Maestro: A Gamified Platform for Teaching AI Robustness
DOI:
https://doi.org/10.1609/aaai.v37i13.26878Keywords:
Education, Gamification, Leaderboard, Robust AI, Adversarial AIAbstract
Although the prevention of AI vulnerabilities is critical to preserve the safety and privacy of users and businesses, educational tools for robust AI are still underdeveloped worldwide. We present the design, implementation, and assessment of Maestro. Maestro is an effective open-source game-based platform that contributes to the advancement of robust AI education. Maestro provides "goal-based scenarios" where college students are exposed to challenging life-inspired assignments in a "competitive programming" environment. We assessed Maestro's influence on students' engagement, motivation, and learning success in robust AI. This work also provides insights into the design features of online learning tools that promote active learning opportunities in the robust AI domain. We analyzed the reflection responses (measured with Likert scales) of 147 undergraduate students using Maestro in two quarterly college courses in AI. According to the results, students who felt the acquisition of new skills in robust AI tended to appreciate highly Maestro and scored highly on material consolidation, curiosity, and maestry in robust AI. Moreover, the leaderboard, our key gamification element in Maestro, has effectively contributed to students' engagement and learning. Results also indicate that Maestro can be effectively adapted to any course length and depth without losing its educational quality.Downloads
Published
2024-07-15
How to Cite
Geleta, M., Xu, J., Loya, M., Wang, J., Singh, S., Li, Z., & Gago-Masague, S. (2024). Maestro: A Gamified Platform for Teaching AI Robustness. Proceedings of the AAAI Conference on Artificial Intelligence, 37(13), 15816-15824. https://doi.org/10.1609/aaai.v37i13.26878
Issue
Section
EAAI Symposium: Main Track