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Abstract

Advances in artificial intelligence (AI) using techniques such
as deep learning have fueled the recent progress in fields such
as computer vision. However, these algorithms are still of-
ten viewed as “black boxes”, which cannot easily explain
how they arrived at their final output decisions. Saliency
maps are one commonly used form of explainable AI (XAI),
which indicate the input features an algorithm paid atten-
tion to during its decision process. Here, we introduce the
open source xaitk-saliency package, an XAI framework and
toolkit for saliency. We demonstrate its modular and flexi-
ble nature by highlighting two example use cases for saliency
maps: (1) object detection model comparison and (2) dop-
pelgänger saliency for person re-identification. We also show
how the xaitk-saliency package can be paired with visualiza-
tion tools to support the interactive exploration of saliency
maps. Our results suggest that saliency maps may play a crit-
ical role in the verification and validation of AI models, en-
suring their trusted use and deployment. The code is publicly
available at: https://github.com/xaitk/xaitk-saliency.

Introduction
Research in artificial intelligence (AI) has seen significant
progress in the past few years, spurring the increasing adop-
tion of AI models in many real-world applications. Despite
the success of these AI models, their “black box” nature and
lack of interpretability presents a serious barrier to use in do-
mains such as healthcare, criminal justice, and autonomous
driving (Holzinger et al. 2017; Doshi-Velez and Kim 2017).
The growing field of explainable artificial intelligence (XAI)
seeks to develop tools and resources that enable AI models
to not only generate results, but also human-understandable
explanations of why these results were produced (Samek,
Wiegand, and Müller 2017; Vilone and Longo 2020). As
such, XAI has the potential to help human users better
understand, appropriately trust, and effectively manage AI
models (Gunning et al. 2021).

The United States Department of Defense recently
adopted a set of five ethical principles for the develop-
ment and deployment of autonomous systems (Board 2019):
responsible, equitable, traceable, reliable, and governable.
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XAI can inform many of these principles, while encom-
passing various aspects of the AI model lifecycle, including
research and development, verification and validation, and
user trust and acceptance. In this setting, the success of XAI
is dependent on the availability of robust, easy-to-use, and
open source tools that can generate meaningful explanations
of different types of data-driven AI models.

To address this gap, we previously proposed the Ex-
plainable AI Toolkit (XAITK), which contains a searchable
repository of XAI capabilities for analytics and autonomy
applications (Hu et al. 2021). In this paper, we introduce
the xaitk-saliency package, which is part of the XAITK
and provides an integrated, common software framework
focused on saliency. We make the following contributions:

(1) provide an open source, explainable AI toolkit for
saliency map computation that can support AI model
verification and validation across a wide variety of tasks.

(2) create a set of example notebooks and a novel vi-
sualization tool that allows users to interactively explore
saliency maps on their own datasets and models.

(3) present two concrete use cases supported by the
xaitk-saliency package, where saliency maps are shown to
be useful in real-world deployment scenarios.

Related Work
Explainable Artificial Intelligence (XAI)
Several different taxonomies of XAI methods have been pro-
posed, with explanations generally falling into different cat-
egories based on their scope and required level of model ac-
cess (Arrieta et al. 2020). Local explanations seek to explain
models using individual examples (e.g. one image from a
dataset), while global explanations seek to explain models
across multiple examples (e.g. at the dataset level). Expla-
nations can either be white-box or black-box, depending on
the amount of access to the model the explanation requires.
White-box methods typically require internal model access
and the computation of model gradients, while black-box
methods are model agnostic and can often be applied more
generally. As an alternative to post-hoc explanation meth-
ods, some have argued that models should be made more
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Figure 1: Overview of the xaitk-saliency package. Black-box saliency map computation involves the separate steps of image
perturbation and saliency map generation. Standardized interfaces specify required inputs and outputs (left side of each module),
while specific implementations (gray boxes on right side of each module) must adhere to the defined interfaces.

interpretable in the first place (Rudin 2019).

Saliency Maps as Visual Explanations
Saliency maps are a form of visual explanation that indi-
cate which input features were used by an AI model to
generate its output decisions. For example, the ears and
whiskers of a cat might be highlighted in the saliency maps
of a model trained to classify cat images. While most XAI
techniques involving saliency have been developed for im-
age classification tasks (Zeiler and Fergus 2014; Selvaraju
et al. 2017), there has been an increasing push to create
explanations for other image understanding tasks, includ-
ing object detection (Petsiuk et al. 2021) and image similar-
ity (Dong, Collins, and Hoogs 2019; Hu, Vasu, and Hoogs
2022). More recently, saliency has also been extended to
other data modalities, such as text (Danilevsky et al. 2020).
Recent work has also shown that extreme care must be taken
in the interpretation of saliency maps, which can sometimes
be misleading and may not always faithfully reflect the un-
derlying model being explained (Adebayo et al. 2018).

XAI Frameworks
Several XAI frameworks already exist, such as
AIX360 (Arya et al. 2022), Captum (Kokhlikyan et al.
2020), and InterpretML (Nori et al. 2019). There are also
dedicated visualization tools for exploring datasets and
models such as the What-If Tool (Wexler et al. 2019).
These approaches are often centered around specific ma-
chine learning frameworks, such as Tensorflow (Abadi
et al. 2015) or Pytorch (Paszke et al. 2019), making them
harder to use with incompatible models. In contrast, the
xaitk-saliency package is framework agnostic and supports
a wide variety of machine learning and deep learning frame-
works. This is done through the use of black-box saliency
algorithms, which are model agnostic and only require

access to the inputs and outputs of a model. As with other
frameworks, we focus on data scientists, researchers, and
machine learning practitioners as our main users, providing
demonstrations of how to use different saliency algorithms
via Jupyter notebooks. We describe the design and usage of
the xaitk-saliency package in the following sections.

Xaitk-Saliency Design and Usage
The xaitk-saliency package is built using Python, which sup-
ports the large existing ecosystem of Python-based tools for
data science and machine learning. We use a standard strat-
egy and adapter design pattern through the creation of base-
level interfaces and more specific implementations. This
approach enables the modularity and flexibility needed to
support a wide variety of saliency algorithms. At a high
level, we split the black-box saliency map computation pro-
cess into two sequential steps: 1) image perturbation and 2)
saliency map generation (Figure 1).

Image perturbation consists of perturbing the input im-
age multiple times (e.g. by sliding an occluding window
across the image). Image perturbation is handled by the
PerturbImage interface, with current implementations in-
cluding RandomGrid, RISEGrid, SlidingRadial, and Slid-
ingWindow. We also provide helper functions to perform
either batch or streaming image perturbation, which allows
users to trade-off runtime and memory usage.

Saliency map generation involves appropriately weight-
ing the resulting perturbed model outputs in order to com-
pute the final saliency maps. Saliency map generation is
handled by task-specific interfaces, which include Gener-
ateClassifierConfidenceSaliency (for image classification),
GenerateDetectorProposalSaliency (for object detection),
and GenerateDescriptorSimilaritySaliency (for image re-
trieval). Specific implementations of these interfaces are de-
scribed in more detail in the sections below.
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Task Saliency Algorithm(s)
Image classification Occlusion-based saliency (Zeiler and Fergus 2014);

Randomized Input Sampling for Explanation (RISE) (Petsiuk, Das, and Saenko 2018)
Object detection Detector-RISE (D-RISE) (Petsiuk et al. 2021)
Image retrieval Similarity Based Saliency Maps (SBSM) (Dong, Collins, and Hoogs 2019)
Reinforcement learning Perturbation-based Saliency (Greydanus et al. 2018)

Table 1: Currently implemented saliency algorithms in the xaitk-saliency package. Algorithms are black-box and span multiple
tasks, such as image classification, object detection, image retrieval, and deep reinforcement learning.

Splitting the saliency map computation process into sepa-
rate steps allows the individual component steps to be reused
or flexibly combined. Having standardized interfaces also
facilitates algorithm interoperability, ensuring that the in-
puts and outputs of each component step are compatible with
each other. Users can access saliency algorithms through ei-
ther a “low-level” API by configuring the image perturbation
and saliency map generation steps separately, or through a
“high-level” API, which conveniently handles the gluing to-
gether of these steps using standard implementations. Exam-
ple code showing the API is shown in Listing 1.

Saliency Algorithms
The currently implemented saliency algorithms are shown in
Table 1. These algorithms are split by task on the left, with
the corresponding algorithm name (along with its reference)
shown on the right. For image classification, occlusion-
based saliency (Zeiler and Fergus 2014) and RISE (Pet-
siuk, Das, and Saenko 2018) are implemented through Oc-
clusionScoring and RISEScoring, respectively. For object
detection, D-RISE (Petsiuk et al. 2021) is implemented
through DRISEScoring. For image retrieval, similarity-
based saliency maps (Dong, Collins, and Hoogs 2019)
are implemented through SimilarityScoring. We also have
support for perturbation-based saliency of deep reinforce-
ment learning agents (Greydanus et al. 2018) through the
SquaredDifferenceScoring implementation.

We expect the set of implemented algorithms to grow as
the field of XAI advances and new algorithms are intro-
duced. We also note that all currently supported algorithms
are black-box in nature (in support of our model agnos-
tic framework), but this could be enhanced in the future to
also include support for commonly used white-box saliency
methods, such as Grad-CAM (Selvaraju et al. 2017).

Example Notebooks
The xaitk-saliency package also includes a comprehensive
set of example Jupyter notebooks which showcase its func-
tionality, while highlighting the diversity of potential use
cases. In addition to the option of running these notebooks
locally on a Jupyter server, we have made it possible to run
all notebooks in the cloud using Google Colab. This allows
users to quickly test out example notebooks without having
to set up an environment locally. Screenshots from a selected
set of these notebooks are shown in Figure 2. The chosen
examples span different domains such as medical imaging
(explanations for a chest X-ray classifier), underwater im-
agery (explanations for a fish classifier), and deep reinforce-

Listing 1: xaitk-saliency Code Example
1 import matplotlib.pyplot as plt
2 from xaitk_saliency.impls.

gen_object_detector_blackbox_sal.
drise import DRISEStack

3
4 # Instantiate the D-RISE algorithm
5 # "high-level" implementation
6 g = DRISEStack(n=500, s=8, p1=0.5)
7
8 # Generate saliency maps for some
9 # image detections

10 saliency_maps = g(ref_image, det_boxes,
11 det_scores, det_model)
12
13 # Visualize a saliency map over image
14 plt.figure()
15 plt.imshow(ref_image)
16 plt.imshow(saliency_maps[0],
17 cmap=’jet_r’, alpha=0.3)

ment learning (explanations for an agent trained in a game
environment). These examples and others can be found at:
https://github.com/xaitk/xaitk-saliency/examples.

Visualization Tools

The use of saliency maps as a form of XAI is often embed-
ded into user workflows that involve the evaluation of AI
models. Towards this end, we have developed an interactive,
web-based visualization tool that allows users to explore the
outputs of different models and saliency algorithms. Fig-
ure 3 shows the graphical user interface (GUI) of our xaitk-
saliency-web-demo tool, which allows a user to input data,
select a model to explain, and configure parameters for a
chosen saliency algorithm. The GUI visualizes the model’s
output predictions, as well as saliency maps highlighting the
evidence for different classes. The user can also set visual-
ization parameters for the saliency map in order to adjust
how it is overlaid on the original image. In the image classi-
fication example shown in Figure 3, the model predicts the
class ‘German shepherd’ and highlights positive evidence
for this class in blue (while negative evidence from the cat’s
face is highlighted in red). This visualization tool is highly
portable, being able to run locally or via a containerized
web interface using the trame framework (Jourdain et al.
2022). The code for this visualization tool can be found at:
https://github.com/xaitk/xaitk-saliency-web-demo.
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Figure 2: Potential applications of saliency maps available
as example notebooks. (A) Chest X-ray classification using
MONAI (MONAI Consortium 2020). (B) XAI for a deep re-
inforcement learning agent trained on the Breakout-v0 Atari
game in OpenAI Gym (Brockman et al. 2016). (C) Fish
species classification using VIAME (Dawkins et al. 2017).

Example Use Case: Object Detection
Model Comparison

A critical question related to the real-world deployment of
AI models involves their verification and validation, which
goes beyond standard test and evaluation protocols. How
does a user know that their model will perform as expected
on new data? What level of assurance or justified trust can a
user place in their model, and what tools can be used to as-
sess this? Take for example the following hypothetical sce-
nario: imagine two AI models have been trained to detect
different types of aircraft in overhead imagery. One model
learns to use the correct image features in order to deter-
mine detections (e.g. aircraft wing or engine features). The
other model incorrectly latches onto spurious correlations in
the training data (e.g. the shadow cast by a particular air-
craft). This is an example of unintended dataset bias, which
will cause the model to fail to generalize when these aircraft
shadows are no longer present in the image.

Both models might achieve similar performance on a
held-out dataset with similar statistics as the training data.
How would a user discover this undesired bias in the data,
and correctly choose to use the model that generalizes bet-
ter? We believe that saliency maps can provide an addi-
tional axis of information upon which to evaluate AI models.
Saliency maps can provide a more human-understandable
view of models compared to raw performance metrics,
which may actually be quite similar for different models.
In the example above, saliency maps for the biased model
might show that the model incorrectly focuses on shadows
rather than the aircraft itself. Similarly, saliency maps might
be able to help identify edge cases in the data and flag these
data for further review by subject matter experts.

To test this hypothesis, we studied object detection mod-
els trained on the VisDrone dataset (Zhu et al. 2021a). The
VisDrone dataset consists of about 10K images, with over
540K annotated bounding boxes covering 10 different ob-

Figure 3: Interactive visualization of saliency maps (an im-
age classification task is shown here). A user can upload an
image, choose a particular model to explain, and configure
the parameters of the saliency algorithm. Model predictions
and saliency maps are shown together, with the ability to
also dynamically adjust the visualization.

ject classes. Challenges with the VisDrone dataset include
its long-tailed distribution, the presence of small objects,
and visually similar classes. Two pretrained models with
publicly available implementations were chosen for com-
parison: TPH-YOLOv51 and CenterNet2. TPH-YOLOv5
is a Transformer-based extension of the original YOLO
model (Zhu et al. 2021b), while CenterNet is an anchor-less,
single-stage detection model (Zhou, Wang, and Krähenbühl
2019). After training, both models achieved similar perfor-
mance on the test dataset, with the TPH-YOLOv5 model
performing slightly better (30.8 vs. 25.9 mAP).

As a form of model verification and validation, we ex-
amined the predicted detections of each model on sam-
ple images. We also computed class-specific saliency maps
on predicted detections in order to identify the image fea-
tures used by each model. This was done using the Ran-
domGridStack implementation in the xaitk-saliency pack-
age, which implements a form of black-box saliency for
object detectors (Petsiuk et al. 2021). Example detections
and their corresponding saliency maps are shown in Fig-
ure 4. While both models made similar high-confidence
predicted detections, the saliency maps reveal that the two
models learned to use slightly different features. For ex-
ample, for the class ‘pedestrian’, the TPH-YOLOv5 model
learned to focus on the head and feet while the Cen-
terNet model focused more on the torso. We also ob-
served differences in the saliency maps for other object
classes, such as ‘car’ and ‘bus’ (Figure 4). An open re-
search question is whether the quality of the generated
saliency maps (as quantified by metrics such as entropy, etc.)

1https://github.com/cv516Buaa/tph-yolov5
2https://github.com/GNAYUOHZ/centernet-visdrone
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Figure 4: Object detection model comparison using saliency maps. We compared the predicted detections and object-specific
saliency maps of two different models trained on the VisDrone aerial dataset (Zhu et al. 2021a). In each panel, the TPH-YOLOv5
model (Zhu et al. 2021b) is shown in the top row and the CenterNet model (Zhou, Wang, and Krähenbühl 2019) is shown in the
bottom row. (A) Both models produce similar high-confidence detections (shown with red bounding boxes). (B) Despite having
similar detections, the saliency maps corresponding to these detections reveal subtle differences in the input features used by the
two models, e.g. TPH-YOLOv5 (top) focuses on the head and feet of pedestrians, while CenterNet (bottom) focuses on the torso.
(C) For the ‘car’ class, TPH-YOLOv5 (top) seems to focus more on side view mirrors compared to CenterNet (bottom). (D)
For the relatively rare ‘bus’ class, TPH-YOLOv5 (top) shows better localized saliency maps compared to CenterNet (bottom).

is a good indicator of model generalization or robustness.
The example notebook that reproduces these results can be
found here: https://github.com/XAITK/xaitk-saliency/blob/
master/examples/ModelComparisonWithSaliency.ipynb.

Example Use Case: Doppelgänger Saliency
for Person Re-Identification

As a second example use case, we study the role of AI mod-
els for person re-identification (ReID). Person ReID seeks
to accurately identify individuals over time and across vari-
ous environmental changes such as different camera views,
in-door/outdoor settings, etc. Modern surveillance systems
have become increasingly dependent on AI to provide ac-
tionable information for real-time decision making. A crit-
ical question relates to how these systems handle difficult
ethical dilemmas, such as the ReID of similar looking indi-
viduals (which we here on out refer to as doppelgängers). To
address this issue, we previously developed a novel saliency-
based technique to help users identify discriminative fea-
tures between doppelgängers (RichardWebster et al. 2022).

For these experiments, we used the video-based MARS
(Motion Analysis and Re-identification Set) dataset (Zheng
et al. 2016). The dataset consists of 1,261 different pedes-
trians, spanning more than 20,000 tracklets collected from
six near-synchronized cameras. Each of the videos con-
tains significant variations in pose, color, and illumination,
along with the resolution of different pedestrians. To gener-
ate salient differences, RichardWebster et al. first trained a
support vector machine (SVM) on features computed from
the tracklets of two different individuals — a tracklet is a
sequence of chips that have been cropped to an individual
from a source video. To ensure the robustness of this ap-

proach, features from three different person ReID models
with varying architectures were used. The SVM classifier is
trained to discriminate between the two tracklets and com-
putes a probability that each chip in the tracklet belongs to
one of the individuals. This can be viewed as a simple two-
class image classification problem, where each class is one
of the two individuals in the doppelgänger pair.

RichardWebster et al. then used the SlidingRadial and
OcclusionScoring implementations provided by the xaitk-
saliency package to compute the doppelgänger saliency. In-
tuitively, image regions that are highlighted by the saliency
map are critical for the classifier’s prediction (i.e. remov-
ing them impacts the predicted class probability). In other
words, the region of pixels that has the strongest signal is
also the region which most strongly discriminates it from
its doppelgänger counterpart. We further quantified this by
using the set of insertion and deletion metrics introduced
in Petsiuk, Das, and Saenko (2018), along with a compari-
son to random saliency maps as a form of sanity check. Fig-
ure 5 shows example doppelgänger pairs (top) along with
potentially discriminating features in the resulting saliency
maps (bottom). Each saliency map highlights potential dif-
ferences between the two individuals, such as shirt and shoe
color. We note that a region does not have to be highlighted
in both images to be considered a difference.

The computed saliency maps can alert human users of
the presence of doppelgängers and provide important visual
evidence to reduce the potential of false matches in these
high-stakes situations. The results of the paper suggest that
this novel use of visual saliency can improve overall out-
comes by helping human users in the person re-identification
setting, while assuring the ethical and trusted operation of
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Figure 5: Example doppelgänger saliency. (A) Image regions that differ between the two individuals (e.g. face, shirt logo,
pants, and shoes) are highlighted in green. For illustration purposes, colored arrows pointing to corresponding image regions
are shown. (B) Additional doppelgänger saliency examples. The four pairs shown highlight at least one key difference, in order
from left to right: missing logo, shorts instead of dress, different shoes, and different face. In a full person re-identification
system, the user can view the highlighted regions to quickly spot visual differences in the doppelgänger pair. Figure adapted
from RichardWebster et al. (2022).

surveillance systems. RichardWebster et al. presented their
paper and results in the IEEE CVPR Workshop on Fair, Data
Efficient and Trusted Computer Vision. We refer the reader
to this workshop paper for more detailed information.

Discussion
We have introduced the open source xaitk-saliency package,
which is a general framework and toolkit for saliency map
computation. Alongside the toolkit, we have also developed
a novel visualization tool that enables users to interactively
explore saliency maps in support of model verification and
validation tasks. Through several examples and use cases,
we have demonstrated how easy xaitk-saliency is to use and
extend in order to address different real-world scenarios. We
have also shown how the current design and use of black-box
saliency algorithms enables both framework agnostic and
model agnostic explanations, which is useful for supporting
multiple deep learning or machine learning frameworks and
when internal model access is not always possible.

Future work should explore quantitative metrics for the
goodness or quality of saliency maps, which can be used to
study whether saliency maps are predictive of model gen-
eralization or robustness. More careful thought should also
be given to the design of interfaces and implementations for
white-box saliency algorithms, since model inference and
gradient computation is often handled differently by dif-
ferent deep learning frameworks. Finally, while the xaitk-
saliency package is currently focused on image understand-
ing tasks, it should also be extended for use with other data
modalities such as tabular or text data.

The availability of big data and compute is helping drive
forward progress towards the realization of novel AI tech-
nologies. However, the growing use of AI in many applica-
tions also creates a need for explanation of the underlying
AI models driving this progress. With more and more data
being used to build these AI models, new ways to interpret,
understand, and distill the knowledge that is learned by these
models becomes critical. We believe that saliency maps as

a form of visual explanation will play an important role in
the verification, validation, and eventual use of AI models.
Importantly, novel visualization tools and techniques can
also help support the use of saliency maps throughout the
entire AI model lifecycle. This will allow data scientists,
researchers, and machine learning practitioners to develop
new models, while assuring the use of trusted, reliable, and
robust AI models. We believe that the xaitk-saliency pack-
age will be of broad interest to anyone who deploys AI ca-
pabilities in operational settings and needs to validate, char-
acterize, and trust AI performance across a wide range of
real-world conditions and application areas.
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