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Abstract

Graph convolutional neural network (GCN) based methods
have achieved noticeable performance in solving mixed in-
teger programming problems (MIPs). However, the general-
ization of existing work is limited due to the problem struc-
ture. This paper proposes a self-paced learning (SPL) based
GCN network (SPGCN) with curriculum learning (CL) to
make the utmost of samples. SPGCN employs a GCN model
to imitate the branching variable selection during the branch
and bound process, while the training process is conducted
in a self-paced fashion. Specifically, SPGCN contains a loss-
based automatic difficulty measurer, where the training loss
of the sample represents the difficulty level. In each itera-
tion, a dynamic training dataset is constructed according to
the difficulty level for GCN model training. Experiments on
four NP-hard datasets verify that CL can lead to generaliza-
tion improvement and convergence speedup in solving MIPs,
where SPL performs better than predefined CL methods.

Introduction
Mixed integer programming problems (MIPs) are significant
parts of combinatorial optimization (CO) problems . Graph
convolutional network (GCN) based methods have achieved
remarkable enhancement on MIPs, such as Learn2branch
(Gasse and et al. 2019). Although GCN networks produce
strong baselines for CO problems, the generalization of the
learned policy is limited due to the problem structure, and
it is challenging to give any precise quantitative estimates a
priori. Curriculum learning (CL) is a general training strat-
egy (Wang, Chen, and Zhu 2020), which guides the model
training process in a paradigm from simple to complex,
making the utmost of samples with various difficulty levels.
This paper presents a self-paced learning based graph con-
volutional network (SPGCN) for MIPs, in which self-paced
learning is semi-automatic CL with a loss-based automatic
difficulty measurer and a dynamic curriculum (Land and
Doig 2010). SPGCN contains three parts, graph represen-
tation(Nair and et al. 2020), model prediction and training
strategy. Experiments on four NP-hard benchmarks show
good performance and high efficiency.
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Figure 1: The overall structure of SPGCN.

Method
The overall structure of the proposed SPGCN is shown
in Figure 1. Firstly, MIP instances are represented as bi-
partite graphs. Afterward, the bipartite graphs are used as
inputs to the SPGCN model. SPGCN adopts two half-
convolution operators to embed the bipartite graph, one from
constraints to variables and one from variable to constraints.
The learned variable node embeddings are employed to pre-
dict the branching decision variables based on the multilayer
perceptron (MLP). Besides, the SPGCN is trained in a self-
paced way, which contains a dynamic curriculum and a loss-
based automatic difficulty measurer. The training scheduler
constructs a dynamic training dataset in each iteration ac-
cording to the sample difficulty measured by training loss.

Graph Representation. A bipartite graph (BG) was
adopted to represent the MIP instance, as shown in Figure
2. Specifically, non-zero entries in objective function co-
efficients {k1, . . . , kn} are encoded as features of variable
nodes {v1, . . . , vn}, constraint bounds {b1, . . . , bm} as fea-
tures of constraint nodes {c1, . . . , cm}, and coefficient ma-
trix A as features of v − c edges in E .
Dataset Generation. The dataset consists of state-action
pairs {(si, ai)Ni=1}, where si is the BG state and ai is the
branching decision variable. When solving MIPs with SCIP,
the decisions of strong branching and the new node states are
recorded during the branch-and-bound, and normally several
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Figure 2: The BG representation for a MIP instance.

Algorithm 1: The Self-Paced GCN Model
Input: Training Dataset {(si, ai)Ni=1}; GCN model fw; The

maximum iteration number T ;
Output: The parameters w of fw.
1: Initializing w, v, λ = λ0.
2: for t = 1 : T do
3: for i = 1 : n do
4: v∗i = argmin

vi∈[0,1]
vi · L(fw(si), ai).

5: end for
6: w∗ = argmin

w

∑N
i=1 v

∗
i · L(fw(si), ai).

7: Update λt according to the predefined sequence N .
8: end for

pairs are recorded to the dataset. However, these pairs may
be of uneven quality and heterogeneous, as they come from
different instances and different branching stages.
Self-Paced GCN Model. To handle the issues above, a self-
paced learning based GCN model described in Algorithm 1
is proposed to make the training faster, more generalized,
and more robust. The goal of the model is to minimize the
empirical cross-entropy loss on the whole training set,

min
w,x

E(w, v, λ)
N∑
i=1

vi · Li(fw(si), ai) (1)

where fw is the GCN model with parameter w which maps
the bipartite state s to branch variable action a. v ∈ [0, 1]N is
the mask vector where vi = 1 indicates that the ith sample is
chosen for training. λ represents the age parameter which is
dynamically adjusted to make sure exactly Nt examples be
assigned with non-zero masks vi in the tth epoch to control
the learning pace. w and v are optimized iteratively. Based
on SPGCN, CLGCN is the simplified version of SPGCN,
where the curriculum is constructed from easy to hard based
on the predefined difficulty levels.

Experiments and Analysis
Experimental Settings. SPGCN is compared with CLGCN
and Learn2brach on Set Covering (SC), Combinatorial Auc-
tion (CA), Capacitated Facility Location (CFL) and Maxi-
mum Independent Set (MIS). Each benchmark consists of
easy, medium and hard instances. All experiments are re-
peated five times. The details of benchmarks and other addi-
tional experimental details are given in the appendix.

Problem Learn2branch CLGCN SPGCN

SC
acc@1 63.2 63.7 65.9
acc@5 91.2 92.3 93.5
acc@10 96.3 97.8 98.9

CA
acc@1 59.7 60.3 63.1
acc@5 90.1 91.9 92.8
acc@10 95.8 96.4 97.2

CFL
acc@1 71.2 71.5 72.8
acc@5 97.9 98.1 98.5
acc@10 99.9 99.9 99.9

MIS
acc@1 56.7 58.2 60.1
acc@5 81.2 83.8 86.3
acc@10 89.7 91.2 93.3

Table 1: Comparison of prediction accuracy on the test sets.

Problem Learn2branch CLGCN SPGCN

SC Medium 1582 1449 1329
Hard 30347 29849 28479

CA Medium 692 653 642
Hard 5342 5144 5023

CFL Medium 338 348 323
Hard 339 351 326

MIS Medium 2034 1837 1749
Hard 3013 2934 2649

Table 2: Comparison of resulting node counts for medium
and hard difficulty datasets.

Results and Analysis. Table 1 shows the prediction ac-
curacy of branching variables on the test sets represent-
ing the models’ imitation ability. Table 2 shows the final
node counts required to solve the instances by algorithms.
In general, SPGCN significantly outperforms learn2branch
and predefined CL methods on all benchmarks, demonstrat-
ing the effectiveness of self-paced learning.

Conclusion
In this paper, a data-driven approach SPGCN is proposed
that integrates self-paced learning into the GCN model. Ex-
periments on four NP-hard datasets verify the efficiency of
SPGCN. Since SPL learning is a general training strategy, it
has the potential to be effective on various MIP tasks, which
provides a new idea for the MIP community.
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