ contrastive esti-
mation to optimize MI terms via a NCE loss. Notably, we
treat l1:n as the positive trajectory, and the negative trajecto-
ries are sampled from other users. Since zs is time-invariant,
we randomly change the order of trajectory to generate posi-
tive augmented samples for time-invariant factors. For time-
varying factors, we replace POIs with their neighbors of the
same category within 300m to generate positive augmented
trajectories where the temporal dynamics are not changed.

Task Learning. Finally, we fine-tune the model for the
next POI prediction. Specifically, we use the pre-trained en-
coder with disentanglement capability as the kernel of short-
term mobility encoder to compute zr1:n and zs of recent tra-
jectories. In addition, we use a self-attention layer with po-
sition encoding to capture the long-distance dependencies
of a historical trajectory T1:K, and use the last state HK to
represent T1:K. Then we can take zr1:n, zs, and HK as the
input and employ a one-layer fully-connected network with
Softmax to predict the next POI ln+1.

Experimental Results
We use the Los Angeles data from Gowalla and New York
data from Foursquare to evaluate the models. We com-
pare our method with the following state-of-the-art base-
lines: ST-RNN (Liu et al. 2016), VANext (Gao et al. 2019),
β-VAE (Higgins et al. 2017), SML (Zhou et al. 2021)
and PLSPL (Wu et al. 2020). Following previous studies,
ACC@K, area under the ROC curve (AUC) and mean aver-
age precision (MAP) are used as evaluation protocols.

Table 1 summarizes the results of all models on
two datasets. SelfMove outperforms all baselines on two
datasets, e.g., it achieved improvements of 6.8%, 9.7%,
0.69%, 9.4% in terms of ACC@1, ACC@5, AUC and MAP
on Los Angeles than the best performance in baselines (un-
derlined). These results verify the advantages of SelfMove in
learning disentangled representations of semantic context of
human trajectories. As Fig. 2 shows, we investigate whether
our disentangled representations are well refined from origi-
nal trajectories. Specifically, we randomly sample eight dif-
ferent trajectories and change their orders to generate sev-
eral groups of trajectories. We find that β-VAE only disen-
tangle the representations with a small margin. In contrast,

Method Gowalla (Los Angeles)
ACC@1 ACC@5 AUC MAP

ST-RNN 10.11 19.05 78.07 4.97
VANext 14.36 27.91 86.22 7.73
β-VAE 14.39 27.43 85.95 7.72
SML 14.77 28.12 86.38 7.86

PLSPL 14.92 28.26 84.34 7.97
SelfMove 15.94 31.02 86.98 8.72
Method Foursquare (New York)

ACC@1 ACC@5 AUC MAP
ST-RNN 15.37 31.73 81.40 8.59
VANext 22.54 51.26 89.30 14.02
β-VAE 22.26 50.71 89.38 14.07
SML 22.62 52.16 90.17 14.74

PLSPL 23.02 53.33 89.21 14.83
SelfMove 25.07 56.78 90.72 16.60

Table 1: Performance Comparison.

(a) β-VAE. (b) zs in SelfMove.

Figure 2: The visualization of latent representations.

the representations produced by SelfMove are grouped well,
demonstrating that it can successfully separate the time-
invariant factors to uncover the inherent preference of users.
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