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Abstract

Predicting information cascade popularity is a fundamental
problem for understanding the nature of information propaga-
tion on social media. However, existing works fail to capture
an essential aspect of information propagation: the temporal
irregularity of cascade event – i.e., users’ re-tweetings at ran-
dom and non-periodic time instants. In this work, we present
a novel framework CasODE for information cascade pre-
diction with neural ordinary differential equations (ODEs).
CasODE generalizes the discrete state transitions in RNNs
to continuous-time dynamics for modeling the irregular-
sampled events in information cascades. Experimental eval-
uations on real-world datasets demonstrate the advantages of
the CasODE over baseline approaches.

Introduction
Online social platforms have become an integral element
of personal daily life, enriching real-time communica-
tion among individuals and enabling information diffusion
quickly. The dynamics of users’ activities facilitate the fast
propagation of information along social networks, forming
an information cascade. Understanding information cascade
has significant economic and societal impacts – and one of
the typical tasks is information popularity prediction which
forecasts the size of potentially affected users after a certain
time (Zhou et al. 2021).
Challenges. Despite the success of existing neural network-
based methods (Zhou et al. 2021), real-world information
diffusion processes are often irregularly sampled (i.e., the
time series of different user activities are non-uniform).
Specifically, the following are the observations along these
lines which motivate our work: Irregularly-sampled cascade
event. Since people have personal preferences and require-
ments in real life, they may browse tweets/microblogs and
retweet them at different times. This is also the case for other
types of networks, such as paper citations and rumor prop-
agation. The time intervals between adjacent events (e.g.,
retweets and citations) are irregular. RNNs are the domi-
nant models for capturing the temporal patterns of the infor-
mation diffusion, which, however, are initially designed for
regularly-sampled sequences but cannot reflect the influence
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of irregular events due to the underlying inflexible iterative
structure (Rubanova, Chen, and Duvenaud 2019).
Present Work. To address the mentioned challenge,
we present a novel information Cascade popularity pre-
diction model based on neural Ordinary Differential
Equations (Chen et al. 2018) (CasODE) for modeling the
irregular-sampled events in information cascades. Specif-
ically, CasODE generalizes discrete state transitions to
continuous-time dynamics of the information cascade. It al-
lows us to more appropriately model the real information
propagation, obeying an ODE between successive observa-
tions to possess continuous hidden states. Once a new event
occurs, the state will be updated by a gating mechanism,
which jointly considers the new input and the temporal in-
terval.

Methodology
In this section, we present the architecture of our pro-
posed CasODE, which consists of three components: (1)
Structural-equivalent feature extraction, (2) Irregular infor-
mation diffusion modeling, and (3) Information cascade
popularity prediction.
Structural-Equivalent Feature Extraction. Given an in-
formation cascade graph Gc(to) observed at time to, we have
its weighted adjacency matrix Ac and diagonal degree ma-
trix Dc. Then an unnormalized graph Laplacian Lc = Dc−
Ac = UΛUT can be used to calculate the spectral graph
wavelets Φ with heat kernel function on the spectrum (Don-
nat et al. 2018). Each column vector of Φ ∈ R|Vc|×|Vc| is the
wavelets for a node in cascade graph. In order to solve the
graph mapping problem (i.e., solve the “isomorphism” prob-
lem between two nodes’ neighbors), the wavelet coefficients
are processed as a probability distribution. Then the empir-
ical characteristic functions are utilized to obtain the final
structural-equivalent node embeddings E. The Chebyshev
polynomials are used to calculate the wavelet coefficients.
The overall complexity for cascade graph structure learning
is linear in the number of edges in the graph.
Modeling Irregular Temporal Diffusion. First, given the
sequence of user embeddings {Eui

|ui ∈ Vc}, we employ an
LSTM cell before performing the ODE solver to avoid the
vanishing or exploding of gradients. Subsequently, we use a
numerical ODE solver – the Euler method (Chen et al. 2018)

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

16192



– to evaluate the hidden states between successive observa-
tions and update the hidden states using a GRU cell at each
observation. Besides, we propose a temporal gating mech-
anism (T-Gate) to merge the latent representation from the
first two steps to learn the continuous-time dynamics. We
use T-Gate to handle the irregular sampling problem caused
by the time-varying from seconds to hours between succes-
sive cascade events that make the ODE solver challenging to
evaluate continuous hidden dynamics.

Within the previous hidden state pair (ci−1,hi−1) at time
ti−1 and user ui’s embedding Eui , we first feed them into
the LSTM cell to generate a new hidden state (ci,h

′
i):

(ci,h
′
i) = LSTMCell (θl, (ci−1,hi−1),Eui

) , (1)

where ci−1 is the memory cell and hi−1 is the output state.
θl denote the learnable parameters in LSTM Cell. Then, we
feed hi−1 into the ODE solver based on the Euler method
to obtain the ODE hidden state zi at each step. This opera-
tion is to construct the continuous-time dynamics of the hid-
den states between irregular time intervals in all consecutive
(ti−1, ti) pairs. To construct the true cascade representation
at time ti, we take two states of LSTM cell – output state h′

i
and hidden state zi – as the input for latent representation
learning of ui, which outputs h′′

i :

zi = ODESolver (fω,hi−1,h
′
i, (ti−1, ti)) , (2)

h′′
i = GRUCell (θg,h′

i, zi) , (3)

where zi ∈ Rd is the solution at ti to an ODE started from
time ti−1; h′′

i is the updated hidden state; θg denotes the
learnable parameters in GRU Cell. Given the latent states h′

i
and h′′

i , we update hi using the gating mechanism:

hi = νi ⊙ h′′
i + (1− νi)⊙ h′

i, (4)

where the temporal gate νi = e−(∆ti) ∈ Rd helps the
model determine how much of the state is solved by ODE
that needs to be passed to the future. Finally, we compute
the output states {o1 . . .on} via a fully-connected layer for
downstream tasks, where o ∈ Rd and n denotes the number
of users |Vc| in the early evolution. Generally, we use the
final output state on as the cascade latent representation Z.

Prediction. We feed Z into multi-layer perceptrons
(MLPs) to predict cascades’ popularity. During training, we
use the mean square logarithmic error (MSLE) as the objec-
tive to train CasODE.

Experiments
Datasets and Baselines. We select two public datasets, i.e.,
Twitter and Weibo, and compare our model CasODE with
five baselines: DeepHawkes (Cao et al. 2017), CasCN
(Chen et al. 2019), LatentODE (Rubanova, Chen, and Du-
venaud 2019) and CasFlow (Xu et al. 2021).
Performance Comparison. The performance of baselines
and CasODE on two datasets are summarized in Table ??.
In particular, the proposed CasODE outperforms all base-
lines in terms of both MSLE and MAPE, demonstrating the
benefits of exploiting continuous-time dynamics for model-
ing the irregular-sampled events in information cascades.

Model Twitter Weibo

MSLE MAPE MSLE MAPE

DeepHawkes 7.216 0.587 2.796 0.282
CasCN 7.183 0.547 2.732 0.273
LatentODE 7.112 0.475 2.234 0.245
CasFlow 6.955 0.456 2.281 0.242

CasODE 6.812 0.436 2.195 0.217

Table 1: Performance comparisons on two datasets.

(a) Dimension of   E (b) Dimension of    Z

Figure 1: Impact of hyper-parameters of CasODE on Weibo
dataset, measured by MSLE.

Parameter Sensitivity. Figure 1(a) and (b) show that the
best performance of CasODE is achieved when the dimen-
sions of latent factor Z is 64 and the dimension of cascade
embedding E is 80.
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