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Abstract

This work investigates the evolution of latent space when
deep learning models are trained incrementally in non-
stationary environments that stem from concept drift. We pro-
pose a methodology for visualizing the incurred change in la-
tent representations. We further show that classes not targeted
by concept drift can be negatively affected, suggesting that
the observation of all classes during learning may regularize
the latent space.

Introduction
Supervised deep learning requires vast and rich data sources
to capture the inherent diversity of a target domain and thus
achieve good generalization. However, the creation such
large datasets is often very expensive, motivating a more
practical alternative: deploy a model trained on an smaller
initial dataset, and keep collecting data to improve the model
over its lifetime. For this strategy to be successful, it is cru-
cial to enable the integration of incoming data samples into
the model’s existing knowledge base, thus continually in-
creasing its performance over the entire observed domain.

Incremental Learning consists in pursuing the training of
a model on new data without accessing previous data. Such
sequential learning raises the famous stability-plasticity
dilemma, wherein stability refers to the retainment of previ-
ous knowledge and plasticity the acquirement of new knowl-
edge (Elwell and Polikar 2011). Deep neural networks lie on
the plastic end of the spectrum, as the distributed nature of
learned features renders them very sensitive to the integra-
tion of new information, while also enabling their impressive
generalization power. Furthermore, when the data distribu-
tion is non-stationary, continually integrating new informa-
tion interferes with previously acquired knowledge, which
leads to forgetting (French 1997).

In real-world scenarios, one cannot assume stationarity
between the distributions encountered during training and
at deployment. For instance, predictive models used in de-
cision systems can interact in intricate ways with their envi-
ronment through their predictions. As an example from the
medical setting, being able to predict and prevent some dis-
ease before it occurs would make the label frequency of said

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

disease decrease overtime. Such alterations to a data distri-
bution are captured under the phenomenon of concept drift,
defined as a change in the statistical properties of a target
domain over time in an arbitrary way, i.e. ∃t : Pt(X, y) ̸=
Pt+1(X, y), where (X, y) denote input/output pairs. In this
work, we focus on virtual concept drift, a type of drift rel-
evant to many real-world applications, where distribution
shift occurs only in the input distribution P (X) without
affecting the input/output relationship P (y|X) (Lu et al.
2019). Hence, virtual concept drift does not affect the de-
cision boundary, but only latent representations.

In the following section, we investigate the performance
impact of incrementally learning from an environment
which undergoes virtual concept drift. Using the well-known
MNIST dataset (Lecun et al. 1998), we artificially create a
virtual concept drift problem. We first show that in a non-
stationary environment, the overall performance is not an
appropriate indicator for monitoring the quality of model
updates. More importantly, we show that even classes not
targeted by concept drift are negatively affected, suggesting
that some classes may serve as regularizers when learning
the representation of other classes, especially if they share
common features. These results are supported by our final
qualitative analysis of the latent representation evolution.

Incremental Learning Under Concept Drift
Given an initial target domain D, we artificially introduce
virtual concept drift by splitting D using two custom joint
probability distributions P1(X, y) and P2(X, y), ensuring
that P1(X) ̸= P2(X) and P1(y|X) = P2(y|X). We then
sample from D using both distributions to create two disjoint
and equally-sized domains D1 and D2, with Di ∼ Pi(X, y).
To simulate a scenario akin to many real-world applica-
tions, we craft the first domain D1 as a balanced pre-training
dataset, and the second domain D2 as new observations of
the target domain D that become available through time. To
ensure that D2’s input distribution differs from that of D1,
we introduce class imbalance in D2 by specifying an under-
sampling factor µ and under-sampled class y−. Formally,
the two label distributions are defined as P1(yi) = 1

K ∀yi
and P2(yi) = α

K ∀yi ̸= y−, P2(y−) = α
µK , with α be-

ing the normalizing constant. Note that µ = 1 represents
the absence of concept drift. In our experiments, datasets for
domains D1 and D2 each contain 25000 samples. The bal-
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µ y− Accuracy evolution (%)

Overall Class-Wise (y−)

1 - +0.32± 0.45 N/A
10 0 −0.32± 0.88 −4.06± 3.22
10 1 −0.31± 0.46 −4.78± 1.65
10 2 −1.12± 1.14 −16.53± 6.73
10 3 −1.02± 0.58 −16.80± 5.48
10 4 −1.14± 0.51 −20.66± 7.36
10 5 −0.53± 0.79 −14.20± 6.29
10 6 −0.24± 0.87 −8.27± 4.51
10 7 −0.99± 1.20 −13.79± 5.84
10 8 −0.90± 1.09 −19.55± 9.31
10 9 −1.09± 1.00 −20.36± 7.04

Table 1: Evolution of accuracy during incremental learning
with virtual concept drift (averaged over 10 runs).

anced dataset for domain D1 is fixed for all experiments. In
total, we generate 11 configurations of D2: one with µ = 1
(no concept drift) as a baseline, and 10 with µ = 10 using
each digit once as the under-sampled class y−. For each con-
figuration, training is first performed on D1, then continued
on D2 without access to previous data. Given Di, we train a
deep neural network fθi , where ŷ = fθi(x) = Cθi ◦ Eθi(x)
denotes the prediction for input x. The intermediate layers
Eθi encode the input into a latent space of dimensionality
L, extracting task-specific features: x ∈ RH×W×C 7→ z ∈
RL := Eθi(x). The final classification layer Cθi specifies
the decision boundary: z ∈ RL 7→ ŷ ∈ RK := Cθi(z).

We use a multi-layer perceptron with two hidden layers
of width 20, optimized over a cross entropy loss using SGD
and learning rate of 0.05. We learn over D1 for 5 epochs
before observing D2 in batches of size 32. Each batch in
D2 is seen only once and the model is updated using a sin-
gle optimization step per batch. Table 1 shows the results of
the incremental learning experiments. We observe that the
overall performance appears to remain stable, while the ac-
curacy of the under-represented class decreases drastically.
These results demonstrate that simply measuring the metrics
of interest on the whole label space is not sufficient when in-
crementally learning after deployment.

Qualitative Analysis
In order to visualise the change in latent representations
learned by Eθ1 and Eθ2 , we propose a new decoder-based
method. Optimizing over a reconstruction task from latent
space Z back to the input space, we train a decoder network
g which mirrors the encoder’s architecture, with z ∈ RL 7→
x̂ ∈ RH×W×C := g(z). The decoder’s training inputs are
encoded using Eθ1 , which is freezed during the reconstruc-
tion task. By uncoupling the reconstruction task from the
target task, we force g to use only task-specific features in
order to generate an approximation of the input. The visual-
ization set for class yk contains of the set of inputs Xk with
label yk. Then, we project the set of samples Xk into latent
space using both encoders and compute the mean represen-

Figure 1: Examples of representation evolution (y− = 4).

tation for each one: zki = mean(Eθi(Xk)). The final recon-
struction is then generated as: x̂i = normalize(g(zki)). To
assess the evolution due to incremental learning, we visu-
alise i) the difference between both reconstruction: x̂diff =
normalize(x̂2 − x̂1), and ii) the difference blended over the
first reconstruction to extrapolate the representation’s long
term evolution: x̂proj = blend(x̂1, x̂diff , α = 0.5).

Figure 1 shows examples of changes in representation for
an input of class 4 when there is no concept drift (top), the
same input under concept drift of y− = 4 (middle), and an
input of class 8 under concept drift of y− = 4 (bottom). We
observe that the representation of class 4 input shifts towards
the representation of class 9 under concept drift. While this
is expected, the behaviour highlighted on the bottom row is
more surprising: we observe a representation shift for the in-
put corresponding to digit 8 towards a representation resem-
bling digit 3. Errors on class 8 increase from 1.3% for 8.2%.
We posit that the latent representations learned through a
balanced pre-training should be regarded as a fragile ecosys-
tem, as learned features are distributed throughout the entire
network and shared between different classes.

Conclusion
Our results confirm that we can indeed expect confusion to
be introduced within the latent representations of the under-
sampled class. More importantly, we discovered this confu-
sion to be generalized over the whole label space, and not
limited to the under-sampled class. This motivates further
investigations to ensure a safe usage of models undergoing
incremental learning in non-stationary environments.
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