Exploring Hypergraph of Earnings Call for Risk Prediction (Student Abstract)
DOI:
https://doi.org/10.1609/aaai.v37i13.26973Keywords:
Risk Prediction, Hypergraph, NLPAbstract
In financial economics, studies have shown that the textual content in the earnings conference call transcript has predictive power for a firm's future risk. However, the conference call transcript is very long and contains diverse non-relevant content, which poses challenges for the text-based risk forecast. This study investigates the structural dependency within a conference call transcript by explicitly modeling the dialogue between managers and analysts. Specifically, we utilize TextRank to extract information and exploit the semantic correlation within a discussion using hypergraph learning. This novel design can improve the transcript representation performance and reduce the risk of forecast errors. Experimental results on a large-scale dataset show that our approach can significantly improve prediction performance compared to state-of-the-art text-based models.Downloads
Published
2024-07-15
How to Cite
He, Y., Tai, W., Zhou, F., & Yang, Y. (2024). Exploring Hypergraph of Earnings Call for Risk Prediction (Student Abstract). Proceedings of the AAAI Conference on Artificial Intelligence, 37(13), 16226-16227. https://doi.org/10.1609/aaai.v37i13.26973
Issue
Section
AAAI Student Abstract and Poster Program