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Abstract

Cold temperatures during fall and spring have the potential to
cause frost damage to grapevines and other fruit plants, which
can significantly decrease harvest yields. To help prevent
these losses, farmers deploy expensive frost mitigation mea-
sures such as sprinklers, heaters, and wind machines when
they judge that damage may occur. This judgment, however,
is challenging because the cold hardiness of plants changes
throughout the dormancy period and it is difficult to directly
measure. This has led scientists to develop cold hardiness pre-
diction models that can be tuned to different grape cultivars
based on laborious field measurement data. In this paper, we
study whether deep-learning models can improve cold hardi-
ness prediction for grapes based on data that has been col-
lected over a 30-year time period. A key challenge is that the
amount of data per cultivar is highly variable, with some culti-
vars having only a small amount. For this purpose, we inves-
tigate the use of multi-task learning to leverage data across
cultivars in order to improve prediction performance for indi-
vidual cultivars. We evaluate a number of multi-task learning
approaches and show that the highest performing approach is
able to significantly improve over learning for single cultivars
and outperforms the current state-of-the-art scientific model
for most cultivars.

Introduction
The ability of grapevines to survive cold temperatures dur-
ing fall, winter, and spring, is known as Cold Hardiness
(Hc). Cold hardiness in grapes and other plants is dynamic
in nature with a predictable seasonal trend. Cold hardiness is
low at the beginning of fall as the plant has not yet acclima-
tized and peaks during mid-winter when the plant reaches
acclimation. As spring arrives, the plant deacclimatizes and
the cold hardiness decreases to the low summer levels. This
means that during the fall and spring, when cold hardiness
is low, unusually cold temperatures can be lethal, especially
arising from sudden frost events.

To mitigate lethal damage due to cold temperatures, farm-
ers can deploy expensive preemptive methods such as wind
machines, sprinklers, and heaters to raise the air tempera-
ture. However, the decision of when to invest in expensive
mitigation depends on knowledge of the current unknown
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cold hardiness. While cold hardiness can be measured, it
requires expertise and expensive equipment, which farmers
rarely have. Thus, farmers rely on estimates of cold hardi-
ness derived from a combination of experience and scientific
models. This highlights the need for accurate data-centric
models for cold-hardiness prediction.

Current state-of-the-art cold hardiness models (e.g. (Fer-
guson et al. 2014)) use a biological basis to obtain a param-
eterized model that can be tuned for different grape culti-
vars using cold-hardiness data. While reasonably effective,
these models are relatively simple and only use ambient tem-
perature as input. Rather, cold hardiness likely depends on
multiple weather factors (e.g. humidity and precipitation) in
complex ways (Mills, Ferguson, and Keller 2006) that are
not full captured by current scientific models. This raises
the question of whether modern machine learning methods
can improve on current models via their increased expres-
siveness and ability to consume richer inputs.

In this work, we evaluate the use of Recurrent Neural
Networks (RNNs) for predicting cold hardiness based on
time series weather data. A key challenge is that ground-
truth cold-hardiness data is quite limited in comparison with
many applications of deep learning. In our experiments, we
find that for some grape cultivars, where there is significant
data, RNNs can be quite accurate and outperform a current
state-of-the-art model. However, for cultivars with more lim-
ited data, the RNNs can perform poorly. This raises the ques-
tion of whether we can leverage data across multiple culti-
vars to improve the prediction performance for cultivars with
limited data.

Our main contributions are: 1) To frame this multi-cultivar
learning problem as multi-task learning, and 2) To propose
and evaluate a variety of multi-task RNN models on real-
world data collected from over twenty cultivars with data
amounts ranging from 34 to just 4 seasons. Our results show
that multi-task learning is able to significantly outperform
learning from just the data of a single cultivar and very of-
ten outperforms the state-of-the-art scientific model. We are
aiming to install a model result from this work on an existing
weather network for trial use by grape farmers.

Background
The cold hardiness of a plant characterizes its ability to
resist injury during exposure to low temperatures. In this
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Figure 1: LTE50 measurements for three cultivars and tem-
perature range for one season. The bowl shape indicates an
initial increase in cold hardiness (decrease in lethal tempera-
ture) during acclimation followed by a decrease in cold har-
diness during deacclimation. Notice the difference in varia-
tion of cold hardiness for the chosen cultivars.

work, we will focus on grapevine cold hardiness, where
injury corresponds to lethal bud freezing, which decreases
crop yield. In order to quantify how grapevine cold hardi-
ness varies throughout the dormancy period, scientists use
differential thermal analysis (DTA). DTA results in a mea-
surement of the lethal temperatures at which 10%, 50%, and
90% of the bud population die/freeze, which are denoted by
LTE10, LTE50, and LTE90 respectively (Mills, Ferguson,
and Keller 2006). Figure 1 shows the LTE50 values for three
cultivars and temperature ranges throughout a dormant sea-
son.

Since this measurement process requires expensive, spe-
cialized equipment and expertise, scientists have used col-
lected data to develop grape cold-hardiness models, which
aim to estimate the lethal temperatures based on only his-
torical temperature data. The current state-of-the-art model,
developed by Ferguson et al. (2011), integrates plant biology
concepts to find a relation between daily temperatures and
changes in cold hardiness. Intuitively, the Ferguson model
computes the daily change in cold hardiness (e.g. as mea-
sured by LTE50) based on the day’s accumulated thermal
time (being above or below certain temperature thresholds)
weighted by coefficients that vary with the stage of dor-
mancy. The model has a small number of parameters, e.g.
thresholds for thermal times, which can be tuned for a partic-
ular cultivar. Tuning was done by performing a brute-force
grid search over the parameter space to identify the param-
eter settings that resulted in the most accurate predictions.
While this model has produced promising results and is in
use by growers, it has limited expressiveness (only a hand-
ful of parameters) and only uses daily temperature data as
input, rather than also factoring in other influential weather
measurements (e.g. humidity and precipitation).

The limitations of the current scientific models raise the
question of whether we can improve cold-hardiness predic-
tion through the use of modern deep learning models. On
one hand, such black-box deep models can be much more
expressive and can easily incorporate additional weather
data as input. On the other hand, the cold-hardiness data
set sizes are relatively small from a deep-learning perspec-
tive, which may limit the potential benefits. The remainder
of the paper explores this question. Below we first describe
the cold-hardiness data sets used in our work followed by a
description and evaluation of our deep learning approaches.

Cold Hardiness Datasets
The cold hardiness of endo–and ecodormant primary buds
from up to 30 genetically diverse cultivars/genotypes of
field-grown grapevines has been measured since 1988 in the
laboratory of the WSU Irrigated Agriculture Research and
Extension Center (IAREC) in Prosser, WA (46.29°N lati-
tute; -119.74°W longitude). In the vineyards of the IAREC,
the WSU-Roza Research Farm, Prosser, WA (46.25°N lat-
itude; -119.73°W longitude), and in the cultivar collection
of Ste. Michelle Wine Estates, Paterson, WA (45.96°N lat-
itute; -119.61°W longitude), cane samples containing dor-
mant buds were collected daily, weekly, or at 2-week inter-
vals from leaf fall in autumn to bud swell in spring. These
two phenological events typically occurred in October and
in April, respectively (Ferguson et al. 2011, 2014).

All samples were analyzed with DTA to record ground
truth for LTE10, LTE50, and LTE90 measurements of cold
hardiness. Additionally, meteorological/environmental daily
data from the closest on-site weather station to each vineyard
(cultivar) was obtained using the API provided by AgWeath-
erNet (WSU 2022). The three stations used are Prosser.NE
(46.25°N latitude; -119.74°W longitude), Roza.2 (46.25°N
latitude; -119.73°W longitude), and Paterson.E (45.94°N
latitude; -119.49°W longitude).

The result is a continually growing dataset for each cul-
tivar that contains a varying number of seasons of daily
weather data along with cold-hardiness LTE labels for the
days that samples were collected. Following prior work we
consider a season to extend from September 7th to May
15th, which is a conservative interval that should almost al-
ways contain the full dormancy period. Our experiments in-
volve cultivars with data sets ranging from 34 to 4 seasons.

Cultivar Dataset Details. Table 1 shows a summary of
the number of years of data collected for selected cultivars.
The dataset for a given cultivar contains a row for each day
of all data-collection seasons. Note, since cold hardiness was
not measured on each day of a season, some rows do not
contain LTE data. Below we highlight the key information
contained in each row used by our models.
• DATE: The date of the weather observation.
• AWN STATION: The closest AgWeatherNet station

from where the environmental readings are taken.
• LTE values (when available): LTE10, LTE50, LTE90.

In degrees Celsius.
• MIN AT, AVG AT, MAX AT: Minimum, average, and

maximum air temperature observed at 1.5 meters above
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Cultivar LTE
Data Seasons

LTE Total
Years of Data

LTE Total
Samples

Barbera 2006-2022 14 151
Cabernet Franc 2005-2012 4 35
Cabernet Sauvignon 1988-2022 34 829
Chardonnay 1996-2022 26 783
Chenin Blanc 1988-2022 18 193
Concord 1988-2022 27 484
Gewurztraminer 2005-2016 9 101
Grenache 2006-2022 14 151
Lemberger 2006-2016 6 60
Malbec 2004-2022 17 261
Merlot 1996-2022 26 897
Mourvedre 2005-2022 12 133
Nebbiolo 2006-2022 14 152
Pinot Gris 2003-2022 17 190
Riesling 1988-2022 34 636
Sangiovese 2005-2022 15 165
Sauvignon Blanc 2006-2022 12 140
Semillon 2006-2022 13 201
Syrah 1999-2022 23 486
Viognier 1999-2022 18 206
Zinfandel 2006-2022 14 150

Table 1: Summary of cultivars’ LTE data collection.

the ground. In degrees Celsius.
• MEAN AT: (MIN AT + MAX AT )/2. In degrees

Celsius.1

• MIN RH, AVG RH, MAX RH: Minimum, average, and
maximum relative humidity value observed at 1.5 meters
above the ground. In percent.

• MIN DEWPT, AVG DEWPT, MAX DEWPT: Mini-
mum, average, and maximum dew point (temperature the
air needs to be cooled to in order to achieve relative hu-
midity). In degrees Celsius.

• P INCHES: Observed sum of precipitation for the daily
period. In inches.

• WS MPH, MAX WS MPH: Average and maximum ob-
served wind speed at 1.5 meters above the ground for the
daily period. In Miles Per Hour.

Deep Cold-Hardiness Models and Training
Given the availability of cold-hardiness data, we can formu-
late cold-hardiness prediction as a sequence prediction prob-
lem. We will use i to index the different grape cultivars with
Ni denoting the number of seasons available for cultivar i.
The sequence data for season k of cultivar i is denoted by
Si,k and has the form Si,k = (x1, y1, x2, y2, . . . , xH , yH),
where xt is the weather data for day t, yt is the ground truth
LTE data for day t, and H is the number of days per sea-
son. Recall that yt is not measured on each day of a season
(e.g. measured every two weeks) and hence for days where
the LTE measurements are unavailable yt = N/A. Finally,
the data set for cultivar i is denoted by Di = {Si,k | k ∈
{1, . . . , Ni}}.

Given a data set Di our learning goal is to produce
a model Mi that can take as input a sequence of daily
weather measurements (x1, x2, . . . , xt) up to a particular

1This is recorded since it is the temperature measure used by
the scientific model.

day t and produce a sequence of predicted LTE estimates
(ŷ1, ŷ2, . . . , ŷt) for cultivar i. Typically, a farm manager will
be most interested in the estimate ŷt. This estimate can then
be compared to the low-temperature forecast for that day to
help decide whether to prepare for frost mitigation measures.
The key question of this work is to evaluate whether modern
deep learning methods can provide farm managers with im-
proved predictions compared to the current state-of-the-art
cold-hardiness models.

We will refer to the problem of learning Mi based on
only Di as single-task learning (STL), which is the gen-
eral framework used for the vast majority of deep learn-
ing applications. Importantly, the performance of STL is
significantly influenced by the amount of available train-
ing data, which according to Table 1 varies widely across
the different cultivars. Thus, we might expect STL perfor-
mance for cultivars with small datasets to suffer in com-
parison to those with large datasets. To address this is-
sue, we consider the multi-task learning (MTL) framework
(Caruana 1997; Vandenhende et al. 2021; Crawshaw 2020;
Zhang and Yang 2021), which involves learning a predictive
model for cultivar i using a combined dataset of all cultivars
D = {D1, D2, . . . , DC}, where C is the number of cultivars
for which we have data. Intuitively, MTL offers the potential
to identify common structures among the multiple learning
tasks (i.e. cultivars) in order to improve performance for in-
dividual cultivars, especially those with limited data.

Below, we first introduce the STL deep model that we
developed, which will serve as our deep-learning baseline
for cold-hardiness prediction. Next, we introduce two frame-
works for modifying that model to support MTL. Finally, we
describe certain details of the training strategy used in our
experiments. To the best of our knowledge, this is the first
work that has considered deep models for cold-hardiness
prediction in both the STL and MTL settings.

Single-Task Model
Our basic STL makes causal LTE predictions by sequen-
tially processing a weather data sequence x1, x2, . . . , xt and
at each step outputting the corresponding LTE estimate. For
this purpose we use a recurrent neural network (RNN) model
(Rumelhart, Hinton, and Williams 1985), which is a widely
used model for sequence data. The RNN backbone used by
both our STL and MTL models is illustrated in Figure 2a),
which we denote by fθ with parameters θ. The backbone
network begins with two Fully Connected (FC) layers, fol-
lowed by a Gated Recurrent Unit (GRU) layer (Cho et al.
2014), which is followed by another FC layer. Our STL
model, shown in Figure 2b), simply feeds daily weather data
xt into the first FC layer as input and adds an additional
FC layer to produce the final LTE prediction output. Intu-
itively, the GRU unit, through its recurrent connection is able
to build a latent-state representation of the sequence data
that has been processed so far. For our cold-hardiness prob-
lem, this representation should capture information about
the weather history which is useful for predicting LTE. In
some sense, the latent state can be thought of as implicitly
approximating the internal state of the plant as it evolves
during dormancy. As described below, each STL model Mi
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Figure 2: Network Architectures. FC denotes fully connected layers and GRU denotes Gated Recurrent Unit. a) The RNN
backbone is used to process weather data sequences (xt). b) The single-task model with a single prediction head for a single
cultivar. c) Multi-Head Model which has a prediction head for each cultivar allowing backbone features to be shared. d) Task
Embedding Model, which combines the weather data features with a learned task embedding for each cultivar before entering
the backbone network.

is trained independently on its cultivar-specific dataset Di.

Multi-Task Models
We consider two types of MTL models that directly extend
the RNN backbone of Figure 2a), the multi-head model and
the task embedding model.

Multi-Head Model. The multi-head model is perhaps the
most straightforward approach to MTL and has been quite
successful in prior work when tasks are highly related (Caru-
ana 1997). As illustrated in Figure 2c), the multi-head model
is identical to the STL model, except, that it adds C paral-
lel cultivar-specific fully-connected layers to the backbone
(i.e. prediction heads). Each prediction head is responsible
for producing the LTE prediction for its designated cultivar.
This model allows the cultivars to share the features pro-
duced by the RNN backbone, with each cultivar-specific out-
put simply being a linear combination of the shared features.
Intuitively, if there are common underlying features that are
useful across cultivars, then this architecture allows those to
emerge based on the combined set of data. Thus, cultivars
with small amounts of data can leverage those useful fea-
tures and simply need to tune a set of linear weights based
on the available data. We abbreviate this model with MultiH
in future sections.

Task Embedding Models. Our proposed Task Embed-
ding models are motivated by thinking about current scien-
tific models and how they address multiple tasks. The Fergu-
son model, for example, has a fixed structure, based on sci-
entific knowledge, but a small number of parameters that can
be tuned for each cultivar. Our task embedding model aims
to generalize this concept by having a neural network learn
both the structure of the model that accepts task-specific pa-
rameters as well as learning the parameters of each cultivar.
Note that the cultivar parameters and model structure will
not have a clear scientific interpretation due to the black-box
nature of deep models. The trade-off for interpretability is
the potential for better performance due to increased expres-
sive power.

Specifically, our proposed Task Embedding models, as
shown in Figure 2d), are similar in spirit to context-sensitive

neural networks (Silver, Poirier, and Currie 2008; Schreiber,
Vogt, and Sick 2021; Schreiber and Sick 2021), where a
task-specific context is provided as additional input to the
neural network with only a single output being computed.

We obtain this task-specific context by encoding the task
as a one-hot vector and finding a corresponding mapping
using a differentiable embedding layer. We explore differ-
ent ways of incorporating the obtained task embedding, via
element-wise Addition, Concatenation, and element-wise
Multiplication. We abbreviate these models with AddE,
ConcatE, MultE in future sections.

Model and Training Details
We construct our dataset by selecting the dormant season
data for all cultivars. Missing features are filled in by lin-
ear interpolation. We discard seasons that have < 10% valid
LTE readings. We only include seasons where at least 90%
of temperature data is not missing. Missing LTE label read-
ings are not interpolated, instead, the missing LTE labels’
losses are masked during the training and evaluation pro-
cess. We choose 2 seasons for each cultivar as our test set.
We run three trials of training for all our experiments with
different train/test splits and average the performance over
the three trials.

We rely on the following weather features for learning
our models - Temperature, Humidity, Dew Point, Precipi-
tation, and Wind Speed. Our models output predictions for
LTE10, LTE50, and LTE90 which are optimized simulta-
neously, helping in inductive transfer. We focus exclusively
on the model’s predictive power for LTE50 in this work. We
consider the Mean Squared Error(MSE) as our loss function
and treat the Root Mean Squared Error(RMSE) as our per-
formance metric. We consider Adam (Kingma and Ba 2014)
as the optimizer of choice for our training process. We use a
learning rate of 0.001 with a batch size of 12 seasons shuf-
fled randomly. We train all our models for 400 epochs. The
input features have a dimensionality of 12. The output di-
mensionality of the linear layers of the RNN backbone are
1024, 2048 and 1024 respectively. The GRU has a hidden
state and internal memory of dimensionality 2048.
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Cultivar MultE ConcatE AddE MultiH Single Ferguson
Barbera 1.92 1.50 2.07 1.89 4.22 1.78
Cabernet Franc 4.84 2.36 3.49 2.39 4.00 1.45
Cabernet Sauvignon 2.93 1.75 1.82 2.27 3.43 1.83
Chardonnay 1.33 1.46 1.44 1.40 1.60 1.79
Chenin Blanc 1.85 1.51 1.57 1.45 2.47 2.27
Concord 2.33 2.42 2.32 1.98 2.61 2.02
Gewurztraminer 1.97 1.40 1.66 1.20 2.70 1.84
Grenache 3.07 1.86 2.17 1.79 2.86 1.92
Lemberger 3.01 1.65 2.24 1.49 3.23 2.21
Malbec 1.80 1.32 1.32 0.96 1.71 1.66
Merlot 1.74 1.53 1.39 1.53 1.66 1.55
Mourvedre 1.84 1.65 1.70 1.56 2.25 1.83
Nebbiolo 2.36 1.58 1.87 1.24 2.48 1.80
Pinot Gris 2.07 1.61 1.63 1.61 2.04 2.02
Riesling 2.80 1.47 1.77 1.97 3.63 1.55
Sangiovese 1.65 1.73 1.71 1.40 1.84 1.61
Sauvignon Blanc 1.33 1.43 1.52 1.22 1.71 1.42
Semillon 2.37 1.67 1.42 1.75 3.58 1.50
Syrah 1.22 1.22 1.28 1.29 1.57 1.25
Viognier 3.90 1.75 2.30 2.28 4.16 1.36
Zinfandel 3.10 1.45 1.56 1.60 2.64 1.90

Table 2: Comparison of the performance of proposed MTL methods with STL and the existing state-of-the-art method. Note
that the performance is measured in terms of Root Mean Squared Error.

Experiments
In this section, we present our main empirical results. Our
experiments involve 21 cultivars from Table 1. In particular,
we removed any cultivar that has less than 4 years of data
and removed cultivars for which the Ferguson model results
were unavailable for comparison.

Multi-Task Versus Single-Task Learning. Table 2
shows the root mean squared error (RMSE) of the multi-
task models, single-task model, and Ferguson model for all
21 cultivars. The first observation is that with the excep-
tion of Chardonnay, the single-task model never outperforms
the state-of-the-art Ferguson model. For cultivars with small
amounts of data, there is often a dramatic decrease in per-
formance over Ferguson, while other cultivars with larger
datasets are close to Ferguson’s performance.

The second observation is that for each cultivar, with rare
exceptions, the 4 multi-task models all outperform the corre-
sponding single-task model. As expected, the improvement
tends to be most pronounced for the smaller dataset culti-
vars. This shows that multitask learning is indeed able to
identify and exploit common structures among the differ-
ent cultivars, leading to improved generalization. Among the
MTL methods, the MultiHead approach consistently out-
performs other methods. Among the task embedding ap-
proaches, the concatenation approach performs best.

We observe, with the exception of Cabernet Franc and
Viognier, that our approaches outperform the Ferguson
model, the MultiHead or concat task embedding approaches
being the best-performing models for most cultivars. The
gap in the performance is more dramatic in cultivars with
low data, such as Lemberger and Gewurztraminer.

Impact of Task Dataset Size. Table 3 shows the per-
formance of MTL(MultiHead) and STL models when we
choose one of three cultivars (Riesling, Merlot, Cabernet
Sauvignon) with ∼30 seasons of data and artificially select

Cultivar 2 5 10 20 All
Riesling (MTL) 2.25 2.16 2.10 1.71 1.97
Riesling (STL) 4.59 4.40 3.66 3.41 3.63
Cabernet Sauvignon (MTL) 2.02 2.16 2.27 2.07 2.27
Cabernet Sauvignon (STL) 2.68 3.24 3.68 2.91 3.43
Merlot (MTL) 1.69 1.54 1.55 1.41 1.53
Merlot (STL) 2.26 1.99 1.83 1.67 1.66

Table 3: Measuring the impact of varying the dataset size for
chosen cultivars. The experiment is conducted for both STL
and MTL. We choose 2, 5, 10, and 20 seasons as reasonable
choices to evaluate. The performance is measured in terms
of RMSE.

only a subset of seasons, and train the MultiHead model.
We also train STL models in the same setup. As expected
for STL, with the exception of Cabernet Sauvignon, intro-
ducing more seasons of data up to an extent does help in
improving performance.2

Interestingly we see that an MTL model trained on just
2 or 5 seasons of data for a cultivar outperforms an STL
model using all of that cultivar’s data. This reflects the fact
that MTL is indeed able to leverage the information present
in other cultivars to learn a good model for that specific cul-
tivar. In a sense, the data from other cultivars appear to be as
valuable as tens of seasons of data for a specific cultivar.

Impact of the number of tasks - The goal here is to un-
derstand how different subsets of tasks impact the perfor-
mance of an MTL model. Here, we select different subsets
of our tasks, 10 tasks with the most amount of data, 10 tasks
with the least amount of data, and 10 tasks with a mix of

2Note that there is a consistent decrease in performance when
going from 20 seasons to ALL. The reasons for this remain to be
explored; however, it is likely due to the influence of a small num-
ber of unusual seasons.
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Cultivar High Low Mix All Single
Riesling 1.95 1.70 1.97 3.63
Cabernet Sauvignon 2.49 2.28 2.27 3.43
Chardonnay 1.33 1.41 1.40 1.60
Concord 2.00 1.90 1.98 2.61
Merlot 1.46 1.39 1.53 1.66
Syrah 1.13 1.29 1.57
Chenin Blanc 1.60 1.45 2.47
Viognier 2.60 2.28 4.16
Malbec 1.12 0.96 1.71
Pinot Gris 1.48 1.61 2.04
Barbera 2.93 1.89 4.22
Grenache 2.04 1.79 2.86
Nebbiolo 1.85 1.24 2.48
Zinfandel 2.07 1.60 2.64
Semillon 2.47 1.75 3.58
Mourvedre 1.93 1.75 1.56 2.25
Sauvignon Blanc 1.65 1.27 1.22 1.71
Gewurztraminer 1.83 1.35 1.20 2.70
Lemberger 2.24 1.50 1.49 3.23
Cabernet Franc 2.91 2.13 2.39 4.00

Table 4: Measuring the impact of choosing a subset of avail-
able tasks for MTL and how it fares against choosing all
tasks.

high and low amounts of data. We train the MultiHead ar-
chitecture for this experiment.

Table 4 presents the cultivars in order of largest to smallest
datasets. Each column corresponds to the subset of cultivars
used in each experiment. Interestingly, we observe that an
MTL model trained on any of our chosen subsets always
outperforms single-task models for all cultivars.

For cultivars with relatively higher amounts of data, sur-
prisingly, it is better to choose a mix of high and low data
cultivars to get a better performing model. Including all the
cultivars for training does not lead to consistent gains for
all cultivars with high amounts of data. The reasons for this
observation require further analysis and experimentation.

For cultivars with lower amounts of data, again, choosing
a mix of high and low data cultivars leads to a better per-
forming model. Including all the cultivars for training does
indeed lead to consistent gains over choosing a subset.

Impact of Training Setting. Here, we consider a differ-
ent training setting, Transfer Learning (Bozinovski and Ful-
gosi 1976), where a new cultivar arrives and is incorporated
into the model without access to past data. This is in contrast
to MTL where all datasets are accessible at training time. We
consider finetuning as a straightforward approach to transfer
learning. Finetuning, in the case of MultiHead refers to re-
placing the task-specific final layers with a newly initialized
layer for the new task. For the task embedding approaches,
finetuning refers to learning the coefficients of a linear com-
bination of existing task embeddings.

Table 5 shows the RMSE metrics for the finetuning
paradigm for the different proposed methods relative to their
corresponding RMSE metrics for MTL from Table 2.

In the case of the MultiHead architecture, we observe that
finetuning is on par with MTL. This seems to indicate that
there are no tasks that hurt the MTL training process.

Although, for the Task Embedding approaches, we see

Cultivar ConcatE
FT

MultE
FT

AddE
FT

MultiH
FT

Barbera -1.02 0.04 -1.69 0.01
Cabernet Franc -1.50 2.41 -2.28 -0.05
Cabernet Sauvignon -1.02 0.64 -1.29 -0.01
Chardonnay -1.14 0.04 -3.01 0.11
Chenin Blanc -0.74 0.35 -2.96 -0.05
Concord -3.38 0.11 -2.96 -0.24
Gewurztraminer -1.58 0.51 -2.66 -0.25
Grenache -0.32 1.27 -1.69 -0.01
Lemberger -2.53 1.37 -0.43 -0.16
Malbec -2.78 0.77 -1.66 -0.07
Merlot -0.84 0.32 -2.32 0.11
Mourvedre -1.28 0.22 -1.58 -0.07
Nebbiolo -2.51 0.72 -1.31 -0.41
Pinot Gris -1.14 0.53 -2.44 0.08
Riesling -1.78 1.14 -1.00 0.31
Sangiovese -0.96 0.31 -1.73 0.05
Sauvignon Blanc -1.22 0.09 -0.23 -0.02
Semillon -1.46 0.97 -3.08 0.35
Syrah -0.97 -0.06 -1.87 0.00
Viognier -1.25 2.13 -1.89 0.52
Zinfandel -2.24 1.31 -1.75 -0.19
Median -1.25 0.53 -1.75 -0.01
Mean -1.51 0.72 -1.90 0.00

Table 5: Comparing Transfer Learning with Multi-Task
Learning. Note that the performance is relative to corre-
sponding MTL counterparts in table 2. If a term is positive,
it means that transfer learning does better than MTL in that
case. We abbreviate finetuning with FT in the column names.

that finetuning does worse than MTL for most cultivars for
the Concatenate and Additive variants. For the multiplicative
embedding variants, we see marginal to substantial gains in
performance.

Path to Deployment
Farmers use AgWeatherNet (WSU 2022) and WSU Viticul-
ture and Enology (Mills 2022) websites to monitor cold har-
diness through the deployment of the Ferguson model and
publication of real LTE values, respectively. Our goal is to
finalize the MTL-based models proposed in this paper and
deploy them onto AgWeatherNet for the 2022-2023 season
for beta testing.

Conclusion
We showed that multi-task learning is an effective approach
to predicting Cold Hardiness for grapevines. In particular,
our model consistently outperforms the state-of-the-art sci-
entific model without relying on expert domain knowledge.
This model will be deployed on an existing weather network
for the 2022-2023 season. In the future, we plan to apply
these ideas to cold-hardiness prediction for other crops, such
as cherries and apples. In addition, we plan to investigate the
utility of MTL for other agriculture-related problems with
limited data.
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