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Abstract

Multi-agent pathfinding (MAPF) is essential to large-scale
robotic coordination tasks. Planning-based algorithms show
their advantages in collision avoidance while avoiding ex-
ponential growth in the number of agents. Reinforcement-
learning (RL)-based algorithms can be deployed efficiently
but cannot prevent collisions entirely due to the lack
of hard constraints. This paper combines the merits of
planning-based and RL-based MAPF methods to propose
a deployment-efficient and collision-free MAPF algorithm.
The experiments show the effectiveness of our approach.

Introduction
Pathfinding is a fundamental form of many practical scenar-
ios, such as robot routing and GPS navigation, and has been
extensively studied. Multi-agent pathfinding (MAPF) occurs
when multiple agents in a shared system find their way while
avoiding collisions. We consider an extended setting called
lifelong MAPF (Damani et al. 2021), where agents are as-
signed a new task immediately after completing one.

Planning-based approaches take inspiration from tradi-
tional search algorithms such as the A* algorithm (Hart,
Nilsson, and Raphael 1968). RL-based methods, on the
other hand, have the potential to solve the lifelong MAPF
problem effectively due to their distributed decision-making
approach. Current RL-based MAPF methods, such as
PRIMAL2 (Damani et al. 2021), introduce carefully de-
signed observation spaces and reward functions to make the
policy behave as we want. However, agents cannot com-
pletely avoid collisions with soft penalties in such rewards.

This paper proposes a novel framework that combines RL
and planning to solve the lifelong MAPF problem. We train
the agents with VDN (Sunehag et al. 2018) for explicit co-
ordination. A classifier and a replanner are then introduced
to detect and resolve collisions by local planning. We eval-
uate our approach in a realistic automated storage scenario
and achieve excellent performance with complete collision
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avoidance. Test results in unseen maps further illustrate the
generalization ability.

Approach
Our approach applies a hierarchical framework to balance
efficiency and safety (collision avoidance). Most of the time,
the agents are governed by an efficient policy obtained by the
RL algorithm. In scenarios where collisions may occur, we
hand over control to the planning module to avoid collisions.

RL Module VDN is a scalable MARL framework that al-
lows decentralized execution and optimizes the sum of in-
dividual Q-values during training, explicitly facilitating co-
ordination. To adapt VDN to our task, we must clearly de-
fine a Dec-POMDP for MAPF problems. Specifically, we
define state s ∈ S as global information of the map, in-
cluding agents and carrying tasks. The oi of each agent
i ∈ N represents its individual observation, typically the
local information around it. In terms of reward function, we
define a global reward function as r = λ1

∑N
i=1 donei −

λ2

N

∑N
i=1 disi−λ3#coll−λ4#stag, where donei represents

whether agent i has reached its current goal at this timestep,
disi represents agent i’s distance to its current goal, #coll
represents the number of collision events that have just oc-
curred, and #stag represents the number of stagnant agents
for a period of time. The first two terms guide agents to reach
their goals fast. The third term can play a role in prevent-
ing agents from collisions, but may also curb agents’ explo-
ration and learning. To prevent possible negative effects, we
devised the forth term to encourage exploration of agents.

Re-planning Module VDN policies can achieve relatively
good coordination among agents, have the potential to solve
general problems, and can be deployed efficiently. However,
collision events are treated as penalties during the VDN’s
training phase, and it is almost impossible for the algorithm
to avoid collisions 100% of the time, as the agents always
learn to trade off task completion and collision avoidance. To
address this limitation, we transfer the control to a planning-
based algorithm when the probability of causing a collision
is high. Therefore, the two key questions are: (1) How to
judge whether a control switch is required? (2) How to make
good plans for the local agents likely to collide?
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To answer (1), we pre-train a collision detector, which
takes local observations of two agents as input and predicts
whether they will collide in the future. In practice, we roll
out many trajectories of learned policies by VDN and col-
lect a supervised learning dataset, where features are agents’
observations and labels indicate whether they collide soon.
With the collision predictor, we perform a control switch
when the predicted probability is over a fixed threshold. Re-
garding (2), we can obtain the pair relationships about possi-
ble collisions between agents by the detector, which can be
seen as edges connecting agents. For each connected agent
set, we only plan actions locally. Specifically, we apply a
heuristic-based planning method, where agents plan sequen-
tially in a fixed order of priorities (e.g., id) to reduce their
search space. Each agent prefers actions derived from the
RL policy and searches for other actions when it encounters
collisions with higher priority agents during planning.

Experiments
To test the effectiveness of our approach, we design storage
maps as grid worlds of different complexity in Fig. 1. We
also designed map three and its results are in the appendix1.
In the beginning, n agents are initialized randomly on the
paths (grey) with no loads and are assigned different tasks,
including the loading port (red) and the goal shelf (green).
A complete task consists of loading the package, delivering
it to the target shelf, and unloading it.

In our experiments, we set all hyperparameters fixed ex-
cept λ3. For VDN baselines, we set λ3 = α for VDN-pα
and gradually tune λ3 from 1 to 50 for VDN-schedule and
our hybrid algorithm. For each map, we build scenarios with
different numbers of agents, and the mean results of five ran-
dom seeds are shown in Fig. 1. In Fig. 1(b) & 1(e), the algo-
rithm’s performance is quantified by 10000 × #TasksDone

#Timesteps ,
where #TasksDone counts the number of carrying tasks
done within fixed timesteps, and #Timesteps indicates the
total timesteps. In Fig. 1(c) & 1(f), collision is defined as
the number of collisions occurred within fixed timesteps. In
practice, we counted the results within 300 timesteps.

Training VDN with different λ3 can make agents weigh
between completing tasks and avoiding collisions. As we
can see in Fig. 1, setting λ3 = 1 makes agents pay little at-
tention to collision avoidance and just get the transport done.
If we set a large λ3 = 50 for VDN-p50, collisions are mostly
avoided, but the agents can hardly learn to complete tasks
since the hefty penalty of collision intimidates agents from
exploration and completing tasks. Thus, we come up with a
schedule of λ3 and train VDN policies with a minor penalty
of collisions at first to encourage the agents to learn to com-
plete carrying tasks as efficiently as possible, regardless of
the collisions. Gradually, we increase the penalty of colli-
sions, and agents can learn to adapt their policies and try to
avoid collisions while still completing the tasks. However,
since the penalty is a soft constraint, collisions still occur
occasionally, which is intolerable in real-life applications.
Planning-based algorithms like A* can achieve outstanding

1https://www.lamda.nju.edu.cn/chenf/aaai23 appx.pdf
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(d) map two
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Figure 1: Two storage scenarios and experimental results
on them. Our method can have comparable performance to
VDN baselines while achieving zero collision.

performance and zero collision, but frequent re-planning is
inefficient. Our method introduces a re-planning module so
we can entirely avoid collisions while maintaining compet-
itive performance. As shown in Fig. 1, our method can be
efficiently deployed with RL policies and guarantee safety
with no collision. More results of map three and a report of
computational time can be found in the appendix. In addi-
tion, we train our MAPF policy for 20 agents on some extra
generated scenarios. While keeping collision-free, our pol-
icy has the performance of 506 ± 3.66, 748.83 ± 5.17, and
425.66 ± 1.34 when testing on unseen map one, map two,
and map three, respectively. With little performance drop, it
verifies the generalization ability of our approach.

Conclusion and Future Work
This paper proposes a novel framework combining RL and
planning for solving lifelong MAPF problems and the ex-
periments show the effectiveness of our framework. An in-
teresting future work is to transfer policy to scenarios with
different terrains and agent numbers without extra training.
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