
An Introduction to Rule-Based Feature and
Object Perception for Middle School Students

Daniella DiPaola1, Parker Malachowsky1, Nancye Blair Black2, Sharifa Alghowinem1, Xiaoxue
Du1, Cynthia Breazeal1

1 MIT Media Lab, Massachusetts Institute of Technology
2 Teacher’s College, Columbia University

dipaola@media.mit.edu, pmalacho@media.mit.edu, nwb2111@tc.columbia.edu, sharifah@media.mit.edu,
xiaoxued@media.mit.edu, cynthiab@media.mit.edu

Abstract

The Feature Detection tool is a web-based activity that allows
students to detect features in images and build their own rule-
based classification algorithms. In this paper, we introduce
the tool and share how it is incorporated into two, 45-minute
lessons. The objective of the first lesson is to introduce stu-
dents to the concept of feature detection, or how a computer
can break down visual input into lower-level features. The
second lesson aims to show students how these lower-level
features can be incorporated into rule-based models to clas-
sify higher-order objects. We discuss how this tool can be
used as a ”first step” to the more complex concept ideas of
data representation and neural networks.

Figure 1: Welcome screen of the Feature Detection Tool

Introduction
Today’s students are growing up in a world in which com-
puter vision algorithms are widespread. For instance, popu-
lar social media apps such as TikTok and Snapchat use vi-
sion algorithms to detect faces for silly face filters; image
storing apps such as Google Photos and Dropbox use com-
puter vision to make it easier to sort through your photos;
self-driving cars use computer vision to detect road signs;
and vision techniques have been applied to medical imaging
to diagnose cancers. Today’s students will be a part of a gen-
eration that will make vital decisions regarding how vision
algorithms are used in a wide variety of applications.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Numerous computational approaches have been devel-
oped for image recognition. Traditional image recognition
systems use feature engineering, which is a process in which
engineers hand-select the important lower-level features that
make up an object (i.e., circles, curves, and edges). A hand-
ful of tools exist to teach students object recognition through
deep neural networks (Tang et al. 2019; Carney et al. 2020;
Jordan et al. 2021), but there is a lack of tools that allow
them to create their own rule-based systems.

Teaching students about rule-based systems provides
scaffolding to understand neural networks, as a neural net-
work can be reasonably thought of as a rule-based system
designed by a machine learning algorithm based on a train-
ing set. More specifically, it is helpful to have a mental
model of neural networks as hierarchical, rule-based sys-
tems where a machine learning algorithm iterates on feature
engineering and rule creation over training samples. By of-
fering students the chance to leverage feature detection in
the creation of their own rule-based object detection sys-
tems, we lay the ground work for them to intuitively under-
stand how a neural network can accomplish a similar task.

In this paper, we present the Feature Detection Tool, an
interactive learning tool that introduces middle school stu-
dents to rule-based image recognition (Figure 1). The tool is
divided into two parts: the first allows students to visualize
and count features (circles, curves, and edges) in an image
or video feed. In the second part of the tool, students create
rules based on these features to classify different objects.

Background
Computer Vision Brief Overview
Images, similar to any other data types, are complex. Before
the advancement of supervised machine learning algorithms,
such as deep learning, mathematical algorithms were used
to extract meaningful information about the image, known
as feature engineering (see Figure 2). The process of feature
engineering starts with expert consultation and brainstorm-
ing of the most representative features of each class/object
in an image before implementing the actual extraction al-
gorithm. Intuitively, sample features include things such as
color, brightness, motion, edges, contours, illumination gra-
dients, and more. This handcrafted process attempts to iden-
tify the right set of features for the image recognition task

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

16004



Figure 2: Computer Vision Perception for Object Detection using Feature Engineering Methods, Highlighting User Agency

that have the potential to generalize to recognize similar ob-
jects in different images.

Simple features such as edges, curves, corners, etc. are
detected by using different thresholds in color spaces (see
section on Technical Details of Feature Detection Interface).
More advanced, feature detection algorithms can be used,
such as bag-of-visual-words algorithms (Yang and Newsam
2010).

Once these features are extracted, they are combined to
recognize more complex objects in the image and the re-
lationship between them. Knowledge-based (or rule-based
methods) translate human knowledge about an object’s fea-
tures into rules that can can be applied by an algorithm to
classify instances of that object in an image (Yang, Krieg-
man, and Ahuja 2002). For instance, one might create a rule
that a face must have two symmetric eyes, a nose, and a
mouth. Another rule might incorporate the relationship be-
tween features and the relative distances and position. A dis-
advantage of this method is that the rules might be too spe-
cific or too general. The system may fail to detect the object,
or may result in a false positive detection (such as mistaking
a cloud pattern for a face).

Older supervised learning algorithms (e.g., Support Vec-
tor Machines, or “shallow” Neural Networks), use these en-
gineered features as input (a feature vector) coupled with
their labels to learn patterns about an object in the image
(i.e., a class). In this method, similar to any supervised train-
ing of a model, the more comprehensive and diverse the
training data set is (i.e., inclusion of different lighting con-
ditions, object occlusions, sizes, orientations, etc.), the more
robust the results will be. The user’s understanding of the
image data and the visual features that are relevant for ob-
ject detection are key to these algorithms’ success.

Modern supervised machine learning methods, such as
deep learning applied to computer vision tasks, require far
less human insight about visual features, etc. In deep learn-
ing, the algorithm takes the raw image as input (rather than
engineered features). Visual features are learned and ex-
tracted through the first few layers in the architecture. Even
though the layers use kernels to extract features, the ex-
tracted features are also influenced (weighted) by the data
and the classes to find the best representative features for

each class (Nixon and Aguado 2019), which are then used
by deeper layers to make a decision about the presence of an
object in the image. The person training the deep network
has little control of what or how the model is learning, except
by providing more, correctly labelled training data, varying
the number of layers, etc. This is in contrast with rule-based
models, where the creator of the algorithm plays a signifi-
cant role in how the vision algorithm is implemented.

Children’s Usage of Computer Vision Tools

The AI4K12 Initiative - a partnership between the Associa-
tion for the Advancement of Artificial Intelligence and the
Computer Science Teachers Association - has been devel-
oping national guidelines for AI education in grades K-12,
as summarized through the “Five Big Ideas in AI” (Touret-
zky et al. 2019). Big Idea #1 focuses on machine perception,
the idea that “computers perceive the world using sensors”
(Touretzky et al. 2019).

Computer vision is an important way that machines try to
interpret and interact with the world using cameras and other
types of image sensors. In the ”Draft Big Idea 1 - Progres-
sion Chart,”1 AI4K12 details several related concepts and
learning objectives that build K-12 students’ understanding
of how AI extracts meaning from sensory data through com-
puter vision. These include understanding the process of fea-
ture extraction and how extraction proceeds from lower- to
higher-level feature detection, as well as the exploration of
the differences between computer and human sensing and of
specialized AI algorithms for tasks like computer vision.

Several tools are already used to teach K-12 students
about various aspects of computer vision. For example,
Teachable Machine allows K-12 students to create their own
image classification models using supervised machine learn-
ing (Carney et al. 2020). While users are involved at the im-
age labeling stage, Teachable Machine does not allow for
any degree of feature engineering to tweak the accuracy or
see the inner workings of the algorithm. Students can sim-
ilarly use an end-user tool, like Google Lens, to see a pre-
trained image classifier in action and explore the benefits and

1https://ai4k12.org/big-idea-1-overview/

16005



limitations of the technology 2.
While both of these resources demonstrate object recogni-

tion, they do not reveal the feature patterns detected, or rules
for classification established by the model, or the location of
recognized object in the image (with bounding boxes or oth-
erwise). In fact, when using Teachable Machine, it’s possible
for students to believe they are training the AI to recognize
one thing, such as the hand gesture for peace, when the AI is
technically recognizing something else, such as an accom-
panying smile. This can also lead to a common misconcep-
tion that machine vision systems observe the same types of
high-level visual features that humans do, rather than pixels
and lower-lever features. To better understand AI perception,
students need a peek inside a simpler black box to scaffold
their understanding of more modern machine vision algo-
rithms. Tools exist to make these models more transparent,
but are typically developed for older audiences (Wang et al.
2020; Karpathy 2016; Makwana et al. 2020).

Other computer vision tools have limitations in illuminat-
ing for students how AI perception works. Seek by iNatural-
ist3 or Google Translate 4 demonstrate exciting real-world
applications of computer vision. However, they do not give
students access to training data or the agency to intervene in
the training process. Google’s QuickDraw5 AI Experiment
reveals its vast training image dataset, but does not illumi-
nate the specific feature patterns the model found in its im-
ages.

Some Machine Learning as a Service (MLaaS) tools also
hold promise for teaching about computer vision (Black and
Brooks-Young 2020). For example, the Google Could Vi-
sion API6 has a free demo that uses machine learning to an-
alyze uploaded photos with face detection, emotion recog-
nition, object recognition, and more. The interface displays
bounding boxes to show where these objects are detected in
the image. However, for students it is a black box. Likewise,
the free online MLaaS tool, Microsoft Azure Custom Vision
API, has an easy-to-use interface for uploading images, cre-
ating classes, drawing bounding boxes to train a model, and
exporting the model for use in other applications, but it does
not support a live feed from a webcam. It also requires sign-
ing up with a credit card, a clear barrier to K-12 students.

Finally, two free tools give students the agency of devel-
oping block-based programs that include computer vision
models. Poseblocks builds on the open source Scratch plat-
form to provide models for computer vision applications like
hand tracking and emotion recognition (Jordan et al. 2021).
Similarly, an extension for MIT’s App Inventor allows stu-
dents to integrate image classification models they trained
with webcam images (Tang et al. 2019). While these are
powerful tools for understanding the potential of AI percep-
tion, neither provide the additional layer of insight into fea-
ture detection and the development of rules for object recog-
nition. Given the limitations of all of the previously available

2https://lens.google/
3https://www.inaturalist.org/
4https://translate.google.com/
5https://quickdraw.withgoogle.com/
6https://cloud.google.com/vision

tools, there are many learning objectives around perception
that could be best illuminated through the development of
additional tools and simulations, specifically those that al-
low students to design the vision algorithms themselves.

Feature Detection Tool
Please navigate to the following link to see the tool in action:
https://tinyurl.com/featuredetectiontool

Tool Summary
The Feature Detection Tool is a two-part, web-based tool
that allows the user to (manually) use feature perception to
solve an object detection task. The activity centers around
the concept that objects can be identified by a unique sig-
nature of their feature counts (i.e., how many circles, cor-
ners, and curves are detected in images of them). This is cer-
tainly not a perfect assumption, which leads to weaknesses
in the object detection algorithms the students develop using
this tool. The tool intentionally trades off the accuracy and
robustness of more sophisticated objected detection mod-
els (e.g., neural networks) in order to offer students more
agency in the development and tuning of the features and
rules of their computer vision object recognition algorithms.

The Feature Detection Tool serves as the interface for this
development, first educating students on what feature per-
ception is, and then offering tooling to configure feature
count signatures for different objects. Finally, the Feature
Detection Tool allows students to test out their algorithms
and, when a bug arises, to continually adapt and improve
them.

Learning Objectives
Students should gain the following understandings by using
the Feature Detection Tool:

1. Students understand that machines can perceive features
from visual input. (Part I)

2. Students understand that machines can use the combina-
tion of features to detect more complex objects. (Part II)

3. Students build their own rule-based models using fea-
tures to detect objects. (Part II)

These learning outcomes are aligned with AI4K12’s sug-
gested learning objectives (as of September 2022) for grades
6-8. They suggest that 6-8 students should understand that
”the transformation from signal to meaning takes place in
stages, with increasingly abstract features and higher level
knowledge applied at each stage”. Specifically, this activ-
ity addresses the following 6-8 learning objectives from
AI4K12:

1. 1-B-ii - Illustrate the concept of feature extraction from
images by simulating an edge detector.

2. 1-B-iv - Describe how edge detectors can be composed
to form more complex feature detectors, e.g., for letters
and shapes.

Target Age Group
Middle School Students (Grades 6-8)

16006



Figure 3: In Part I, users manipulate the window view and
get a count of circles, corners, and curves.

Time Needed
90 Minutes

Materials Needed
To use the tool, students must have access to a computer
that has web access and a video camera. Students will also
need 3-5 examples of common objects (i.e. three mugs, three
backpacks, three books).

Prerequisite Knowledge
No prerequisite knowledge is needed to use this tool. The
lesson can be done on its own, but we suggest including it in
a progression after learning about data and before learning
about machine learning.

Part I: Introduction to Features
In Part I, students are introduced to the idea of features, or
characteristics of data. The Part I interface allows students to
get real-time feedback on the amount of circles, curves, and
corners in an image or video feed. This feedback enables
students to experiment with different visual stimuli in order
to understand how the tool detects different features.

Once they are comfortable with the concept of feature
detection, students are required to identify three object
classes — these should be common objects (ideally from the
classroom), like backpacks, books, water bottles, etc. They
should find 3-5 examples of each object. The student will
then place each example inside of the feature detection win-
dow (discussed below) and record how many of each feature
is detected on a sheet of paper.

Part I Interface
The feature detection interface is designed to allow the stu-
dent to explore the detection and visualization of features at
their own pace before starting the activity. This is accom-
plished through several interface components, which can be
seen in Figure 3.

First, the student is given four choices of image sources
to use as input to the feature detection algorithm. After pro-
cessing a frame from the input source, the detected features
are overlaid directly on top of the input for ease of under-
standing. The first source (and the one visible on page load)

is a simple 2D rendering of three basic shapes: a circle, a
square, and a shaded sine wave. This source offers a quick
intuition about where and when certain features will be de-
tected. The second source a digital photograph, it offers stu-
dents a glimpse into how feature detection can be less pre-
dictable when given a complex image. Next, the student can
use their live webcam feed as an input source (with the fea-
ture detection algorithm running roughly every ten frames).
This source is intended to be used throughout the activ-
ity. With their learning from the first two sources, students
should be prepared to make sense of the dynamic results of
running feature detection on their webcam video feed. If a
student cannot use a webcam, they can use the fourth and
final input source and upload their own image.

In addition to the feature overlay directly on the input
source, students are always able to see a count of exactly
how many of each feature is being detected. The visualiza-
tion of each feature can also be toggled on and off, allowing
a student to probe features one by one.

A key aspect of the feature detection experience is lever-
aging the Feature Detection Window. This offers students
a draggable and resizable frame in which features are de-
tected. The feature detection window allows students to hone
in on certain areas of the frame to better understand how they
are perceived by the feature detection algorithm. Addition-
ally, it allows them to block out areas of the input source that
are not relevant to the object detection task (which is espe-
cially necessary when using the webcam input source where
it is difficult to control the background).

Technical Details of Feature Detection Interface
In order to create a responsive experience, the tool was
built using the Svelte web framework. Circle, corner, and
curve (i.e., contour) detection is accomplished entirely in the
browser using OpenCV.js. To avoid freezing the user’s win-
dow during the heavy processing of feature detection, we
isolate each feature detection task into its own thread using
Web Workers.

Circle Detection To detect circles in an image (or a se-
lected part of an image) a pre-processing step is performed
to reduce the noise in the image, and subsequently reduce
the false positive circles. For pre-processing in this tool, we
convert the color space to gray, and even though it is recom-
mended to use a Gaussian blur to smooth the image, our ex-
periments with different conditions did not generalize well
and therefore we did not apply it. Other adaptive threshold,
erode, and dilate methods were also explored, but we chose
to focus on a generalized and stable pre-processing method
that would work in any classroom and lighting condition.
We used the Hough Gradient Method (Yuen et al. 1990) for
circle detection. The Hough method first detects edges in an
image and then tries to fit a circle by finding a center with
a specific radius that connects most detected edges (even if
they are broken or jagged).

Corner Detection Similar to circle detection, the pre-
processing step in corner detection includes converting the
color space to gray, as well as median blur which was more
stable than other methods for our generalization purposes.

16007



Median blur methods were used to smooth the image be ap-
plying a median filter in each pixel based on the neighboring
pixels to reduce the noise, which in return refines the actual
corners. We used Harris corner detector (Harris, Stephens
et al. 1988), where it finds the local maxima of eigenvalues
and eigenvectors from each specified block of pixels. A cor-
ner is detected when the force (based on the eigenvalues and
eigenvectors) in a pixel change is coming from three differ-
ent directions. Similar to circle detection, this methodology
is sensitive and requires tuning to avoid false positives/neg-
atives, so we employ a ”default” profile of generalized pa-
rameters.

Curve Detection For pre-processing step in curve detec-
tion, we started similar to the corner detection by convert-
ing the color space to gray, followed by a median blur,
then we added a Canny edge detection to retain the edges
only for curve calculations. We used contours finding algo-
rithm (Suzuki et al. 1985), that uses binary borders to follow
curves to detect shapes and analyze images. Finally, we did
a post-processing step, where we found that closed curves
are counted twice, while open curves are not. Therefore, we
corrected the count by detecting the closed curves by com-
paring the curve length with its area. Similar to circle and
corner features, the parameters we selected were the most
generalized to the context it would apply to. With some pro-
file adjustments, we anticipate a higher customization for a
specific environment.

All the above features are sensitive to the details of the im-
age during detection, for example, a mug with some drawing
would yield more curves than a mug without any designs.

Part II: Rule-based Object Detection
Once a student has a grasp on feature detection and visual-
ization, the web tool invites them to apply this knowledge to
accomplish an object detection task. In the second part of the
activity, students configure rules to identify objects based on
how many of each feature is detected. For example, a stu-
dent might establish that all images of backpacks have 1-3
circles, 4-8 corners, and 10-20 curves. During this process
they are effectively creating a regression tree for object de-
tection.

Object Detection Interface
After collecting feature counts for their example objects in
Part I, students will continue to the second part of the activity
and use the data they collected to form feature ranges that
uniquely identify an object class. For example, if a student
found that amongst their 5 examples of books the minimum
number of detected curves was 5 and the maximum was 10.
then they would conclude images of books should have 5-
10 detected curves. The object detection interface (Figure
4) allows students to easily configure these ranges for each
object category across each feature (using both sliders and
input fields).

Once a student is satisfied with their range configurations,
they can select to ‘apply’ their rule set. This will then add a
text field above the input source that displays a prediction
based on the students set ranges (Figure 5). If the current

Figure 4: In Part II, users create their own feature-based rules
to detect objects.

input satisfies each of an object’s feature criteria (meaning
all currently detected feature counts fall within the config-
ured range), then the prediction will include that object. It
is therefore possible for multiple objects to be included in
the predicted value, provided that multiple objects have their
feature criteria met.

Discussion
Key Design Features
Some of the design features of the feature perception tool
may be helpful for the future design of AI literacy tools.

Student Agency AI and specifically deep neural networks
are often called ”black boxes” because their learnt features
and internal connections are difficult to parse. This qual-
ity makes interpreting the behavior of individual neural net-
works difficult, but should not limit students in understand-
ing how learning and compositing features is the source of
neural networks’ predictive power. AI literacy tools should
support this understanding, while also teaching about the
challenges that come along with the opacity of ”black box”
technology. Though our feature perception tool does not
directly involve neural networks, it does offer students a
hands-on experience with feature-based object detection,
which can then be used as a basis for understanding the in-
ner workings of neural networks applied to machine vision
tasks (especially their early layers). The way students com-
bine feature detectors into a higher level decision unit is a
close approximation to the relationship between the nodes
of two layers of a neural network. Future work should focus
on demonstrating this connection.

By testing and changing their algorithms, students can
make their own hypotheses and get real-time feedback on

16008



Figure 5: In Part II, users can test out their object recognition
algorithms by viewing the number of features detected as
well as the object classification.

how the design of their feature criteria affects the outcome of
their system. As they test their classifier, they can see the de-
tected features and the predicted objects, which gives them
a direct understanding of why their classification algorithm
is making a particular decision. This practical understand-
ing can then be used to help students intuitively understand
how neural networks use features in data to make decisions
as well as how neural networks learn through adjusting their
decision-making criteria based on examples.

Importantly, students will also be able to contrast the fea-
ture perception tool and neural networks in terms of the
agency and control they offer to the user. In a tool like Teach-
able Machine, the user’s only recourse when their trained
neural network makes a wrong prediction is to add more la-
beled data. With the feature perception tool, a student can
actually probe and adjust the decision-making process of
their algorithm. Therefore, the feature perception tool not
only offers students a glimpse into conceptually what an ob-
ject recognition neural network is trying to learn from data,
but also sets students up to understand that it is difficult to
understand how a specific neural network makes a decision.

Computer Feature Feedback Without visualization,
learners often rely on their own intuition and perception of
features in order to make sense of the feature patterns picked
up by computers. For example, learners might focus on ab-
stract features of an object and overlook details that the al-
gorithm considers in its decision. This is especially true with
neural networks, where their success in classifying complex
objects can mislead us to think their decision making is sim-
ilar to humans, when it reality they often identify common-
alities in data that we as humans completely overlook (like
a system that differentiates wolves and huskies based on the

presence of snow in the background (Ribeiro, Singh, and
Guestrin 2016)). This tool gives visual feedback for where
a circle, corner, and curve are detected, allowing students to
see the direct features the algorithm is picking up instead of
relying on their own assumptions. This design feature allows
students to differentiate their understanding of features from
the algorithm’s understanding of a feature.

Suggested Progression: Scaffolding for Neural
Networks
As alluded to in the Student Agency section, this tool is
designed to offer students a hands-on introduction to the
mechanisms that enable neural networks, especially convo-
lutional neural networks (CNNs). Following this learning
experience, students would be poised to explore more com-
plex concepts found in the AI4K12 Big Ideas and guidelines,
such as data representation, reasoning, and machine learn-
ing. For example, by uncovering AI perception through fea-
ture detection and rule-based classification, students are able
to transfer this prior knowledge and language into further
lessons on data representation and reasoning algorithms,
such as the use of decision trees for classification.

Moreover, the mirroring of algorithmic mechanisms for
learning and reasoning by neural networks includes: the for-
mulation of a detection rule based on feature perception
(analogous to applying a convolution to an input and passing
the result through an activation function); the fine-tuning of
feature criteria based on examples (analogous to a training
algorithm); and the combination of feature criteria to form
a higher order representation, in this case an object classifi-
cation (analogous to the hierarchical structure of neural net-
works that combine the output of many nodes in a layer to
form either an output or an input to the next layer). In this
way, the feature perception tool can act as a first step in un-
derstanding the inner-workings of neural networks. Further
work can focus on either making the tool more advanced to
clearly map to neural networks or developing a curriculum
that reframes a student’s learning about the tool in terms of
data representation, reasoning, neural networks, and the rel-
evant terminology.

Conclusion
In this paper, we present the Feature Detection Tool, a web-
based, two-part activity that introduces middle school stu-
dents to features and allows them to build object-detection
rules based on the combination of features. This tool builds
on existing work on teaching computer perception in K-12
by giving students the ability to visualize low-level feature
detection and to have more control over the design of the
algorithms. We discuss how this tool can be used as a ”first
step” to the more complex concept ideas of data representa-
tion and neural networks. We hope that this tool is helpful to
the K-12 AI Education community.

Acknowledgments
The authors would like to thank Project STEM and Ama-
zon Future Engineer for supporting this work. Thank you to
Christie Ha for feedback on the interface design of this tool.

16009



References
Black, N. B.; and Brooks-Young, S. 2020. Hands-On AI
Projects for the Classroom: A Guide for Computer Science
Teachers. ISTE.
Carney, M.; Webster, B.; Alvarado, I.; Phillips, K.; How-
ell, N.; Griffith, J.; Jongejan, J.; Pitaru, A.; and Chen, A.
2020. Teachable machine: Approachable Web-based tool
for exploring machine learning classification. In Extended
abstracts of the 2020 CHI conference on human factors in
computing systems, 1–8.
Harris, C.; Stephens, M.; et al. 1988. A combined corner
and edge detector. In Alvey vision conference, volume 15,
10–5244. Citeseer.
Jordan, B.; Devasia, N.; Hong, J.; Williams, R.; and
Breazeal, C. 2021. PoseBlocks: A toolkit for creating (and
dancing) with AI. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, 15551–15559.
Karpathy, A. 2016. ConvNetJS MNIST demo. External
Links: Link.
Makwana, J.; Wolff, M.; Ratin, B.; and Touretsky, D. S.
2020. TinyYoloV2 Face Detection. https://www.cs.cmu.
edu/∼dst/FaceDemo/. Accessed: 2022-01-14.
Nixon, M.; and Aguado, A. 2019. Feature extraction and
image processing for computer vision. Academic press.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. ”Why
Should I Trust You?”: Explaining the Predictions of Any
Classifier. In Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, KDD ’16, 1135–1144. New York, NY, USA: Asso-
ciation for Computing Machinery. ISBN 9781450342322.
Suzuki, S.; et al. 1985. Topological structural analysis of
digitized binary images by border following. Computer vi-
sion, graphics, and image processing, 30(1): 32–46.
Tang, D.; et al. 2019. Empowering novices to understand
and use machine learning with personalized image classifi-
cation models, intuitive analysis tools, and MIT App Inven-
tor. Ph.D. thesis, Massachusetts Institute of Technology.
Touretzky, D.; Gardner-McCune, C.; Martin, F.; and See-
horn, D. 2019. Envisioning AI for K-12: What Should Every
Child Know about AI? In Proceedings of the Thirty-Third
AAAI Conference on Artificial Intelligence and Thirty-First
Innovative Applications of Artificial Intelligence Conference
and Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, AAAI’19/IAAI’19/EAAI’19. AAAI
Press. ISBN 978-1-57735-809-1.
Wang, Z. J.; Turko, R.; Shaikh, O.; Park, H.; Das, N.;
Hohman, F.; Kahng, M.; and Chau, D. H. P. 2020. CNN
explainer: learning convolutional neural networks with in-
teractive visualization. IEEE Transactions on Visualization
and Computer Graphics, 27(2): 1396–1406.
Yang, M.-H.; Kriegman, D. J.; and Ahuja, N. 2002. Detect-
ing Faces in Images: A Survey. IEEE Trans. Pattern Anal.
Mach. Intell., 24(1): 34–58.
Yang, Y.; and Newsam, S. 2010. Bag-of-visual-words and
spatial extensions for land-use classification. In Proceed-
ings of the 18th SIGSPATIAL international conference on
advances in geographic information systems, 270–279.

Yuen, H.; Princen, J.; Illingworth, J.; and Kittler, J. 1990.
Comparative study of Hough transform methods for circle
finding. Image and vision computing, 8(1): 71–77.

16010


