The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

Adaptive Temporal Planning for Multi-Robot Systems
in Operations and Maintenance of Offshore Wind Farms

Ferdian Jovan', Sara Bernardini’

! University of Bristol, Bristol, BS1 5DL, UK
2 Royal Holloway University of London, Egham, TW20 0EX, UK
Ferdian.Jovan @bristol.ac.uk, Sara.Bernardini @rhul.ac.uk

Abstract

With the fast development of offshore wind farms as renew-
able energy sources, maintaining them efficiently and safely
becomes necessary. The high costs of operation and mainte-
nance (O&M) are due to the length of turbine downtime and
the logistics for human technician transfer. To reduce such
costs, we propose a comprehensive multi-robot system that
includes unmanned aerial vehicles (UAV), autonomous sur-
face vessels (ASV), and inspection-and-repair robots (IRR).
Our system, which is capable of co-managing the farms with
human operators located onshore, brings down costs and sig-
nificantly reduces the Health and Safety (H&S) risks of O&M
by assisting human operators in performing dangerous tasks.
In this paper, we focus on using Al temporal planning to co-
ordinate the actions of the different autonomous robots that
form the multi-robot system. We devise a new, adaptive plan-
ning approach that reduces failures and replanning by per-
forming data-driven goal and domain refinement. Our exper-
iments in both simulated and real-world scenarios prove the
effectiveness and robustness of our technique. The success of
our system marks the first-step towards a large-scale, multi-
robot solution for wind farm O&M.

Introduction

The use of turbines for capturing wind power is considered
one of the most promising ways to produce green and clean
energy. Combined with the awareness of climate change, the
installation of wind energy has been rapidly growing, with
the current cumulative wind power capacity reaching 743
GW (GWEC 2021). A large portion of this fast expansion
relates to wind turbines located offshore, as they can exploit
stronger winds, enjoy larger areas for deployment, and cre-
ate a minimum conflict of interests with other aspects of so-
ciety (Bergstrom et al. 2014). However, because of their re-
mote location, wind turbines are exposed to unpredictable
and harsh weather, which results in highly variable opera-
tional conditions and, in turn, to intense and costly mainte-
nance operations that can be up to 23% of their total invest-
ment cost (Zion Market Research 2019). Such a high cost
comes from two factors: i) the length of turbine downtime
during maintenance; and ii) the daily use of crew transfer
vessels for round trips to and from the farms.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

15782

Recent advances in the development of multi-robotic plat-
forms have opened up new opportunities in the O&M au-
tomation of offshore assets. Autonomous systems have the
potential to both save costs over 20% of the total investment
of a windfarm and reduce H&S risks of O&M, especially
relating to rope access technicians (Welburn et al. 2019).
Some studies show that multi-agent systems tend to achieve
better overall performance in their execution (Fernandez-
Gonzalez, Karpas, and Williams 2017; Piacentini, Bernar-
dini, and Beck 2019). However, this kind of approach re-
quires solid planning, coordination and execution to perform
effectively. A robust implementation of those tools becomes
even more challenging in harsh conditions and when the sys-
tem involves heterogeneous platforms, with each platform
having its own role and different sets of functionalities.

Al Planning tools are a promising option for multi-
robot systems that rely on coordination and cooperation for
achieving shared goals since they allow experts to represent
actions and goals at multiple levels of abstraction and enable
modularity and hierarchical control across different agents.
Yet, current Al Planning tools require domain experts for-
mulating a correct and precise representation of the prob-
lem. Since the cost advantage offered by robots over con-
ventional methods lies in performing more tasks in less time,
an inaccurate domain representation (e.g. incorrect vehicle’s
energy consumption or inaccurate task duration), leading to
frequent mission failures and replanning, would temper or
even nullify the benefit of using autonomous systems.

In this paper, we present the use of Al planning technolo-
gies to underpin the autonomous operations of multi-robot
systems in offshore wind farms while achieving general ro-
bustness and adaptability to domain changes. Our contribu-
tions are (1) We offer the first planning formulation of a do-
main with multiple robots tasked with the Inspection, Main-
tenance, and Repair (IMR) of offshore wind turbines. (2)
We present data-driven adaptive strategies based on statisti-
cal models for (i) monitoring energy consumption and ac-
tion duration, and (ii) correcting the domain specification to
avoid divergences between planned and executed behaviour.
(3) The proposed data-driven strategies together with the
planning formulation have been tested both in realistic sim-
ulations and real-world deployments to execute multi-robot
coordinated missions.

Related Work

Multi-agent planning is a very active area of research, with
several planners having been developed recently (Crosby,
Rovatsos, and Petrick 2013; Sreedharan, Zhang, and Kamb-
hampati 2015). These planners apply a distributed problem-
solving design to replace the classical single-agent planning
paradigm. However, many of them do not support tasks with
concurrent and synchronous actions (Torrefio et al. 2017),
while the others tend to have their own languages and rep-
resentations to solve specific planning problems (Largouét,
Krichen, and Zhao 2016; Nikou et al. 2018).

General-purpose planners that use the de-facto standard
planning language PDDL are easier to integrate in com-
plex architectures than specific multi-agent planners with
their own languages and representations. We use PDDL2.1
(Fox and Long 2003) to represent planning domains since,
in missions involving multiple robots as well as concurrent
and coordinated actions, time is crucial. PDDL2.1 includes
numerical fluents, concurrency, and exogenous events. Two
of the temporal planners for PDDL 2.1, POPF (Coles et al.
2010) and OPTIC (Benton, Coles, and Coles 2012), have
been proven to work in multi-agent domains in several real-
world scenarios (Tran et al. 2017; Piacentini, Bernardini,
and Beck 2019). Piacentini et al. (Piacentini, Bernardini,
and Beck 2019) consider multi-agent problems in the con-
text of UAV fleets for search-and-tracking applications. Un-
fortunately, their work considers only homogeneous robots
with similar capabilities and actions, which limits their ap-
plicability in contexts with heterogeneous assets.

Unlike the works above, in our application, we deal with
different types of robots, each type having a different set
of actions and functionalities. Due to the complexity of co-
ordinated actions in heterogeneous robots, there are fewer
works in this field. Carreno et al. (Carreno, Petrick, and
Petillot 2019; Carreno et al. 2020) adopted a combination
of task allocations and temporal planning to tackle multi-
vehicle systems involving underwater vehicles and ASVs
for subsea oil rigs investigation. They demonstrated that a
temporal planner (POPF or OPTIC) is capable of supporting
complex actions with multiple robots, especially when the
agents must work concurrently and execute actions as part
of joint plans. Concurrency is managed by distributing goals
over multiple underwater vehicles based on their distance
to the actions’ locations and robot’s capability. Our work is
inspired by Carreno et al. (Carreno et al. 2020) with two
main differences. While Carreno et al. formulate planning
for multi-homogeneous robots with heterogeneous capabili-
ties, we formulate planning for several heterogeneous robots
(UAVs, ASVs, and IRRs) with a set of more complex coor-
dinated and concurrent actions. In addition, unlike Carreno
et al. (Carreno et al. 2020)’s technique, which centers on op-
timizing the task allocation, our work focuses on resource
and time limitations (e.g., fuel level of the surface vehicle
or daily time limit trip), which can restrict the sequences of
actions being generated by the planner and increase the total
makespan. Our adaptive planning approach not only consid-
ers resource and time limitations to create high-quality plans
but also improves the makespan’s accuracy to better support
the actual execution of the plan.

15783

Planning Domain Formulation for O&M Tasks

We now present the PDDL2.1 planning domain, which we
formulated based on input from experts and technicians in
the offshore energy field. We model the robots’ capabilities
(e.g. sensors, actuators) as actions, the robots’ limitations
(e.g. battery, fuel level) as domain constraints and concur-
rency as coordinated actions. We include 13 different ac-
tions in the domain, spread across multiple robot types.
Domain Objects and Instances. Our planning domain
contains several object types for the different types of ve-
hicles (uav, asv, irr) and waypoint for the way-
points. Some waypoints, such as those for the ASV to move
between wind turbines, are fixed and reusable for different
tasks. Others have properties specific to tasks that can be
performed in them. The mission operator specifies the way-
points of interest via a web-based tool, where (s)he can set
the exact positions (in GPS coordinates) and the tasks corre-
sponding to each waypoint (see Figure 1a).?

Actions. Our planning domain contains durative actions as-
sociated with the sensors and actuators available, which en-
able different O&M tasks on the wind farms. They are:

* asv_inspect_wt (?asv, ?wp): the ASV 72asv
performs a long-ranged visual inspection of a wind tur-
bine at waypoint ?wp. The action requires that the ASV
has a long-ranged camera on it.

1

uav_inspect_blade (?uav, ?wp): the UAV
?uav closely inspects one of the blades of a wind
turbine around waypoint ?wp. A close-up camera is
required for the UAV to perform this action. Other
preconditions include battery availability and UAV
?uav being airborne.

irr.ndt_inspect (?irr, ?wp): the IRR ?irr
performs an NDT inspection on a blade of a wind turbine
near waypoint ?wp. An NDT testing-kit and high battery
level are required for the IRR to perform this action.
irr_repair.wt (?irr, ?wp): the IRR ?irr per-
forms a crack repair on a blade of a wind turbine near
waypoint ?wp. A repair arm and high battery level are
required for the IRR to perform this action.

Mission Objectives and Failures. The mission objectives
are represented by the following predicates:

* turbine_inspected._at (?wp)
* turbine_nd tested_at (?wp)
* turbine_repaired.at (?wp)

These are the effects of the actions listed above. These mis-
sion objectives (or missions) are pursued via daily trips. Mis-
sions correspond to tasks that must be done at different wind
turbines within a wind farm (e.g. repair a crack in a blade)
specified by the waypoint parameter ?wp. In one single trip,
the multi-robot system starts from a port, visits a wind farm,
and goes back to the port at the end of a day. Based on our
discussions with wind turbine operators, we define a trip as
failed if either (i) one of the robots has insufficient fuel to

"https://github.com/ferdianjovan/mimree_executive
The web-based GUI has been developed by our industrial part-
ner (Thales UK); hence, it is outside the scope of this work.

v

(a) Waypoint and task creation

(b) Waypoint configurations

(c) Plan execution in simulation

(d) Plan execution in real world

Figure 1: A full cycle of the proposed multi-robot system for wind farm O&M. (a) A human operator remotely designs and
configures waypoints and tasks for each robot via a user interface. (b) A complete configuration (waypoints and tasks) in an
offshore wind farm including all involved robotic assets; a trip is ready to be planned. (c) Plan execution in a Gazebo simulated

environment. (d) Plan execution in a real-world setting.

carry out its tasks, or (ii) the system underestimates the time
to perform the tasks, which potentially could run over the
daily time limit. If a trip fails, replanning occurs, which pri-
oritizes the return of all robotic assets to shore.

Domain Constraints. We model several constraints in-
cluding time, capability, and resource constraints. Tempo-
ral constraints of the type min_dur (?wpl, ?wp2) and
max_dur (?wpl, ?wp2) are used to represent the dura-
tion range for each action, with ?wpl and ?wp2 show-
ing the waypoints where the action is performed. Some
actions are associated with specific requirements on sen-
sors or actuators. For each sensor X available, a pred-
icate of the form has_X (?vehicle) is added to the
list of predicates, e.g. has_deploy_system (?uav). Re-
source constraints consider fuel or battery depletion of each
robot over time due to the consumption of these resources
for performing activities. This is represented by the func-
tion consumption_rate (?vehicle).For UAVs, there
is an action uav_refuelling(?uav, ?asv, ?wp),
which allows the UAV to recharge its battery at an ASV,
assuming the ASV has a charging station available, which is
represented by predicate has_charging._dock (?asv).
We assume that ASVs and IRRs are manually refueled when
they return to shore at the end of their trips.

Coordinated Actions. All coordinated actions require ex-
clusive use of the robot without any interference, e.g. when
the UAV deploys or retrieves an IRR, both the UAV and the
IRR are not allowed to do anything else. This is obtained by
the extra predicate idle (?vehicle), which is added to
the precondition of the action definition. Conflicts between
actions of different robots can be avoided thanks to the in-
troduction of this predicate. Other requirements are specific
to the coordinated actions as follows:

* vav.deploy_irr (?uav, ?irr, ?2uav._wp,

?irr_wp): the UAV 2uav deploys the IRR ?irr onto
a wind turbine blade. The preconditions of this action
require that the UAV has a deployment system installed
and the IRR is attached to it. The UAV must deploy the
IRR on a designated waypoint ?irr_wp. A successful
deployment is conditioned on whether the IRR is fully
detached at the end of this action.

15784

""" | AR S A
Gazebo/

Real
World

Action
| UAV
Control i

Inteface [*-Adtion

Action
Dispatcher

Lr

'
1 .| IRR Control
Interface

ASV
Control
Interface

MAVROS

: e
: Action

Planning
Problem ROSPlan Sequence
. PDDL Plan
PDDL Domain v

Discrepancy
Checker

Updated Problem.

Model
Learner

Problem Generator

ROS

Figure 2: Planning and execution architecture.

* yav.retrieve_irr (?uav, ?irr, 2uav.wp,
?irr_wp): the UAV ?uav retrieves the IRR ?irr
from a designated waypoint ?uav_wp on the blade.
The preconditions of this action require that the UAV
has a retrieval system installed and the IRR is back to
the waypoint ?irr_wp where it was deployed. This
requires an extra coordination step from the IRR, which
has to move to the waypoint ?irr_wp via the IRR
action irr_navigate (?irr, ?from, ?to).

Adaptive Monitoring Strategy (AMS)

Although automating O&M processes using planning-based
multi-agent systems can reduce the costs spent annually, in
practice, the efficacy of a planning-based system depends on
how accurately the domain experts design the planning do-
main and problem representation and how tight and precise
the time constraints on the actions are.

We keep the planning domain and problem representation

as accurate as possible by implementing an Adaptive Moni-
toring Strategy (AMS) that reduces the discrepancy between
the states expected by the system based on the synthesized
plans and the actual states of the system during execution.
The AMS does this by continuously updating the Knowledge
Base (KB), provided by ROSPlan (Cashmore et al. 2015),
through a Problem Generator. In general, a Problem Gener-
ator translates tasks and state information into a PDDL prob-
lem. Our work enhances the Problem Generator by making
it more adaptive to changes. This is obtained by coupling
the Problem Generator with a monitoring system. The Prob-
lem Generator reasons about: (1) the discrepancy between
the actual sensors output and the expected one (Discrep-
ancy Checker); and (2) the dynamics of an action duration
and fuel consumption rate (Model Learner). Figure 2 shows
how the modules in our planning system interact. The KB
and Action Dispatcher are part of ROSPlan, which stores in-
formation on the planning problem, solves it by invoking a
planner, and distributes the plan to the robots’ control sys-
tems. The MAVROS package is used to control the UAV and
ASV and to provide position and velocity controllers. The
control interface translates the high-level actions into low-
level controls to move the robots.

Discrepancy Checker Through access to sensors and ac-
tuators, our approach dynamically monitors any discrepancy
between the actual state and the expected state of the sys-
tem and the environment during plan execution. These dis-
crepancies usually come from sensor / actuator malfunc-
tioning, resulting in failures in the execution of the ac-
tions. When a failure occurs, a correction to the discrep-
ancies is made by changing the corresponding predicate
values associated to the actions stored in the KB module.
Our planning system will then trigger replanning to re-
deem the action failures that have happened. In this case,
however, replanning will not prioritize the robots’ return
to shore as in the default case. For example, the expected
sensor output of the action asv_inspect_wt (?asv, ?2wp)
is that a wind turbine is found and detected, which trans-
lates into the goal turbine_inspected.at (?wp) being
true. However, if the sensor does not detect a wind tur-
bine, the predicate turbine_inspected_at (?wp) must be
corrected to false at the end of the execution of the action
asv_inspect_wt (?asv, ?wp).

A function that refines an action operator, e.g.
asv_inspect_wt (?asv, ?wp), into low-level com-
mands resides on each vehicle control interface (shown
in Figure 2). Each of these functions communicates its
completion of the action to the Problem Generator. A failed
output from a function triggers the Problem Generator
to remove the corresponding predicates and request a re-
planning to ROSPIan. A successful output, instead, triggers
the Problem Generator to add the predicates of the action’s
effect to the KB. Other action operators follow similar
procedures, the difference resting on the actual low-level
control actions® needed to execute the high-level action.

3The implementation of each low-level control function (e.g.
path-planning navigation, turbine visual detection, and arm manip-
ulation) is outside the scope of this paper.

15785

Model Learner In our domain, time and costs are essen-
tial, and executing actions within expected duration is neces-
sary. The more accurate the expected duration of each action
is, the more missions can be completed in one single trip to
the wind farms. Similarly, the fuel rate consumption of each
robot, especially the IRR and the ASV, which do not have a
refueling option, becomes an important feature in deciding
the number of missions that can be performed in one sin-
gle trip. We estimate and refine the dynamics of the action
duration and fuel rate consumption by introducing Bayesian
filters that keep track of the expected action duration and the
expected fuel rate consumption.

Our Bayesian filters transform an action duration and fuel
rate consumption from a single point estimate value into a
likelihood distribution. Since both action durations and fuel
rate consumptions are continuous values, a Gaussian distri-
bution is appropriate to represent them. A Gaussian distri-
bution, parameterized by a mean y and a variance o, is used
both for the likelihood distribution and the conjugate prior
distribution, as shown in Eq. 1:

1
—e
oV22rw

A conjugate prior is an algebraic convenience, giving a
close-form expression for the posterior distribution. If the
likelihood and the prior are normal distributions, the poste-
rior is also a normal distribution. As we are interested in
the probability of the action duration (or a fuel rate con-
sumption) x given that the sequence of action durations (or
fuel rate consumptions) x = (x1, 22, ..., Z,) has been ob-
served, we want to obtain a posterior predictive distribution
P(z | x). This distribution is in the form of a normal distri-
bution N'(z | pfy, o2 + %) with uf, and o as indicated in
Eq. 2 below:

N | p,o) e

(1)

T (5 iy =)
0 - 1 2 2
AN 7)
o2 = (i + E)
o o2 o?

with pg, o2 being hyper-parameters for the prior distribution
N (| po,02) and o the known variance for the likelihood
distribution N (| , 0?).

Given this learning model, each time a particular ac-
tion is performed, the duration of the action and the
fuel consumption rate are recorded. Then, the predic-
tive posterior distributions are updated by calculating
the hyper-parameters as shown in Eq. 2 for each cor-
responding duration and fuel consumption. The duration
is represented by the function min_dur (?wpl, 2wp2),
max_dur (?wpl, ?wp2) and the fuel consumption by the
function consumption_rate (?vehicle). It follows that
each pair of waypoints has its own action duration distribu-
tion and each vehicle its fuel consumption distribution.

A Bayesian filter can be thought of as a variation
of a Kalman filter where the updating step is encapsu-
lated by Bayesian inference, and the prediction step is
not treated as a point estimate but rather a distribution.

The advantage is that we can estimate the lower / up-
per bound of the credible interval that we use to repre-
sent the min_dur (?wpl, ?2wp2),max._dur (?wpl, 2wp2)
of actions and consumption_rate (?vehicle) of a
vehicle. A lower bound credible interval of the posterior pre-
dictive distribution N (z | p, o2 +02) with CDF~! as the
inverse of the cumulative density function of a Normal dis-
tribution is calculated as:

LB =/CDF71(% =0.05 | pp, 00 +0%)dz (3)

An upper bound credible interval of the posterior predictive
distribution N (z | pfy, off + o2) for action duration and fuel
consumption rate respectively are calculated as:

xUB:/CDF_l(%:O.% | po, 0 +0?)de (4)

Experimental Results

We now present the metrics that we use to assess the per-
formance of our AMS in a realistic simulation that we de-
veloped in Gazebo. Our case study is shown in Figure lc,
which depicts a wind farm consisting of four turbines*. We
also present tests in real-world scenarios.

AMS Evaluation in Simulation

We test and validate our approach by running the Gazebo
simulation with scenarios that might trigger replanning due
to insufficient fuel or time. Experimental scenarios simulate
daily trips visiting one or more wind turbines to perform up
to ten types of inspection or repair missions with a maxi-
mum trip time of 150 minutes. A USV, a UAYV, and an IRR
are used for consistency of the results on each trip scenario.
We also set the probability of action failures to 0.2 for those
actions that might triggers replanning due to sensor / actu-
ator malfunctions (e.g. actions defined in Section “Domain
Formulation for O&M Tasks”).

We test four different strategies: (i) POPF; (ii) POPF
with Discrepancy Monitoring (DM); (iii) POPF with AMS,
which include DM and our Model Learner; (iv) POPF
with Decentralized Heterogeneous Robot Task Allocator
(DHRTA). DHRTA (Carreno et al. 2020) utilizes a tem-
poral planner in combination with an efficient task allo-
cator to tackle complex actions in multiple heterogeneous
robots. For POPF, POPF with DM, and DHRTA, we for-
mulate the planning domain by using the estimated average
speed of the vehicles as indicated by the manufacturers as
well as inputs elicited from experienced UAV / boat hu-
man operators to calculate the estimated duration for each
action (min_dur (?wpl, ?2wp2) and max_dur (?wpl,
?wp2)) and the estimated fuel consumption for each vehi-
cle (consumption_rate (?vehicle)). On the other hand,
for POPF with AMS, the action durations and fuel consump-
tion rates are based on the learned model trained using 30
different trip scenarios with two missions’. The similarity

4Simulation videos are available at https://www.youtube.com/
watch?v=AHdnCOWLKS5c&t=11s&ab_channel=FF.

Our experiments suggest that 5 different trips are enough to
outperform POPF without AMS.

15786

Execution time (AMS)
Makespan (AMS)
Execution time (DHRTA)
Makespan (DHRTA)
Execution time (POPF)
Makespan (POPF)

200

-
u
o

b4

Time (Minute)
S
o

50

6 10
Mission Goals

Figure 3: Execution time using plans generated by POPF,
POPF with DHRTA and POPF with AMS. The results show
that the expected execution time (makespan) for plans gen-
erated by POPF with AMS is closer to the actual execution
time in simulation.

between the missions involves the actions that are performed
at the different waypoints, which are used to learn the ac-
tion duration, and the vehicles that are employed in the trips,
which are used to learn the fuel rate consumption.

The performance is evaluated in terms of: (i) total plan
generation time, i.e. the sum of plan generation time in-
cluding replanning; (ii) adjusted makespan, i.e. the total
makespan accounting for the makespan created after replan-
ning; and (iii) the number of missions properly completed.
Table 1 shows the performance of each strategy averaged
over 12 different scenario runs for each number of missions.
The table shows that POPF and POPF with DM could not
produce plans for trip scenarios with more than six mis-
sions. With its efficient task allocator, POPF with DHRTA
managed to increase the maximum missions up to eight mis-
sions. The main problem comes from overestimating both
the action duration at each waypoint and the fuel rate con-
sumption of each vehicle. This causes the expectation that
actions take longer to execute and deplete fuel faster than it
actually is. On the other hand, POPF with AMS produces
plans for all trip scenarios due to its accuracy in modeling
the action duration and the fuel rate consumption.

We hypothesized that the trip execution time for plans
generated by POPF with AMS plan would be close to the ex-
pected execution time (makespan) in simulation. To validate
the hypothesis, we ran experiments for the original POPF,
POPF with DHRTA, and POPF with AMS by removing the
150-minute time limit per trip so that the original POPF and
POPF with DHRTA can generate plans for more missions.
Figure 3 shows the results of the experiments, which indi-
cate that our approach closely approximates the execution
time in simulation, while the execution time for plans with-
out AMS deviates from the actual execution time more sig-
nificantly as the number of missions increases.

We also ran an experiment to establish if POPF with AMS
is able to reduce the number of replanning due to insufficient
fuel. As discussed earlier, one of the causes for major re-
planning, which forces all robotic assets to go back to shore
and abandon all current missions, is an incorrect estimate of

Missions POPF POPF + DM POPF + AMS DHRTA
time span complete time span complete time span complete time span complete
#1 0.21 2492 0.97 0.29 26.02 1 0.12 22.06 1 0.22 2445 1
#2 17.95 68.09 1.94 18.50 68.96 2 0.31 40.09 2 9.21 66.38 2
#3 31.36 103.52 2.90 3475 106.80 3 0.33 62.76 3 18.76 100.67 3
#4 120.21 108.02 3.86 128.34 110.17 4 1.42 65.26 4 32.20 105.43 4
#5 164.14 132.01 4.84 172.78 135.54 5 495 75.01 5 45.38 121.33 5
#6 470.76 14527 5.775 505.11 147.09 6 7.65 79.02 6 76.41 129.60 6
#7 - - - - - - 11.86 91.51 7 120.54 142.83 7
#8 - - - - - - 33.73 97.66 8 115.72 149.04 8
#9 - - - - - - 46.04 107.76 9 - - -
#10 - - - - - - 61.70 115.22 10 - - -
Table 1: Plan generation time (sec), makespan (min), and completed missions (12 different trips per row).
—— Planner w?thout AMS POPF POPF + AMS
20 Planner with AMS
time span real act time span real act
Ls 19.34 26.67 1573 15 02 755 8.18 10
1934 26.67 1722 15 02 809 796 10

Total Replanning
-
o

o
n

0.0

2 4 8 10

6
Mission Goals

Figure 4: A comparison of the total number of replanning
calls between POPF with and without AMS.

fuel consumption rates. Similarly to the previous set of ex-
periments, we removed the 150-minute time limit per trip
to allow the original POPF to solve more problems. Figure
4 shows a significant decrease in the number of replanning
calls when using the POPF with AMS instead of the original
POPF.

Real-World Experiments

Due to the hardware limitation of our IRR prototype and
the absence of a real ASV (for budget restrictions), our real-
world test consists in an onshore trip (Figure 1d) combining
an inspection mission and a deployment and retrieval mis-
sion of an IRR to / from a wind blade, both carried out by a
UAV. For POPF, we calculate action duration and fuel con-
sumption as in the simulated experiments. For POPF with
AMS, the action durations and fuel consumption rates are
based on the learned model trained using 15 trips (five trips
with a visual inspection mission, five trips with a deploy-
ment mission, and five trips with retrieval missions).

Table 2 shows the performance of POPF with AMS com-
pared to the original POPF where the same trip is run twice
for each planner. The POPF planning domain overestimates
both the duration of each mission and the UAV’s fuel con-
sumption rate. As a result, the planner assesses that the trips
could not be completed without the UAV returning to the
ground to refuel. This decision costs extra actions and time.

15787

Table 2: Plan generation time (sec), makespan (min), real ex-
ecution time (min), and total actions to complete three mis-
sions on an onshore wind turbine.

Our adaptive planning domain formulation avoids this prob-
lem; POPF with AMS accurately estimates the duration of
each mission and the fuel consumption rate.

Conclusions

This work looks into the benefits of combining heteroge-
neous multi-agent systems, temporal planning, and domain
refinement to perform IMR tasks on offshore wind turbines.
We develop a sophisticated PDDL model and a robust au-
tonomy architecture to underpin the execution of these mis-
sions. We also devise a strategy that corrects the domain and
problem specifications by monitoring the discrepancies be-
tween the expected and the actual states of the system result-
ing from the execution of the actions over time. A refinement
process takes place after every action execution to make the
system incrementally more accurate.

We tested our approach in realistic scenarios for the au-
tonomous IMR of offshore wind turbine blades by using
a simulated wind farm environment that we developed in
Gazebo. The environment includes UAVs, USVs, and IRRs,
which are integrated via ROSPlan. Our tests show that the
proposed approach is effective in completing more missions
for each trip to the wind farms when compared with non-
adaptive solutions. We also tested subsets of our multi-robot
system in real-world scenarios involving UAVs and IRRs.
The results further confirm that our approach is effective in
creating valid plans with shorter total makespans.

Acknowledgments

This study has received funding from UKRI through the In-
novate UK Grant Agreement No. 104821 and EPSRC Grant
EP/R026084/1.

References

Benton, J.; Coles, A.; and Coles, A. 2012. Temporal plan-
ning with preferences and time-dependent continuous costs.
In ICAPS-2012.

Bergstrom, L.; Kautsky, L.; Malm, T.; Rosenberg, R.;
Wahlberg, M.; Capetillo, N. A.; and Wilhelmsson, D. 2014.
Effects of offshore wind farms on marine wildlife—a gener-
alized impact assessment. Environmental Research Letters,
9(3): 034012.

Carreno, Y.: Pairet, E.; Petillot, Y.; and Petrick, R. P. 2020.
A Decentralised Strategy for Heterogeneous AUV Missions
via Goal Distribution and Temporal Planning. In Thir-
teenth International Conference on Automated Planning and
Scheduling.

Carreno, Y.; Petrick, R. P. A.; and Petillot, Y. 2019. Multi-
agent Strategy for Marine Applications via Temporal Plan-
ning. In 2019 IEEE Second International Conference on
Artificial Intelligence and Knowledge Engineering (AIKE),
243-250.

Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtés, N.; and Carreras, M.

2015. ROSPIan: Planning in the robot operating system. In
Proc. Int. Conf. Automated Planning Scheduling, 333-341.

Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010.
Forward-chaining partial-order planning. In Proc. Int. Conf.
Automated Planning Scheduling. CAN.

Crosby, M.; Rovatsos, M.; and Petrick, R. P. 2013. Au-
tomated Agent Decomposition for Classical Planning. In
ICAPS-2013, 46-54.

Fernandez-Gonzalez, E.; Karpas, E.; and Williams, B. C.

2017. Mixed Discrete-Continuous Planning with Convex
Optimization. In AAAI-2017, 4574-4580.

Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. J. of
Artif. Intell. Res., 20.

GWEC. 2021. Global Wind Report 2021.

Largouét, C.; Krichen, O.; and Zhao, Y. 2016. Temporal
Planning with Extended Timed Automata. In ICTAI-2016.

Nikou, A.; Boskos, D.; Tumova, J.; and Dimarogonas, D. V.
2018. On the timed temporal logic planning of coupled
multi-agent systems. Automatica, 97: 339 — 345.
Piacentini, C.; Bernardini, S.; and Beck, J. C. 2019. Au-
tonomous target search with multiple coordinated UAVs.
Journal of Artificial Intelligence Research, 65: 519-568.
Sreedharan, S.; Zhang, Y.; and Kambhampati, S. 2015. A
first multi-agent planner for required cooperation (MARC).
CoDMAP-2015, 17-20.

Torrefio, A.; Onaindia, E.; Komenda, A.; and §tolba, M.
2017. Cooperative Multi-Agent Planning: A Survey. ACM
Comput. Surv., 50(6).

15788

Tran, T. T.; Vaquero, T.; Nejat, G.; and Beck, J. C. 2017.
Robots in retirement homes: Applying off-the-shelf plan-
ning and scheduling to a team of assistive robots. Journal of
Artificial Intelligence Research, 58: 523-590.

Welburn, E.; Wright, T.; Marsh, C.; Lim, S.; Gupta, A.;
Crowther, B.; and Watson, S. 2019. A Mixed Reality Ap-
proach to Robotic Inspection of Remote Environments. Pro-
ceedings of the second UK-RAS Conference, 72-74.

Zion Market Research. 2019. Wind Turbine Operations
and Maintenance Market by Application (Offshore and On-
shore): Global Industry Perspective, Comprehensive Anal-
ysis, and Forecast, 2018-2025. Zion Market Research Re-
ports.

