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Abstract

A majority of the courses on autonomous systems focus on
robotics, despite the growing use of autonomous agents in a
wide spectrum of applications, from smart homes to intelli-
gent traffic control. Our goal in designing a new senior-level
undergraduate course is to teach the integration of a variety
of AI techniques in uncertain environments, without the de-
pendence on topics such as robotic control and localization.
We chose the application of an autonomous greenhouse to
frame our discussions and our student projects because of the
greenhouse’s self-contained nature and objective metrics for
successfully growing plants. We detail our curriculum design,
including lecture topics and assignments, and our iterative
process for updating the course over the last four years. Fi-
nally, we present some student feedback about the course and
opportunities for future improvement.

Introduction
Autonomous systems are becoming increasingly prevalent
in today’s society – from delivery and cleaning robots, to
Mars rovers, to intelligent traffic control, to smart homes
– and our students are increasingly interested in work-
ing on these autonomous systems when they graduate. We
wanted to offer a senior-level undergraduate course that
would present some of the advanced AI techniques used in
integrated autonomous systems, focusing on the topics of
perception, decision making, action, and learning. Our vi-
sion was to develop a project-oriented course that enabled
students to understand how environmental uncertainty and
sensor noise complicates the goal of creating a completely
autonomous agent, capable of running for weeks without hu-
man intervention.

In early 2019, we began exploring other courses offered
on autonomy and the topics that we were interested in. Most
were graduate-level courses that focused on autonomous
mobile robots or self-driving car applications (Institut Poly-
technique de Paris 2020; Columbia University 2020; Univer-
sity of Edinburgh 2018; University of Texas 2015; Univer-
sity of Memphis 2010; University of Central Florida 2007).
These courses tended to include subjects such as kinematics
and dynamics, path planning, and localization. While those
topics are all useful and interesting, we wanted a course
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Figure 1: Students create AI agents to autonomously grow
plants in a fish tank-sized greenhouse, called the TerraBot.

geared more towards AI than Robotics, where the agent op-
erates in the physical world but is not a mobile robot. We
investigated several other options for projects that we could
adapt, including a smart home, traffic control, and network
security (University of Texas Austin 2022; Cal State Los An-
geles 2020). While each of those applications is important,
we felt that the infrastructure needed would be prohibitive
for us, especially for multiple teams to work concurrently.

When we were introduced to the MIT Personal Food
Computer project (Castelló Ferrer et al. 2019), we decided
that an autonomous greenhouse had all the characteristics
we were looking for – interaction with the real world, with
plenty of uncertainty in the environment, sensors, and ac-
tuators; quantifiable metrics as to how well the agent per-
forms (e.g., did the plants thrive and how big did they get);
the greenhouse units were standalone and easily replicated;
plants could reach near maturity in the 2-3 week grow peri-
ods that we had allotted. However, while the Personal Grow
Computer itself has many of the aspects we desired, it was
not exactly suited to our needs. Thus, in the summer of 2019,
we hired three undergraduates to design and implement pro-
totype greenhouse hardware, which we named the TerraBot
(Figure 1). The TerraBot is completely standalone – it has
on-board computers along with sensors and actuators that
enable a software agent to monitor and control light level,
soil moisture, temperature, and humidity. More details on
the TerraBot are provided later in the paper.
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Figure 2: The TerraBot’s sensors and actuators.

The course itself is structured around teaching AI and
system integration concepts and applying those concepts to
the autonomous greenhouse domain. Students must exercise
critical thinking skills to select and implement algorithms
that best apply to the greenhouse domain, and utilize soft-
ware tools (some open source, some that we developed as
part of the course) that enable them to develop robust and
reliable agents that can operate the TerraBot autonomously
for weeks at a time.

The course has four individual assignments, three group
project assignments, two group testing assignments, and two
group greenhouse deployments with in-class presentations.
The assignments are scaffolded so that the students build up
their autonomous agent code base throughout the semester.
All individual assignments are designed to apply lecture
concepts to a diverse set of realistic applications, and group
assignments focus on merging their individual contributions
and adding new algorithms to aid in growing plants in the
TerraBot. The assignments culminate in two 2-week long
grow periods (which we often extend for an additional 1-2
weeks, to give the plants more time to mature).

Overall, the course has evolved into a very well-regarded
offering for undergraduates majoring in AI (36%), Com-
puter Science (46%), Electrical Engineering (9%), and other
(9%). Class composition has been 61% seniors, 36% juniors,
and 3% sophomores. Students particularly comment on how
they appreciate the opportunity to apply the theoretical con-
cepts they are learning to a real-world problem, especially
one in which there is no “correct” answer. We believe that
such experience will be invaluable in their future careers, be
it in industry or academia.

The TerraBot
The TerraBot (Figure 2) is housed in a 10-gallon fish tank
and has three actuators: a water pump, controllable red/blue
LED grow lights, and fans to control humidity and temper-
ature. It has seven different sensor types: two each (to help
deal with noise) of humidity, temperature, light, and mois-
ture sensors; a color camera, an ultrasonic sensor to deter-
mine the level of the water in the reservoir, and during the
COVID-19 pandemic we added a microphone, so that stu-
dents testing the system remotely could hear when the pump
and fans turn on and off. The plants are grown in a rock wool
medium, which sits in an aluminum tray and is fed by a hose

Figure 3: 3D graphical simulator of the TerraBot.

punctured with small holes, resembling drip irrigation. A 3D
printed measuring stick, with markings every centimeter, is
used to estimate the height of the plants from an uncalibrated
color camera. The tray sits on a laser-cut acrylic base, and
a laser-cut acrylic plate is used to cover the top of the tank
and hold the lights and all the electronics. We grow both
radishes and lettuce – the radishes generally flourish, but the
lettuce is more difficult to grow, needing more precise grow-
ing conditions. In this way, most of the agents will be able
to grow radishes, but only the better agents will be success-
ful with the lettuce.1 Each TerraBot costs about $400, which
includes sheets of rock wool for the grow periods (the only
consumable cost, aside from the seeds).

The TerraBot is controlled by an Arduino that connects
the sensors and actuators, and a Raspberry Pi that communi-
cates with the Arduino and runs the TerraBot infrastructure
software and the students’ agents (the camera and micro-
phone are also connected to the Pi). The Robot Operating
System (ROS) is used to communicate between all of the
software entities, including the software running on the Ar-
duino (Quigley et al. 2009). The TerraBot software and the
students’ agents are written in Python.2

The TerraBot has undergone several iterations in the three
years since the first prototype. For one, connectors were
added to the wires to make it easy to unhook the sensors and
remove the top plate. The growing medium, which was orig-
inally a mat meant for growing microgreens, was replaced
with rock wool that is about 1.5” deep, and the moisture sen-
sors were repositioned to make it easier to determine when
the plants needed to be watered. For the Fall 2022 iteration
of the class, we experimented with load cells to weigh the
pan and its contents, to better enable the agents to determine
when to water – which has consistently been the most diffi-
cult task.

Perhaps the biggest change, though, was building a 3D
graphical simulator of the TerraBot (Figure 3). Since plants
grow so slowly, it is difficult to develop and debug software

1Some of the teams take their radishes and lettuce home to eat
as a salad after we turn off their autonomous agents.

2The TerraBot software, plans for constructing the greenhouses,
and details on using the hardware and software is available at
https://github.com/reidgs/TerraBot. Lecture slides and assignments
can be obtained by request.
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on the actual hardware. The simulator, which has the exact
same ROS interface as the physical greenhouse, enables stu-
dents to safely and quickly test their agents. The simulator is
as faithful to the real world as we could reasonably achieve.
It simulates the growth of plants, evaporation and transpi-
ration, and the fluctuation of ambient light, humidity, and
temperature, depending on the time of day, whether the fan
or lights are on, etc. Even the camera is simulated, enabling
students to try out their computer vision algorithms before
deploying on the hardware. Time can be sped up, so that
days of testing can be accomplished in a matter of minutes
(although the simulation automatically slows down when the
pump or fans are on, since the agent needs to have real-time
control over those time-sensitive operations).

The TerraBot simulator keeps track of the state of the
(simulated) greenhouse, computing temperature and humid-
ity based on whether the lights and fans are on, the amount
of moisture in the “soil”, and the state of the plants (e.g.,
more mature plants transpire more). The health of the sim-
ulated plants is calculated based on the amount of light and
water they receive, along with the temperature and humidity
levels (there are optimal levels for both). As the plant health
deteriorates, the graphics change from bright green upright
plants to yellow and brown, drooping plants. Students can
use this to see how their plants are doing, and can create
computer vision programs to detect unhealthy plants.

The Curriculum
The main objective of the course is to teach students how
to integrate AI techniques into a complete system that can
operate in a dynamic and uncertain environment for weeks
without human intervention. In addition to teaching the
use of AI techniques to support autonomous operation, the
course emphasizes the need for a well-structured software
architecture and the importance of thorough testing and val-
idation prior to deployment. Finally, the course includes dis-
cussion of ethical issues involved in the deployment of au-
tonomous agents. The course prerequisites are an introduc-
tory class in either Artificial Intelligence or Machine Learn-
ing (which, in turn, have prerequisites in programming and
linear algebra).

Unit 1: Infrastructure. The course begins with two lec-
tures that provide background information that is necessary
for understanding and carrying out the assignments. The first
lecture introduces the concept of middleware and the Robot
Operating System (ROS) (Quigley et al. 2009), which is
the way the students’ code interfaces with both the hard-
ware and the simulator. We discuss publish/subscribe and
query/response forms of message passing, how to send and
receive messages in ROS, and the various messages that the
TerraBot supports. The second lecture introduces the basics
of growing plants – specifically, how moisture, light, tem-
perature, and humidity must all be kept in good balance to
ensure optimal growth. Various approaches to autonomous
greenhouses are presented. Then, the TerraBot hardware is
introduced, including how the various sensors and actuators
are critical in determining the growth of the plants.

Unit 2: Software Architecture. The curriculum presents
different architectural approaches to autonomous systems.

Students are exposed to behavior-based (reactive) archi-
tectures (Brooks 1986) and layered architectures (Schreck-
enghost et al. 1998), and the pros and cons of each are pre-
sented (Coste-Maniere and Simmons 2000). We argue that
behavior-based architectures are well-suited for applications
that need quick responses but little need for planning. Con-
versely, layered architectures that combine behaviors, plan-
ning and scheduling, and execution monitoring are well-
suited for applications that are relatively slow moving but
need to plan out how to effectively deal with conflicting de-
mands for physical resources. The first homework assign-
ment introduces students to the two architectural types and
has them evaluate how well the architectures work in con-
trolling the TerraBots (described below).

The course then proceeds to teach Finite State Machines
(FSM) (Wang and Tepfenhart 2019), which form the basis
for many implementations of the behavior layer of archi-
tectures for autonomy (Coste-Maniere and Simmons 2000).
Simple FSM examples are presented (ATM, bread-making
machine) for students to see how transitions between nodes
are triggered by sensor input and how actions associated
with transitions can affect the state of the world.

Unit 3: Computer Vision. In preparation for the first
grow period, the next two lectures are on computer vision.
We discuss the various sensors often used in autonomous
systems (monocular, stereo, and depth cameras, lidar, radar)
and present some relatively simple methods for segment-
ing out vegetative material from monocular color images.
The lecture introduces color spaces, including advantages
and disadvantages of the various color spaces, gamma cor-
rection, and color calibration using a calibration chart. We
introduce the use of color histograms to do image clas-
sification, CNNs for object detection, and several vegeta-
tive indices (Wójtowicz et al. 2016) that have been formu-
lated specifically for detecting foliage. The second lecture
on computer vision introduces the OpenCV library (Bradski
2000) and has the students experiment with using OpenCV,
in preparation for the group computer vision assignment.

Unit 4: Testing and Deployment. During the first two
years of the course, we noticed that students did not spend
sufficient time testing their agents prior to the grow period,
leading to some very unreliable behavior such as failing
to turn the pump off after watering when unexpected cir-
cumstances like sensors breaking or noisy sensor data oc-
curred. This led us to include two lectures on testing and de-
ployment, where we introduce methods for testing the con-
cepts of safety and liveness. We discuss unit testing, sys-
tem integration, and regression testing. We discuss various
techniques, such as the use of simulation, testing for edge
cases, and formal verification (Koopman and Wagner 2016).
The TerraBot infrastructure contains a facility for describ-
ing tests that can be run either periodically or in response to
some sensor condition, and the students are taught how to
write test cases in that language. For instance, they can test
whether the lights are turned off (and stay off) every night, or
that once the pump is turned on it stays on for no more than
10 seconds. These tests are run during simulation, and we
encourage students to run them for “weeks” and from many
different starting conditions. After a testing assignment to
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practice with these new tools, the groups have a week to
prepare for the first two-week grow period.

Ethics. We then briefly pivot to studying ethics of de-
ployed autonomous systems. The ethics lecture is presented
as a case study on a particular ethical topic such as au-
tonomous warfare or AI in healthcare. Students are asked to
read opposing viewpoints to prepare for classroom discus-
sion. We present ethical responsibilities of AI systems in-
cluding transparency, accountability, privacy, human auton-
omy, and the mitigation/reduction of bias. We discuss prop-
erties of trustworthy systems and how they may affect hu-
man trust in AI systems. Then, we discuss how an AI appli-
cation may be engineered towards these principles and what
challenges they may face when doing so.

Unit 5: Modeling Uncertainty. Because students have al-
ready taken at least one Machine Learning or Artificial In-
telligence course (and in many cases more than one), our
first machine learning lecture focuses on reviewing com-
mon models (SVMs, decision trees, KNN, linear regression,
neural networks) and comparing and contrasting conditions
when they might be used. The second lecture then focuses
on time-series models and active learning methods. Learn-
ing about how to collect additional data given different kinds
of uncertainty, especially data from humans, is important for
deploying autonomous agents that can learn from feedback.

While the grow period is happening, the students often
observe things going wrong, and they have no way to fix
them without debugging and restarting their agent. Thus,
we next present two lectures on handling uncertainty and
execution monitoring. The first lecture covers state estima-
tion – Kalman filters and variants (extended and unscented
Kalman filters) and particle filters. The second lecture covers
two approaches to monitoring: fault models and expectation-
based approaches. We introduce students to Failure Mode
and Effect Analysis (Stamatis 2003) and both symbolic
(Kleer and Williams 1987) and probabilistic (Verma et al.
2002) expectation-based monitoring, that use model-based
methods to detect divergence from nominal behavior. Stu-
dents are encouraged to incorporate both state estimation
and monitoring techniques into their agents, in preparation
for the second grow period.

Unit 6: Explainability. Students also typically notice that
their agents perform in unexpected ways. To address this,
we have two lectures on generating explanations of sys-
tem behavior. We cover visualization techniques for neural
network classifiers (Konam et al. 2018), model-based ex-
planations (Hayes and Shah 2017), reward-based explana-
tions (Sukkerd, Simmons, and Garlan 2020), and legibility
(Dragan, Lee, and Srinivasa 2013). We then spend a lecture
on a specific model-based technique for generating “what”,
“why” and “why-not” explanations using execution traces
generated by an FSM.

Unit 7: CSPs and Planning. We spend a lecture on con-
straint satisfaction problems (CSPs), talking about why they
are useful and how they work, conceptually. Students have
an in-class exercise to code a solver for Kakuro (Simo-
nis 2008) using the OR-Tools package3. The next lecture

3https://developers.google.com/optimization

presents how CSPs can be used for activity scheduling, using
either an approach where each activity (behavior) runs for a
fixed length of time or an approach where different behav-
iors can run for different lengths of time. As an in-class exer-
cise, students use OR-Tools to do simple classroom schedul-
ing using both approaches, and compare and contrast them
in terms of ease of coding and efficiency of the resulting
schedules. We then have a lecture on resource utilization –
how to create schedules that prevent overuse of scare re-
sources (in our case, the resources are the lights, fans, and
pump, which cannot be used by different behaviors simulta-
neously) and minimizing resource use (e.g., minimizing use
of the fans while still maintaining a good level of humidity).

We also have two lectures on planning techniques. While
we have presented different techniques over the years, in
the latest edition of the course we focused on POMDPs
(Kaelbling, Littman, and Cassandra 1998) and Monte Carlo
Tree Search (Browne et al. 2012). For subsequent semesters,
we are considering having a lecture on deep reinforcement
learning (Mnih et al. 2013), as this is a trending topic in AI
agents.

Case Study. At this point, the students are in the midst of
the second grow period, so subsequent lectures do not im-
pact their agents. We have an interactive class that presents
a case study for how one would design an autonomous
home care assistant. We introduce Maslow’s hierarchy of
needs (Maslow 1943) and have the students discuss what
tasks are both feasible and desirable to be done by an au-
tonomous agent, given current technology. In small groups,
students come up with requirements that such an assistant
agent would need, including the behaviors, scheduling, mon-
itoring, and learning capabilities. Finally, we discuss how to
test and validate the agent and how it can be designed such
that an elderly user would trust it.

The Assignments
At the start of the semester, students are given code defin-
ing “tasks” that control the light level, humidity, tempera-
ture, and soil moisture of the greenhouse, implemented us-
ing if/else statements. They are also given starter code for
an autonomous agent that takes in sensor data, runs one or
more of the tasks, and outputs actuator commands based on
those tasks. All of the code is written in Python within the
ROS middleware framework, which allows for seamless in-
corporation of multiple hardware platforms and sensors. The
starter agent can control the greenhouse, though not well.
The assignments slowly add more complexity to the agent
in order for it to grow plants more effectively. Additionally,
most assignments include a written portion that asks stu-
dents to analyze, describe, compare and contrast, or reflect
on their experiences with the assignment and/or the green-
house.

Assignment 1: Architectures and ROS. The first (indi-
vidual) assignment is designed to help students understand
the basic structure of the greenhouse agent. They are tasked
with first exploring how ROS moves data between differ-
ent “nodes” that send and receive data. Then, they use that
framework to connect the greenhouse agent tasks to the sen-
sor and actuation data streams. Given that the agent can now
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Figure 4: A typical progression of plant growth in the Terrabot. Radish (middle two rows) and lettuce (outer rows) germinate
in about 3 days. After 19 days, full-grown radishes are visible.

receive data and send actuator commands, they then imple-
ment the two different agent architectures presented in class
(behavior-based and layered). Finally, the students evaluate
the benefits and costs of using each architectural approach
and then apply what they have learned as they assess which
approach would be best for a new application.

Assignment 2: Finite State Machines (FSMs). The au-
tonomous greenhouse agent (and many other applications)
do not require complex search algorithms to determine what
actions to take because the dynamics of the environment
are not well modeled. Instead, we use FSMs, which can
be very reactive to the changing environment. This individ-
ual assignment requires students to first practice building fi-
nite state machines on an autonomous coffee maker appli-
cation. Then, they move on to re-implement the greenhouse
tasks, originally implemented with if/else statements, using
an open-source FSM library4. Students must compare and
contrast if-statements and the FSM framework in terms of
testability. Finally, we ask students to begin to develop tests
that they could use to evaluate whether their FSM imple-
mentation matches the starter code.

Assignment 3: Computer Vision. Students strengthen
their agent’s ability to monitor plants by adding a new sensor
stream – camera images. In this group assignment, three-
member teams of students work to add vision processing
to improve their agent behavior. They implement a new be-
havior to autonomously take pictures using the camera, and
they use the basic computer vision techniques that we cover
in lecture to develop algorithms to segment plants from the
background and assess plant growth and health.

Finally, in anticipation of the first grow period, we have
the students move their simulation code to the real green-
houses. They must characterize the behavior of the water

4https://github.com/pytransitions/transitions

pump and the noise in the moisture sensors so that they can
perfect their agent’s behavior on the real hardware.

Grow Period A: Testing and Deployment. We found
that students struggle to find ways to test their code. They
have a hard time finding edge cases that should be tested
and are reluctant to run tests (in simulation) for hours or
days in order to find bugs that occur later in the growing pe-
riod. They are concerned about breaking the greenhouses,
and so do are hesitant to test on the real hardware. In order
to encourage the students to rigorously test their agents, the
students have a one-week group assignment to create and
validate tests of the agent prior to deployment. We require
them to 1) develop a logging facility that can be used to
monitor the agent over time, 2) compare and contrast sensor
data from the simulator and real hardware over a 24-hour pe-
riod and adjust any necessary thresholds in their tasks (e.g.,
pump on time), and 3) develop an email task to send status
messages each day so that the students (and professors) can
detect failures that occur during deployment.

Immediately following this assignment, the students start
their agents on the real hardware and we let them run au-
tonomously for two weeks. We encourage students to mon-
itor their agent’s behavior and intervene if there is a major
issue. Following the deployment, the students present to the
class about their camera algorithms, their tests, how their
agent performed and why, and what takeaways they learned
to improve their agent for the second deployment.

Assignment 4: Sensor Modeling. Students work individ-
ually to develop machine learning models to predict tem-
perature and humidity sensor values over time. Students
practice feature engineering, feature selection, and model
selection. This assignment serves to connect their more-
theoretical machine learning education with realistic appli-
cations. We find that students often struggle with this assign-
ment if they try to rush and do not spend the time to analyze
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the sensor data, determine and engineer useful features, and
then run feature and model selection with those features.

Assignment 5: Execution Monitoring. In this group as-
signment, students consider multiple ways for the agent to
autonomously change its logic based on sensed information.
First, students write code to measure insolation (the amount
of light the plants receive), estimate how much opportunity
there is for lighting the rest of the day, and autonomously
modify the light levels to reach, but not exceed, a pre-defined
target insolation for the day. Second, students implement a
Kalman filter for the humidity sensors. Finally, we suppose
that our agent can detect when sensors and wire connections
are not working, and have the students implement a logic-
based diagnostic tool to determine the likely culprit of a set
of failures.

Assignment 6: Explainability. Students work individu-
ally to generate explanations about finite state machine tran-
sitions. First, they write code to automatically analyze FSMs
and log files of sensor data to generate “why” explanations
as an ordered list of transitions that occur. Students then im-
plement breadth first search through the FSM transitions to
generate a “how” explanation of certain actuator outcomes.
In order to do this, they have to test all possible transitions
that could occur for different sensor values. Valid sequences
of sensor values and FSM states that produce the desired out-
put form the explanations. Finally, they use counterfactual
approaches to implement “why not” explanations. Explain-
ing why something did not happen is a lot more complex,
since they have to reason about what might have happened
to lead to an actuation, but did not.

Grow Period B: Testing and Deployment. Before Grow
Period B, student groups test their code again on the real
hardware, update their code based on their takeaways from
Grow Period A, and also add to their email behavior to be
more explainable. The emails must incorporate a wide vari-
ety of data that they pull from several different agent tasks.
For example, students utilize their computer vision assign-
ment to email day-to-day plant growth and the status of their
plants (e.g., as healthy, ok, or unhealthy).

For this grow period, students are penalized if they restart
their agents and the reservoirs are filled with only 1500ml of
water. After two weeks of autonomous operation, the groups
present their algorithms and email designs. Since this is the
last grow period, we allow the agents to continue running for
another two weeks until final exam time. At that point, many
of the plants are quite large and the radishes fully matured
(Figure 5).

Assignment 7: Scheduling. This last group assignment,
which occurs during grow period B, is more open-ended
than the others. Students use constraint-satisfaction tech-
niques to optimize the greenhouse agent schedule based on a
set of requirements. Students can choose from two ideas we
provide or pick their own. Students need to implement ex-
ecution monitors to determine when behaviors are actually
needed (e.g., they turn actuators on) and when they should
be needed (e.g., some sensor limit is reached when the as-
sociated behavior is not running) and update the schedule
based on the sensed data. Student groups present their algo-
rithms and resulting schedules to the class and we discuss

Figure 5: Students with harvested radishes.

different scheduling strategies and lessons learned.

Assignment Grading and Evaluation
The course grade is broken down in the following way:

• 20% Individual Assignments (5% each)
• 30% Group Assignments (10% each)
• 10% Grow Period Group Testing Assignments (5% each)
• 10% Grow Period Deployments/Presentations (5% each)
• 10% Midterm
• 15% Final Exam
• 5% Peer Evaluation

We chose to grade individual and group assignments in
simulation for completeness (passing all required tests) and
robustness (designing and submitting additional tests). For
each assignment, we provide the simulator and some of
the test cases to students so that they can debug their as-
signments before submission. We reserve some test cases
for grading to encourage students to test more thoroughly
before submitting. For the testing and deployment assign-
ments, we grade in three ways: First, students must provide
their documented test cases, which we grade for the vari-
ety of tests that are performed and successful ability to run
them. Second, we grade the ability of the autonomous agents
to grow plants over the two-week deployments. Third, we
have found that their reflection and takeaways are important
for student learning and improvement through the semester.
The midterm and a final exam ask students to apply what
they have learned to a new autonomous agent application
through essay-based questions. We utilize rubrics to grade
the essays based on their ability to consider a new applica-
tion and apply course concepts to it. Finally, we ask students
to write peer evaluations for members of their group as a mo-
tivation for them to stay involved in the projects throughout
the semester.

Course Evaluation and Iteration
We have run this course four times – in the Falls of 2019–
2022, with 13, 11, 9, and 28 students respectively. In the
middle and at the end of the semester, we asked for stu-
dent input and feedback about the course. The course struc-
ture and assignments have been updated in response to the
student feedback. We report here feedback from Fall 2021,
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which has the most recent updates to the course that are re-
flected in this paper. Quantitatively, students reported spend-
ing an average of 6.5 hours per week (s.d. 0.94) on the as-
signments for the course plus 3 hours for lecture. They rated
the difficulty of the course as 4.78 on a scale of 1-9 (s.d.
1.13). Qualitative feedback is given below.

Lectures. Students reported that they enjoyed the lecture
content and the discussions.

“I definitely enjoyed the content that was covered in
lecture. All of the topics seemed pretty relevant to the
overall course goals. I also enjoyed the discussions we
had during class, especially because a lot of my actual
understanding of the concepts occurred during those
discussions.”

They also reported enjoying the active learning activities
that we incorporate in lectures. These activities, such as hav-
ing student groups solve Kakuro problems using the Google
OR-Tools package, serve two purposes: 1) practicing using
software packages in advance of assignments; and 2) under-
standing how to translate high level concepts into mathemat-
ical and computational constraints.

One comment we received was that some of the lecture
material is taught too high level. They want both more of
the theory behind the algorithms and also a more direct ap-
plication of the algorithms from class to the homework. We
are iterating on the lecture material to provide more of the
theoretical basis for the algorithms we teach.

Assignments. For the individual assignments, students re-
ported that the assignments were reflective of the lecture ma-
terial, though sometimes it was challenging to understand
how to apply the concepts when starting the assignments:

“For me, the most difficult part of the assignments is
figuring out what direction to take at a high level, but
once I figure out a general plan of action the assign-
ment is usually pretty straightforward and not too dif-
ficult.”

With respect to group assignments, one student said:
“I would say the group assignments were definitely
rewarding as they were of a larger scale compared to
individual assignments.”

Grow Period Deployments. Finally, we asked students to
reflect on the grow periods and what they did to monitor
their autonomous agents. All the students liked watching the
plants grow as a result of their autonomous agent. They in-
ternalized their success based on the success of their plants:

“The grow periods went well! I was happy with the
success of the radishes; the lettuce results were unfor-
tunate, I would have loved to have had an extra grow
period to take another shot at fixing that.”

Autonomous agents should not be left alone indefinitely,
yet many students in the first two years of the course would
not check their agent during deployment. One change that
we had made for Fall 2021 was to have the students cre-
ate email tasks for the grow periods, so that they would be
more likely to view and respond to issues with their plants,

rather than having to remember on their own to check. Sev-
eral groups were able to fix bugs in their agents or in their
reporting by analyzing their emails.

“To monitor the agent, we would all look at the daily
emails and make note of anything that seemed off. I
noticed repeat/duplicate pictures during grow period
A, which helped us make changes for the next grow
period (since we were a little too late in the game
when I noticed). I also noticed the incorrect plant
heights, which led us to recalibrating the coordinates
of the ruler, as well as the masks.”

Overall Comments. The students were overall very happy
with the course. They rated the course a 4.8 on a scale from
1 to 5. They were particularly happy with the uniqueness of
the course topics:

“I’m really enjoying this class! It strikes a great bal-
ance of learning about theory of the systems develop-
ment work involved in creating an autonomous agent
and practical applications...”

Their top request for changes for next year were 1) a
bigger focus at the beginning of the semester on hardware,
2) more trips to the lab to see the growing and harvesting of
the plants and 3) a third grow period. We found these sug-
gestions interesting because of their focus on the physical
agent and deployment rather than on the assignments and
code. Because this course was initially given in the midst
of the pandemic, we did not want students to be physically
close to each other to view the hardware or the plants up
close, though this constraint is no longer necessary. The de-
sire for a third grow period is encouraging because it shows
the students enjoyed and got feedback from the deployment
of their agents throughout the semester. However, it is chal-
lenging to implement because we need enough content and
time between the grow periods for students to reflect on their
work and to make meaningful changes to their agent.

Conclusion
We set out to create a course to teach integration of advanced
AI concepts and deployment strategies, but which did not
focus on robotic applications. We elected to create au-
tonomous greenhouses, which we call TerraBots, that grow
radishes and lettuce. Students learn about agent architec-
tures, finite state machines, computer vision, machine learn-
ing, uncertainty and execution monitoring, explainability,
ethics, and scheduling. They complete individual and group
assignments that apply the course concepts to the TerraBots
as they build up the complexity of their autonomous agents.
Twice during the semester, they deploy their agent, moni-
tor its well-being, and present their experiences to the class.
Overall, the students have found significant value and chal-
lenge in the experience of building and deploying AI sys-
tems. Due to the success of the course in previous semesters,
our Fall 2022 enrollment has nearly tripled compared to pre-
vious semesters, and we look forward to continuing to iterate
on the course materials.
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Ethics Statement
This course focuses not only on the technical aspects of the
deployment of AI systems but also on the ethical aspects of
autonomous agents through a module on ethics and inclu-
sion of ethical issues in our case studies.
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