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Abstract

Mechanical ventilation is a key form of life support for pa-
tients with pulmonary impairment. Healthcare workers are
required to continuously adjust ventilator settings for each
patient, a challenging and time consuming task. Hence, it
would be beneficial to develop an automated decision sup-
port tool to optimize ventilation treatment. We present Deep-
Vent, a Conservative Q-Learning (CQL) based offline Deep
Reinforcement Learning (DRL) agent that learns to predict
the optimal ventilator parameters for a patient to promote 90
day survival. We design a clinically relevant intermediate re-
ward that encourages continuous improvement of the patient
vitals as well as addresses the challenge of sparse reward in
RL. We find that DeepVent recommends ventilation param-
eters within safe ranges, as outlined in recent clinical trials.
The CQL algorithm offers additional safety by mitigating the
overestimation of the value estimates of out-of-distribution
states/actions. We evaluate our agent using Fitted Q Evalu-
ation (FQE) and demonstrate that it outperforms physicians
from the MIMIC-III dataset.

Introduction
The COVID-19 pandemic has put enormous pressure on
the healthcare system, particularly on intensive care units
(ICUs). In cases of severe pulmonary impairment, mechan-
ical ventilation assists breathing in patients and acts as
the key form of life support. However, the optimal ven-
tilator settings are individual specific and often unknown
(Zein et al. 2016), leading to ventilator induced lung injury
(VILI), diaphragm dysfunction, pneumonia and oxygen tox-
icity (Pham, Brochard, and Slutsky 2017). To prevent these
complications, and offer optimal care, it is necessary to per-
sonalize mechanical ventilation.

Various efforts have proposed the use of machine learning
(ML) to personalize ventilation treatments. These include
the use of deep supervised learning (Akbulut et al. 2014;
Venkata, Koenig, and Pidaparti 2021) which permits high-
level feature extraction, yet ignores the sequential nature of
ventilation. Furthermore, supervised learning methods can
only hope to imitate the physician’s policy, which may lead
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to suboptimal treatment. Meanwhile, reinforcement learn-
ing (RL) interacts with the environment and gets immedi-
ate feedback from the patient in the form of rewards and
hence can improve upon the physician’s policy. Tabular RL
has recently shown strong potential in mechanical ventila-
tion (Peine et al. 2021), but, to the best of our knowledge,
no previous works have attempted to combine deep learning
and RL to improve mechanical ventilation.

We propose DeepVent, a Deep RL model to optimize me-
chanical ventilation settings and hypothesize it will lead to
improved care. We consider both performance and patient
safety with the aim of bridging the gap between research and
real-life implementation. Here are our main contributions:

• We introduce DeepVent, a Deep RL model based on
the Conservative Q-Learning algorithm (Kumar et al.
2020), and show using Fitted Q Evaluation (FQE) that
it achieves higher performance when compared to physi-
cians as recorded in the MIMIC-III dataset (Johnson et al.
2016), behavior cloning and Double Deep Q-Learning
(DDQN) (van Hasselt, Guez, and Silver 2015), a com-
mon RL algorithm in health applications.

• We compare DeepVent’s decisions to those of physi-
cians and of the DDQN agent. We show that DeepVent
makes recommendations within safe ranges, as supported
by recent clinical studies and trials. In contrast, DDQN
makes recommendations in ranges unsupported by clin-
ical guidelines. We hypothesize that this may be due to
DDQN’s overestimation of out-of-distribution states/ac-
tions and demonstrate the potential of Conservative Q-
Learning to address this. This is essential in healthcare,
where risk in decision making must be avoided.

• We introduce a clinically relevant intermediate reward
applicable to many fields of healthcare. Intermediate re-
wards enable faster convergence and improved perfor-
mance (Mataric 1994), and thus better outcomes for pa-
tients. Most previous efforts implementing RL in health-
care either did not address this or proposed a reward re-
quiring important domain knowledge (see Section ”Re-
lated Work”). Our intermediate reward is based on the
Apache II mortality prediction score (Knaus et al. 1985),
commonly used by physicians in ICUs, and leads to im-
proved performance.
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Background & Related Work
Reinforcement Learning (RL)
RL is usually formalized as a Markov Decision Process
(MDP), which is defined by a tuple (S,A, P, r, γ), where S
is the state space, A the action space, P the transition func-
tion defining the probability of arriving at a given state st+1

after taking action at from state st, r the reward function
defining the expected reward received after taking action at
from state st and γ ∈ (0, 1) the discount factor of the re-
ward. At each time step t of an episode, the agent observes
the current state st ∈ S , takes an action at ∈ A, and tran-
sitions to another state st+1 ∈ S while receiving a reward
rt. The goal of RL is to train a policy π : S × A → [0, 1]

that maximizes the cumulative discounted return,
∑T

t=0 γ
trt

received over the course of an episode with T timesteps.

Q-Learning and Deep Q-learning
Q-Learning (Watkins and Dayan 1989) is one of the main
RL algorithms and the most common method in healthcare
applications (Yu, Liu, and Nemati 2020). It aims to estimate
the value of taking an action a from a state s, known as the
Q-value Q(s, a). At each timestep t, upon taking action at
from state st and transitioning to state st+1 with reward rt,
the agent updates the Q-value for (st, at) as follows:

Q(st, at) = Q(st, at)+η(rt+γmax
a

Q(st+1, a)−Q(st, at))

(1)
where η ∈ (0, 1) is the learning rate and (rt +
γmaxa Q(st+1, a)) is the target of the update. When the
number of states is intractable, it becomes impractical to
store in a table the Q-values for all state-action pairs. We
can however use a function approximator to estimate the Q-
values. The Deep Q Network (DQN) (Mnih et al. 2015) al-
gorithm combines Q-Learning with deep neural networks to
handle complex RL problems. Despite offering many ad-
vantages, such as the ability to learn from data gathered
through any way of behaving, and to generalize potentially
to many states from a limited sample, DQN comes with
challenges, such as the potential to substantially overesti-
mate certain Q-values. Overestimation occurs when the es-
timated mean of a random variable is higher than its true
mean. Because DQN updates its Q-values towards the target
rt+γmaxa Q(st+1, a), which includes the highest Q-value
of the next state st+1, and because this is usually a noisy
estimate, it can lead to an overestimation.

Double Deep Q-Network (DDQN)
DDQN (van Hasselt, Guez, and Silver 2015) was introduced
as a solution to the overestimation problem in Q-learning.
While DQN uses a single network to represent the value
function, DDQN uses two different networks, parametrized
by different parameter vectors, θ and θ′. At any point in time,
one of the networks, chosen at random, is updated, and its
target is computed using the Q-value estimated by the other
network. Thus, for network Qθ, the target of the update is:

rt + γQθ′(st+1, argmax
a

Qθ(st+1, a)) (2)

While this is beneficial, DDQN may still suffer from over-
estimation (van Hasselt, Guez, and Silver 2015), especially
in offline RL.

Offline Reinforcement Learning
Traditional RL methods are based on an online learning
paradigm, in which an agent actively interacts with an en-
vironment. This is an important barrier to RL implementa-
tion in many fields, including healthcare (Levine et al. 2020),
where acting in an environment is inefficient and unethical,
as it would mean putting patients at risk. Consequently, re-
cent years have witnessed significant growth in offline (or
batch) RL, where the learning utilizes a fixed dataset of tran-
sitions D =

{(
sit, a

i
t, r

i
t, s

i
t+1

)}N

i=1
. Since the understand-

ing of the environment of the RL model is limited to the
dataset, this can lead to the overestimation of Q-values of
state-action pairs which are under-represented in the dataset,
or out-of-distribution (OOD). In the healthcare setting, this
may translate to unsafe recommendations, putting patients
at risk.

Conservative Q-Learning (CQL)
Conservative Q-Learning (CQL) was proposed to address
overestimation in offline RL (Kumar et al. 2020). It learns
a conservative estimate of the Q-function by adding a reg-
ularizer Est∼D,at∼A[Q(st,at)] on the Q-learning error, in
order to minimize the overestimated values of unseen ac-
tions. In addition, the term −Est,at∼D[Q(st,at)] is added
to maximize the Q-values in the dataset. In summary, CQL
minimizes the estimated Q-values for all actions while si-
multaneously maximizing the estimated Q-values for the ac-
tions in the dataset, thus preventing overestimation of OOD
or underrepresented state-action pairs.

Related Work
Algorithms for Ventilation Optimization Current ap-
proaches for ventilation optimization in hospitals commonly
rely on proportional-integral-derivative (PID) control (Ben-
nett 1993), which are known to be sub-optimal (Suo et al.
2021). The use of more sophisticated machine learning
methods have been suggested in recent years (Akbulut et al.
2014; Venkata, Koenig, and Pidaparti 2021; Suo et al. 2021).
Recently, RL was proposed using a simple tabular approach
(Peine et al. 2021). This was already expected to outperform
clinical standards, providing strong evidence for the use of
RL in this setting. Nonetheless, to the best of our knowledge,
no Deep RL approach has been proposed for ventilation set-
tings optimization. Furthermore, many core RL challenges,
such as sparse reward and value overestimation, have not yet
been addressed.

Intermediate Rewards in Healthcare RL has been sug-
gested in various fields of healthcare, such as sepsis treat-
ment (Raghu et al. 2017; Peng et al. 2019), heparin dosage
(Lin et al. 2018), mechanical weaning (Prasad et al. 2017;
Yu, Ren, and Dong 2020) and sedation (Eghbali, Alhanai,
and Ghassemi 2021). In RL, the use of a dense reward signal
can help credit assignment (Mataric 1994), leading to faster
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convergence and improved performance, which in health-
care translates to better outcomes for patients. Nonetheless,
most previous attempts listed above either did not address
this or proposed a reward requiring important domain spe-
cific knowledge. There is therefore an important need to de-
velop intermediate rewards that both perform well and are
broadly applicable to various fields of healthcare.

Methods
This section covers our methods, from data extraction and
preprocessing to defining the RL problem, the generation of
an out-of-distribution (OOD) dataset and our experimental
setup. An overview of the pipeline is here in Figure 1.

Figure 1: Overview of methods pipeline

Data Extraction and Pre-processing
We used the MIMIC-III database (Johnson et al. 2016), an
open-access database containing data for 61,532 ICU stays
at the Beth Israel Deaconess Medical Center (Boston, MA,
USA) between 2001 and 2012. Standardized Query Lan-
guage (SQL) was used to extract patient data into a table of
four-hour time windows. For each patient, the following data
were extracted: vital signs, lab values, demographics, flu-
ids and ventilation settings. The first 72 hours of ventilation
were selected. The patient data was separated into parallel
state, action and reward arrays. For data imputation, a mix of
methods was used. If less than 30% of the data was missing,
k-nearest-neighbor (KNN) imputation was used with k = 3
(Salgado et al. 2016). For 30% to 95%, a time-windowed
sample-and-hold method was used, whereby we took the ini-
tial value and used it to replace the following values, until
either a new value was met or a limit was reached (Salgado
et al. 2016). When the initial value was missing, mean value
imputation was performed. Finally, for over 95%, the vari-
able was removed from our state space.

RL Problem Definition
Our MDP is defined similarly to the work of (Peine et al.
2021), with episodes lasting from the time of the patient’s
intubation to 72 hours afterwards.

State Space The state space S comprises 36 variables1:

• Demographics: Age, gender, weight, readmission to the
ICU, Elixhauser score

• Vital Signs: SOFA, SIRS, GCS, heart rate, sysBP, diaBP,
meanBP, shock index, temperature, spO2

• Lab Values: Potassium, sodium, chloride, glucose, bun,
creatinine, magnesium, carbon dioxide, Hb, WBC count,
platelet count, ptt, pt, inr, pH, partial pressure of carbon
dioxide, base excess, bicarbonate

• Fluids: Urine output, vasopressors, intravenous fluids,
cumulative fluid balance

Action Space The 3 ventilator settings of interest are:

• Ideal weight adjusted tidal volume or Vt (Volume of air
in and out with each breath adjusted by ideal weight)

• PEEP (Positive End Expiratory Pressure)
• FiO2 (Fraction of inspired oxygen)

The action space A is the Cartesian product of the set of
these three settings. Each setting can take one of seven val-
ues corresponding to ranges. We thus have an action as the
tuple a = (v, o, p) with v ∈ V t, o ∈ FiO2, p ∈ PEEP .

Reward Function The main objective of our agent is to
keep a patient alive long-term. Therefore, even if DeepVent
only treats patients for 72 hours, it learns how to maxi-
mize their 90 day survival. This permits us to not only con-
sider patient welfare during treatment but additionally pre-
vent complications with long-term effects. We thus define a
terminal reward r(st, at, st+1), which takes at the final state
of an episode the value −1 if the patient passes away within
90 days and +1 otherwise. Because the sole use of a sparse
terminal reward is known to cause poor performance in RL
tasks (Mataric 1994), we developed an intermediate reward
based on the Apache II score (Knaus et al. 1985), which is
widely used in ICUs to assess the severity of a patient’s dis-
ease. The APACHE-II score compiles various physiological
variables and determines how far from the healthy range a
patient is. In order to reduce any source of bias, we made
modifications to the APACHE II score to shape our reward
function. We removed the FiO2 and respiratory rate (RR)
variables as including them may have favored giving a ”nor-
mal range” FiO2 or RR. However, changing these variables
may be required in certain cases. For example, it is well
known that hypoxic patients can heavily benefit from a mo-
mentary increase in FiO2. In addition, the hematocrit vari-
able was removed due to a high level of missingness. Our
modified score therefore contains the following variables:
temperature, mean BP, heartrate, arterial pH, sodium, potas-
sium, creatinine, WBC and GCS score (see (Knaus et al.
1985) for more details). Since each variable in the APACHE
II score contributes independently to the final score (Knaus
et al. 1985), removing some of the variables does not detract
from the ability of other variables to provide us with an indi-
cation of the gravity of a patient’s condition. In order to not
simply define the reward based on how well a patient is do-
ing but rather their evolution through time, our intermediate
reward consists of the change in Apache II score between

1For variable definitions refer to (Johnson et al. 2016)
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st+1 and st, which is normalized by dividing it by the total
range of the score. Combining the intermediate and terminal
rewards, we obtain our final reward function:

r(sit, a
i
t, s

i
t+1) =


+1 if t+ 1 = li and mi

t+1 = 1

−1 if t+ 1 = li and mi
t+1 = 0

(Ai
t+1−Ai

t)

maxA−minA
otherwise

where:

Ai
t is the modified Apache II score of patient i at timestep t

mi
t = 0 if patient i is dead at timestep t and 1 otherwise

li is the length of patient i’s stay at the ICU
maxA,minA are respectively the maximum and minimum

possible values of our modified Apache II score

Generation of the Out-of-Distribution Dataset
To investigate the overestimation of DeepVent and DDQN,
an out-of-distribution (OOD) set of patients was created. An
outlier patient was defined as having at least one state feature
(demographic, vital sign, lab value or fluid) at the beginning
of ventilation in the top or bottom 1% of the distribution.
Approximately 25% of patients were considered outliers.

Experimental Setup
Baselines We utilize three baseline methods: the physi-
cian policy, Behavior Cloning (BC) and a DDQN model.
The physician policy is the combination of all the transi-
tions (st, at, st+1) found in the dataset. As such, it represents
the choices made by the physicians attending to MIMIC-
III patients. BC aims to predict physician choices using a
supervised learning approach. It does so by training a pol-
icy network πθ with parameter θ to predict the action at
taken by the physician based on the current state st through
the minimization of the categorical cross-entropy loss func-
tion L(θ) = Eat,st∼D[−

∑
a p(a|st)logπθ(a|st)], where

p(a|st) = 0, ∀a ̸= at where at is the action taken by the
physician at st. BC thus serves as a benchmark for non-
RL methods. Finally, we use a DDQN model to serve as
a Deep RL baseline. Our implementation of CQL is built on
top of our DDQN, permitting easy evaluation of the utility
of adding the conservative aspect. DDQN and CQL are im-
plemented using the d3rlpy library (Seno and Imai 2021).

Training and Hyperparameters Patient episodes were
split into training (80%) and validation (20%). A grid search
was conducted for the learning rate η, the discount factor γ
and the scaling factor α of the conservative effect of CQL.
We considered η values in [1−7, 1−6, 1−5, 1−4], γ values in
[0.25, 0.5, 0.75, 0.9, 0.99] and α values in [0.05, 0.1, 0.5, 1,
2]. Furthermore, the sigmoid and ReLU functions and archi-
tectures of 1 to 3 hidden layers of 64, 128, 256 and 512 nodes
each were investigated. We trained these architectures for 1
million steps and determined optimal values of γ = 0.75 and
η = 1−6 for DDQN, and γ = 0.75, η = 1−6 and α = 0.1
for CQL. The best architecture had 2 hidden layers with 256
units each and the ReLU function. 5 runs of 2 million steps
were then performed and averaged for our results.

Off-Policy Evaluation In online RL, policies are typically
evaluated through interaction with the environment. How-
ever, in the healthcare setting where the environment is real
patients, evaluating the policies in this manner would be
unsafe. Evaluation is therefore done by using the dataset
through methods grouped under the term Off-Policy Eval-
uation (OPE). The performance of these methods was re-
cently evaluated in the healthcare setting (Tang and Wiens
2021), where Fitted Q Evaluation (FQE) (Le, Voloshin,
and Yue 2019) consistently provided the most accurate
results. Following this, we use FQE from d3rlpy (Seno
and Imai 2021). FQE takes as input a dataset of transi-
tions D = {st, at, st+1, rt}nt=1 and a policy π, and, at
each step k of the algorithm, computes the targets yt =
rt + γQk−1 (st+1, π (st+1)) using D. From there, we solve
Qk = argminf∈F

∑n
i=1 (f (st, at)− yt)

2 where F is the
function class containing all functions that can be calculated
by the neural network. This outputs a neural network Qπ

which estimates the value of any state-action pair (s, a) in
D under policy π. The performance of a policy can then
be computed by taking the mean initial state value, where
the initial state represents the first four hours of ventilation.
Although DeepVent was trained with intermediate rewards,
FQE’s value estimation only depends on the dataset D and
the actions chosen by the policy π used to train FQE. Be-
cause we trained FQE using the dataset without intermediate
rewards for both DeepVent- and DeepVent, the estimates are
solely based on the terminal reward and can thus be used as a
fair comparison. Since the physician policy effectively gen-
erates the episodes in our dataset, its discounted return for
each initial state can be computed by taking the cumulative
discounted reward for the episode starting at that state.

Results
We first investigate the performance of DeepVent with FQE
and compare it to physicians and BC. We then consider the
safety of our choices, compared to physicians and DDQN.
We further evaluate our model in OOD to show that Deep-
Vent maintains high performance when applied to outlier pa-
tients, making it safer for real-world implementation.

DeepVent Overall Performance
We first compare the performance of DeepVent- (CQL with-
out intermediate reward), DeepVent (CQL with intermedi-
ate reward), the physician and behavior cloning (BC) (see
Table 1) using FQE (see Section ”Methods - Experimen-
tal Setup”), which was run for 1 million steps until conver-
gence.

PHYSICIAN BC DEEPVENT- DEEPVENT

0.502± .007 0.572± .002 0.729± .002 0.743± .005

Table 1: Mean initial state value estimates for physician,
behavior cloning (BC), DeepVent- and DeepVent, with std.
errors. DeepVent- significantly outperforms both physicians
and behavior cloning. Adding the Apache II intermediate re-
ward (DeepVent) further improves the estimate.
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We observe that BC achieves a similar performance to
physicians, suggesting that supervised learning can learn a
relatively good policy. DeepVent- outperforms physicians
by a factor of 1.45. The addition of the intermediate reward
increases this factor to 1.48. Our results thus suggest that
DeepVent significantly outperform both physicians and BC.

DeepVent and Safe Recommendations
We next evaluate DeepVent’s action distributions (blue)
compared to DDQN (red) and physicians (green) (see Figure
2).

Figure 2: Distribution of actions across ventilator settings.
Unlike DDQN, DeepVent makes recommendations in safe
and clinically relevant ranges for each setting

The standard of care in PEEP setting is commonly initi-
ated at 5 cmH2O (Nieman et al. 2017) which is supported by
the high number of recommendations by physicians being
in the range of 0-5 cmH2O in our dataset. DeepVent sponta-
neously chose to adopt this strategy by making most recom-
mendations in the range of 0-5 cmH2O. In contrast, DDQN
chose settings distributed along all the options, ranging up to
15 cmH2O, where physicians rarely went. High PEEP set-
tings have been associated with higher incidence of compli-
cations such as pneumothorax (Zhou et al. 2021) and inflam-
mation (Güldner et al. 2016), and should thus be avoided.

In terms of FiO2, DeepVent once again followed clini-
cal standards of care. More specifically, DeepVent chose ac-
tions in the same ranges as the physicians in our dataset,
with many recommendations in the ranges of 35-50% and
>55%. In contrast, DDQN made few recommendations in
these ranges, and many in ranges rarely used by physicians.

Finally, for the ideal weight adjusted tidal volume, the op-
timal value is usually in the 4-8 ml/kg range (Luks 2013;
Kilickaya and Gajic 2013). DeepVent made a majority of
choices within 2.5-7.5 ml/kg, with most in the 5-7.5 ml/kg
range. In contrast, DDQN made many recommendations in
higher ranges, often above 15 ml/kg, a range rarely observed

in clinical practice and associated with increased lung injury
and mortality (Serpa Neto et al. 2012).

Overall, we thus observe that DeepVent, in constrast to
DDQN, is able to offer safe recommendations for patients.

DeepVent in Out-Of-Distribution (OOD)

As discussed in Section ”Background & Related Work”,
CQL was introduced to combat the overestimation of OOD
state-action pairs, a common problem in offline RL which,
in the healthcare setting, can lead to dangerous recommen-
dations. We thus investigate whether the sub-optimal rec-
ommendations made by DDQN might be caused by overes-
timation of OOD states/actions. We here compute the mean
initial Q values for DeepVent and DDQN estimated by FQE
trained on our dataset, both in and out of distribution (see
Figure 3).

Figure 3: Mean initial Q-values for ID and OOD for Deep-
Vent and DDQN with variances. The horizontal line is the
maximum expected return. In contrast to DeepVent, DDQN
clearly suffers from overestimation, aggravated when OOD

Since the maximal return for an episode in our data set
without intermediate rewards is set at 1, and FQE was
trained on this data set, values above this threshold should be
considered as overestimated. We observe that DDQN over-
estimates values in both the ID and OOD settings. In ad-
dition, DDQN’s overestimation is exacerbated in the OOD
setting. This failure to accurately assess these OOD states
may be the cause of the unsafe recommendations discussed
above. DeepVent seems to avoid these problems, as its aver-
age initial state value estimate stays below the overestima-
tion threshold of 1 in both settings, and barely changes in
OOD, suggesting stability of the model in both settings. To
strengthen this hypothesis, the action distribution of Deep-
Vent in the OOD setting was investigated (see Figure 4).

The distribution in the OOD setting closely resembles
the one from the ID setting, with most PEEP recommenda-
tions in 0-5 cmH2O and the majority of tidal volume recom-
mendations in the 5-7.5 ml/Kg range. Following the clinical
studies outlined in Section ”DeepVent and Safe Recommen-
dations”, DeepVent’s safety in terms of recommendations
extends to the OOD setting.
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Figure 4: Distribution of actions across settings for Deep-
Vent in distribution (ID) and out-of-distribution (OOD).
DeepVent maintains settings in safe ranges in OOD data

Discussion & Conclusion
Summary We develop DeepVent, a decision support tool
for safe mechanical ventilation treatment using offline deep
reinforcement learning. We show that our use of Conserva-
tive Q-Learning leads to settings in clinically relevant and
safe ranges, by addressing the overestimation of the val-
ues of out-of-distribution state-action pairs. Furthermore, we
show, using FQE, that DeepVent achieves a higher estimated
performance when compared to physicians, which can be
further improved by implementing our Apache II based in-
termediate reward. We conclude that DeepVent intuitively
learns to pick actions that a physician would agree with,
while using its capacity to overview vast amounts of data
and understand the long-term consequences of its actions
to improve outcomes for patients. Moreover, the fact that
DeepVent is associated with low overestimation in out-of-
distribution data makes it highly reliable, reducing the gap
between research and real-world implementation.

Limitations While FQE has been shown to be a highly re-
liable evaluation method (Tang and Wiens 2021), it is impor-
tant to note that our reported performance is an estimation
rather than an exact value. Further works evaluating perfor-
mance in a clinical setting or in simulators would permit a
more reliable evaluation. Further investigation of data am-
putation methods could be performed to guarantee methods
that mimic the protocols in ICUs. Furthermore, despite its
large size and strong reputation, the MIMIC-III dataset is
limited to a specific geographic location and may thus rep-
resent certain patient populations with more importance than
others.

Future Directions DeepVent is expected to significantly
improve outcomes for patients under ventilation, with the

potential to automatically adjust ventilator settings with high
performance. At first, DeepVent could be deployed as a de-
cision support tool, where physicians can either agree or re-
ject its decision, permitting practically no risks for patients.
This is a common process in healthcare as it gives an oppor-
tunity to learn further safety constraints before autonomous
deployment. Following this clinical validation phase, Deep-
Vent will likely naturally transition to full automation, free-
ing up time for physicians to focus on other components of
treatment. Furthermore, our work lays a foundation not only
for ventilation, but more broadly for any application of RL to
healthcare. We show the potential of CQL in healthcare and
introduce a broadly applicable intermediate reward based on
the Apache II mortality prediction score.

Code Availability
The code for this project can be found at:
https://github.com/FlemmingKondrup/DeepVent

Ethical Statement
Implementation of DeepVent through clinical trials must, as
any other technology, respect a high standard of ethical con-
siderations. A fair subject selection must be made, by which
patients enrolled in the trial represent the population Deep-
Vent will be applied to. This includes but is not limited to ac-
curate representation of demographics such as age, sex and
ethnicity. Privacy, consent and patient confidentiality must
at all times be respected. Furthermore, patient welfare must
be continuously monitored to ensure optimal care.
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