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Abstract

Point-of-Care Ultrasound (POCUS) refers to clinician-
performed and interpreted ultrasonography at the patient’s
bedside. Interpreting these images requires a high level of ex-
pertise, which may not be available during emergencies. In
this paper, we support POCUS by developing classifiers that
can aid medical professionals by diagnosing whether or not
a patient has pneumothorax. We decomposed the task into
multiple steps, using YOLOv4 to extract relevant regions of
the video and a 3D sparse coding model to represent video
features. Given the difficulty in acquiring positive training
videos, we trained a small-data classifier with a maximum
of 15 positive and 32 negative examples. To counteract this
limitation, we leveraged subject matter expert (SME) knowl-
edge to limit the hypothesis space, thus reducing the cost of
data collection. We present results using two lung ultrasound
datasets and demonstrate that our model is capable of achiev-
ing performance on par with SMEs in pneumothorax identi-
fication. We then developed an iOS application that runs our
full system in less than 4 seconds on an iPad Pro, and less
than 8 seconds on an iPhone 13 Pro, labeling key regions in
the lung sonogram to provide interpretable diagnoses.

Introduction
Ultrasound imaging techniques are crucial to many medical
procedures and examinations. The development of portable
ultrasound devices has allowed healthcare professionals to
perform and interpret sonographic examinations with the
goal of making immediate patient care decisions wherever
a patient is being treated, including out-of-hospital scenar-
ios. This clinician-performed and interpreted ultrasonogra-
phy at the patient’s bedside has been referred to as Point-
of-Care Ultrasound (POCUS). While POCUS allows ultra-
sound to be used in a variety of new tasks and settings, a
few bottlenecks still remain. For example, both the acquisi-
tion and interpretation of sonograms requires specific train-
ing and competency development. Moreover, the quality of
the ultrasound device and the proficiency of the operator col-
lecting the data can lead to challenging cases that are unin-
terpretable or elicit disagreement among experts.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Sample lung sonogram from the COVID-19
dataset, highlighting the pleural line.

The development of AI systems that can assist medical
professionals in interpreting sonograms by highlighting key
regions of interest (ROIs) and suggesting potential diagnoses
would increase both the accuracy and the efficiency of dif-
ferential diagnosis. However, developing intelligent systems
that are capable of operating in the medical domain is chal-
lenging due to the lack of annotated data. Many computer
vision applications rely upon thousands, or even millions,
of examples to achieve reasonable performance. In the med-
ical domain, collecting labels is an expensive process be-
cause a high degree of expertise is required to interpret the
images. Additionally, data collection for some tasks can be
challenging due to some procedures only being performed in
specific high-stakes situations (e.g., the patient’s life might
be at risk and immediate action is required). In the domain
of real-world images, transfer learning techniques are fre-
quently used to compensate for a lack of labeled data, how-
ever they are suboptimal for the medical domain due to a
lack of visual feature overlap.

In this paper, we propose a POCUS mobile application
within the context of an ultrasound video classification task.
The application must classify a lung ultrasound (LUS) video
according to the presence of pneumothorax (PTX) symp-
toms. Before constructing the system, we sought to gain
insight into the process that experts use to make their di-
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agnoses and inject this information into our architecture.
Smith, Zhang, and MacLellan (2022) conducted a think-
aloud analysis where two subject matter experts (SMEs) an-
alyzed and diagnosed videos of patients that potentially had
PTX. Their study determined that the pleural line (where the
lung comes into contact with the chest wall) and its move-
ment were the most important features for PTX diagnosis.
Clinicians can observe two types of pleural line movement
in a normal lung: lung sliding (shimmering movement syn-
chronous with respiration) and lung pulse (rhythmic move-
ment of the pleural line at the cardiac frequency). The pleu-
ral line remains relatively stationary in a patient with PTX,
displaying no sliding and no pulse. Figure 1 shows a still
image from an LUS with the pleural line highlighted.

We leveraged this expert knowledge by decomposing the
task into three stages. The first stage extracts the pleural line
from the video, then a second stage uses a 3D sparse cod-
ing model to extract a sparse representation of the pleural
line clip (Paiton 2019). The sparse coding model contains
biologically inspired mechanisms, such as lateral inhibition,
that result in high quality representations with orthogonal
features. This model also operates over multiple frames, cap-
turing movement in the video. The final stage passes the
sparse representation to a small convolutional neural net-
work (CNN) classifier.

Due to the difficulties surrounding collection and label-
ing of medical images, we challenged ourselves to minimize
the amount of labeled data used to develop our PTX applica-
tion. In our primary benchmark we used just 47 LUS videos,
each approximately 3 seconds long, and trained our model
from scratch. To complement the portability of POCUS de-
vices, we ensured that our mobile application could execute
on portable, relatively inexpensive hardware. We selected a
12.9-inch Apple iPad Pro as our target device for our exper-
iments and developed our application for iOS 15.

We demonstrate that our application is capable of per-
forming on par with SMEs and that it outperforms a
comparable VAE-based architecture and Mini-COVIDNet
(Awasthi et al. 2021) on PTX and COVID-19 datasets. Then,
we analyzed the impact of further restricting training data,
illustrating our model’s robustness to learning from limited
examples, and evaluated our model in a transfer learning set-
ting, where features are trained on one task and applied to
another, demonstrating the importance of our sparse filters.
We also qualitatively analyzed our learned filters and discuss
efforts aimed at interpretability, and provide an overview of
our mobile app and various challenges that we need to ad-
dress for our application to be deployed.

In summary, we make the following contributions:

1. We propose an LUS video classification framework
based upon features that experts identified as important
for diagnosing PTX.

2. We demonstrate that the framework outperforms existing
architectures and achieves accuracy on par with SMEs,
despite only being exposed to a few dozen labeled videos.

3. We construct an iOS application that executes our model
in just a few seconds, illustrating that the framework can
be deployed in clinical settings at low cost.

Related Work
Due to the COVID-19 pandemic, LUS has received height-
ened attention by the machine learning community. There
are two commonly used public datasets targeting this task,
ICLUS-DB (Roy et al. 2020) and the COVID-19 dataset
(Born et al. 2021). The most common LUS task formula-
tion consists of frame classification and semantic segmen-
tation, with some papers including video classification as
well. Many works rely upon a CNN-based architecture for
feature extraction (Diaz-Escobar et al. 2021), then aggre-
gate frame scores for a video-level prediction (Mento et al.
2021; Roy et al. 2020). Some works extend this by adding
a temporal component to the model, allowing it to detect
changes in the video over time (Barros et al. 2021; Lum et al.
2021; Dastider, Sadik, and Fattah 2021). Ebadi et al. (2021)
opted for a 3D CNN with a separate optical flow branch for
capturing these dependencies. Some work has sought to ex-
plicitly leverage expert annotations to improve performance.
Frank et al. (2022) used a convolutional network with not
only the B-mode frame as input but also a vertical artifact
mask and pleural line heatmap. Chen et al. (2021) took an
approach more similar to our own, where instead of clas-
sifying the whole video, the model only classifies an ROI
centered on the pleural line. They determined the ROI by
automatically selecting the highest peak in a radon transfor-
mation, whereas in our work we used a separately trained
object detection model.

Our work is more application-driven than many of these
works; we learned with limited data and ran our model on
a mobile device. For these reasons, Awasthi et al. (2021) is
most similar to our work. The researchers trained a frame-
based classification model based upon MobileNet (Howard
et al. 2017) on just 1,103 ultrasound images. They then
demonstrated that their model was able to run on two differ-
ent embedded systems. One major difference between their
work and our own is that we focused on video-level clas-
sification and handled temporal information by processing
video clips instead of individual image frames. This places
a larger burden on the model, making it more difficult to
execute on a mobile device. Another difference is that we
leveraged expert knowledge expressed in a think-aloud anal-
ysis (Smith, Zhang, and MacLellan 2022) to construct our
pipeline. This leads to a greater degree of interpretability in
the form of an ROI bounding box around the pleural line.

Application Context
The primary task that we focus on is PTX (i.e., abnormal
collection of air in the pleural space between the lung and
chest wall, potentially causing significant lung collapse) de-
tection. The requirements of this task specify that an agent
must analyze a LUS video and determine whether the patient
exhibits the signs of PTX (positive) or not (negative). The
primary artifact of interest is the pleural line, which takes
the form of a bright horizontal white line that extends across
part of the video (Figure 1). In a healthy patient, one can see
the visceral and parietal pleura sliding relative to each other
at the pleural line during respiration, as well as pulsing in
synchrony with cardiac contraction. In the case of PTX, air
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accumulation between the visceral and parietal pleura sep-
arates these membranes and eliminates the sliding motion
between them, as well as the cardiophasic movement at the
parietal pleura.1 We focused our model on these pleural line
characteristics based on the think-aloud analysis by Smith,
Zhang, and MacLellan (2022).

We considered several design principles when construct-
ing our model, including the type of equipment that would
be needed to process videos in a clinical setting, the amount
of labeled data available to train the model, and the time re-
quired to generate results. Many ultrasound devices support
iOS; therefore we developed our mobile application for this
platform and explored using both an Apple iPad Pro and an
iPhone 13 Pro. We also required our system to produce a
prediction in less than 5 seconds after the conclusion of the
video.2 Beyond these application considerations, we also fo-
cused on making model training inexpensive by requiring as
little annotated data as possible. Due to the high cost of data
acquisition and processing, we wanted to add the additional
constraint of restricting dataset size, demonstrating that we
can still obtain strong results with a relatively small amount
of high-quality data labeling. Therefore, we used just 47 an-
notated LUS videos to train our system for our primary task.

Model Description
The model that we developed consists of three primary com-
ponents: a YOLOv4 object detection model (Bochkovskiy,
Wang, and Liao 2020) that locates the pleural line, a 3D con-
volutional sparse coding model (Paiton 2019) that extracts
meaningful representations and compresses temporal infor-
mation, and a classifier that produces a binary classification
indicating if the pleural line clip displays movement.

Processing the entire video using this pipeline would re-
sult in our application exceeding our allotted execution time.
Therefore, we developed a voting strategy where the model
individually processes a number of clips, then aggregates the
predictions to produce the final overall video prediction. Our
application extracts clips by striding over the video frames
at a fixed interval. At each point, the model extracts the
given frame along with the two previous and two subsequent
frames, resulting in a five-frame clip. The YOLOv4 model
processes the middle frame of this five-frame clip and places
a bounding box around the pleural line. Our application ap-
plies this same box across all frames in the five-frame clip,
producing a final clip that only contains the region around
the pleural line. The sparse coding model then encodes this
clip and creates a sparse representation, which it sends to
the classifier to make a clip-level prediction. To get the fi-
nal video prediction, the system takes the mode of the clip
predictions. In the case of a tie (e.g., two clips are predicted
as movement and two as no movement) the application con-
siders the output logits as confidence values, averaging these
and rounding to the closest prediction.

1There are some cases where no sliding/no pulse might be ob-
served, yet the patient does not have PTX. In this work we assume
that all cases that exhibit these features are indicative of PTX.

2These requirements come from the DARPA POCUS program.

Sparse Coding One way of minimizing the amount of
labeled data required to train a model is to use unsuper-
vised training techniques. Therefore, we leveraged 3D con-
volutional sparse coding (Olshausen and Field 1997; Paiton
2019) to create a sparse representation of our pleural line
clips. Sparse coding relies upon biologically plausible learn-
ing techniques to learn a dictionary of convolutional filters.

We used a convolutional variant of the Locally Compet-
itive Algorithm (LCA) to compute our sparse features, fol-
lowing Paiton (2019) as a guide while developing our mod-
els. One can think of this model as an autoencoder that seeks
to learn a set of filters, or dictionary elements, Φ that accu-
rately reconstruct an input video x. The encoder produces an
activation map a, which the decoder then deconvolves with
the filters to produce the reconstruction x̂.

One can consider the encoder as a recurrent network
where an internal state, or membrane potential, µ is updated
at each timestep. The model trains via gradient descent to
minimize the energy function:

E(t) =
1

2

N∑
i=1

[xi − a(t)Φ]2 + λ|a(t)| (1)

where the first term is the sum squared error between the
input and reconstruction and the second term is the sparsity
penalty. The activation map a(t) is the thresholded internal
state µ(t), where values less than λ are set to 0.

Paiton (2019) shows that iteratively updating µ accord-
ing to Equation 2 (where η is learning rate) minimizes the
energy function in the convolutional case.

µ(t+ 1) = µ(t) + η(e ∗ Φ+ a(t)− µ(t)) (2)

As shown in Equation 2, convolution (∗ operation) of the
reconstruction error over the filters drives the membrane up-
date. The number of timesteps over which µ updates is a hy-
perparameter that one adjusts through observation of when
the objective function converges. During the computation of
the activation map, the filters do not update. After the model
produces the final activation map, the filters then unfreeze.
The training algorithm then uses Equation 1 to compute the
final loss and updates the filters using gradient descent.

Previous research has shown that sparse coding can pro-
duce robust, semantically meaningful visual features across
a variety of tasks, from learning face classifiers (Kim,
Hannan, and Kenyon 2018) to aligning binocular video
(Lundquist, Mitchell, and Kenyon 2017). It is even robust
to adversarial attacks (Schwartz, Alparslan, and Kim 2020).
However, due to its recurrent nature, sparse coding has a
higher computational cost than a standard CNN.

Small Convolutional Classifier Utilization of YOLOv4
and sparse coding allowed our classifier to have a minimal
number of parameters. The model first maxpools the sparse
coding activation map. Then it passes the resulting repre-
sentation through a CNN consisting of 2 convolutional lay-
ers and 2 feed-forward layers with dropout. We trained the
classifier with a binary cross-entropy loss function.
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Figure 2: Overview of our PTX classification architecture.

Experiments
We first demonstrate that our model outperforms both a VAE
baseline and Mini-COVIDNet (Awasthi et al. 2021) on both
our PTX task and an auxiliary COVID-19 LUS classifica-
tion task. We constructed the VAE baseline to have approx-
imately the same architecture as our model, replacing 3D
sparse coding with standard 3D convolution. This also func-
tions as an ablation of our sparse coding model, demon-
strating its utility. We additionally present results with Mini-
COVIDNet to compare to the most closely related work. We
report both accuracy and Macro F1 score to account for im-
balanced classes. We performed all evaluations using patient
grouping, where splits are such that the same patient never
appeared in both our training and test sets.

We performed an analysis in which we reduced the
amount of training data by fixed intervals, demonstrating
that our model is more robust to training data reduction than
Mini-COVIDNet. We then explored the benefits of sparse
coding by evaluating our model using sparse filters that were
learned from a related LUS dataset. This is a form of transfer
learning in which a set of weights learned on one task are ap-
plied to another task, typically with some slight adjustment
of the weights or additional layers that are learned on top of
the transferred network. These filters improved our PTX ac-
curacy compared to randomly initialized filters, illustrating
the benefits of learning sparse features on related data.

Model Implementation Details We developed our mod-
els in Keras and Tensorflow and exported our model to
TFLite to run in our iOS app. For sparse coding, we updated
the membrane potentials using Adam (Kingma and Ba 2015)
and used SGD for the filter updates. We trained with a batch
size of 32, a filter learning rate of 3e-3, 48 filters of width 15,
height 15, and depth 5, a stride of 1, 300 inner loop updates,
a membrane potential learning rate of 0.01, a lambda of 0.05,
an input clip height of 100 and width of 200, for 100 epochs.
We trained the classifier using Adam and reduced the com-
putational cost of sparse coding by using a stride of 2 and
150 inner loop updates with our learned filters. We trained
the classifier with a learning rate of 5e-4 for 25 epochs. The
VAE shares many of the same hyperparameters, with the ex-
ception of 32 filters for 3D convolution, a learning rate of
5e-4, and 40 epochs of training. We trained all models on
a single Nvidia A40. We converted videos to grayscale and
normalized to a mean of 0. We randomly rotated each input
by up to ±45◦ and randomly applied horizontal flips.

Model Macro F1 Accuracy
VAE + Dense 45.2 ± 5.8 57%

Mini-COVIDNet (15 pos) 57.7 ± 15.1 60%
Mini-COVIDNet (30 pos) 70.2 ± 5.5 71%

Our Model 87.8 ± 4.3 88%
Subject Matter Experts - 91%

Table 1: F1 scores (over 5 runs) for the BAMC dataset.
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Pneumothorax
Our primary dataset, the Brooke Army Medical Center
(BAMC) dataset, consists of 62 LUS videos, 30 from pa-
tients with PTX (i.e., pleural line movement absent) and
32 from patients without PTX (i.e., pleural line movement
present). Physicians diagnosed PTX radiographically and 3
expert reviewers confirmed the presence of lung sliding. The
average length of these videos is approximately 3 seconds
at 20 frames per second. BAMC collected all LUS videos
with a convex probe at depths ranging from 4–12 cm. For
our sparse coding model, we utilized all 62 videos, however
the algorithm is unsupervised so we did not use labeled data
for this stage of training. For training our classifier, DARPA
challenged us to only use 15 labeled ‘No movement’ videos.

Table 1 shows the results of our BAMC PTX experiments.
Our model achieved an F1 score of 87.8 on our test set and it
outperformed both our VAE baseline and Mini-COVIDNet,
which obtained F1 scores of 45.2 and 70.2 (30 pos), respec-
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Model Macro F1 Accuracy
VAE + Dense 16.0 ± 1.0 38%

Mini-COVIDNet 64.9 ± 1.6 75%
Our Model 67.7 ± 5.5 74%

Table 2: F1 scores (over 3 runs) for the COVID-19 dataset.

tively. We exposed our sparse coding model to all 30 positive
examples (without labels), yet exposed our classifier to only
15 positive examples (with labels). Therefore, we evaluated
Mini-COVIDNet in both a 15-positive labeled examples set-
ting, where it had a slight disadvantage, and a 30-positive la-
beled examples setting where it had a clear advantage. Two
SMEs evaluated the test set and achieved 91.1% agreement,
slightly outperforming our model. We attribute our model’s
success to its emphasis on learning robust visual features
despite having limited data. We conducted a series of ex-
periments in which we discarded positive samples from the
training set to further illustrate this. Figure 3 shows a graph
depicting the results of these experiments run for both our
model and Mini-COVIDNet. While Mini-COVIDNet dis-
played low performance with 15 and 12 positive examples,
before barely outperforming chance with subsequent reduc-
tion, our sparse coding model achieved reasonable perfor-
mance with just 8 examples, obtaining an F1 score of 84.

COVID-19
The BAMC PTX Dataset is not publicly available, therefore
we also evaluated our model on the COVID-19 Ultrasound
Dataset (Born et al. 2021). This dataset contains 202 LUS
videos. Each video has one of four labels: COVID-19, Reg-
ular, Bacterial Pneumonia, or Viral Pneumonia.

Table 2 contains the results of our COVID-19 exper-
iments. We reevaluated Mini-COVIDNet to ensure that
evaluation remained consistent across models. Our model
slightly outperforms Mini-COVIDNet in Macro F1. Mini-
COVIDNet achieved an F1 score of 64.9, while our model
achieved an F1 score of 67.7. However, the accuracy of
Mini-COVIDNet was slightly better than our model on aver-
age. We hypothesize that comparable performance between
our model and Mini-COVIDNet is observed on this task due
to some differences between COVID-19 and PTX detection.
Evaluation of the pleural line movement is not necessary for
COVID-19 classification; individual frames frequently con-
tain enough information to make a prediction. This lack of
emphasis on the pleural line required us to remove a critical
part of our pipeline, the YOLOv4 object detection, while the
lack of temporal dependencies nullified some of the benefits
of 3D sparse coding. Expert knowledge regarding relative
feature importance for COVID-19 detection could be used
to re-train YOLOv4, allowing us add it back into our system
and improve our model’s performance on this task.

Analyses
Sparse Coding Filter Transfer To further quantify the
benefits of sparse coding, we evaluated our model on the
PTX task using 2 different sets of sparse weights. We bor-
rowed the first set from the COVID-19 sparse coding pre-

Sparse Weights Macro F1 Accuracy
Random 68.0 71%

COVID-19 74.7 77%
PTX 87.8 88%

Table 3: Results for the BAMC PTX dataset using 3 different
methods for building the sparse filters.

(a) 3D Convolutional Sparse Coding Filters

(b) 3D Convolutional VAE Filters

Figure 4: First frame of the filters learned by our 3D sparse
coding model compared with the VAE baseline.

training. These weights are loosely correlated with the PTX
data, as they both came from LUS videos. We randomly gen-
erated the second set of weights. Table 3 contains the results
of these experiments and shows the PTX weights outperform
the others. Sparse coding can still work with random fil-
ters; the filters compete with each other to represent the data
and the classifier can still leverage these representations to
make its prediction. However, important features that might
be specific to our task are lost, such as filters that detect the
pleural line or movement.

Sparse Filter Visualization Sparse coding is the back-
bone of our model. High quality sparse features allow us to
learn a lightweight classifier with minimal supervision. Fig-
ure 4 contains the first frame of our learned five-frame filters
compared with the same filters learned by our VAE baseline.
The sparse coding filters illustrate Gabor-like structures;
some filters are relatively static, capturing edges, while oth-
ers change drastically frame-to-frame, accounting for move-
ment. A CNN is capable of learning similar structures, how-
ever the filters in our VAE are noisy due to the limited
training dataset. In contrast, our sparse coding model ex-
tracts spatially and temporally relevant features despite be-
ing trained with few examples.

Interpretability Our attempts to build saliency maps for
PTX videos did not produce useful visualizations. We cre-
ated saliency maps using kernel SHAP (Lundberg and Lee
2017). Our implementation of kernel SHAP differed slightly
from standard implementations in that instead of using input
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Figure 5: Screenshot of our iOS application.

instances, we used sparse coding activation maps. SHAP is
an additive feature attribution method that models the clas-
sifier as a sum of feature contributions. SHAP has a property
called local accuracy which dictates that, for each instance,
the sum should produce the same value as the classifier.
When comparing the classifier’s predictions with SHAP’s
values, they were the same only in 92.64% of the 62 testing
videos. We hypothesize that the limited number of training
instances may be responsible for not meeting the local accu-
racy property for all videos. The resultant saliency maps are
not consistent and show few differences between correct and
incorrect classifications. Hence, they do not provide useful
insights for improving the classifier or the end user experi-
ence. The YOLO bounding boxes promote interpretability
by highlighting the pleural line. This facilitates diagnosis by
highlighting a key visual feature for the clinician, and it also
indicates which region of the video is fed to the classifier.

iOS Implementation Portability is a focal point of
POCUS technology. However, many computer vision tech-
niques have become increasingly computationally expen-
sive. While executing large models on a remote machine
might be feasible in some scenarios, having the ability to
run on a local device allows for the application to be de-
ployed in even the most austere environments. Therefore,
we ensure that our model is capable of running within a
reasonable time on a mobile device. For our experiments,
we selected a 12.9-inch Apple iPad Pro because it is only
1.54 lbs and has the new M1 processor, a highly efficient
and powerful chip that has both a neural engine and a GPU.
We built an iOS application using Swift that allows a user to
select a set of videos to run through our model. The app re-
plays the LUS video with YOLO bounding boxes around the
detected pleural line (Figure 5). These boxes are red (nega-
tive) or green (positive) depending on the predicted class at
that given point in the video. The app displays the overall
prediction and gives the option of exporting a CSV file con-
taining the results. It takes 3.96 seconds (averaged over all
test videos) to execute on the iPad: YOLO=0.754 sec, crop-
ping=0.235 sec, classification=2.986 sec. Since the classi-
fier and sparse coding are in the same TFLite file, we do
not have individual timing for these components. However,

sparse coding accounts for most of this time. During classi-
fier training, we explored both increasing the sparse coding
stride and decreasing the number of inner loop updates to
improve our execution time and selected optimal hyperpa-
rameters while still maintaining close to 90% accuracy.

Deployment Considerations There are a number of con-
siderations that we take into account as we prepare our appli-
cation for deployment. First, while our application focuses
on facilitating diagnosis of a collected video, the collection
process itself poses many challenges. In our test cases, ex-
perts analyzed the videos to ensure that they were sufficient
for PTX differential diagnosis. However, our system may
encounter poor quality samples in the field. In the short-
term, we can make our model more robust to these cases by
augmenting our training data with poor quality samples. We
can add these to our present classifier as a third class or feed
them to an auxiliary classifier that determines if a video is of
sufficient quality for classification. In the long-term, we can
integrate our application with other technologies that guide
collection (Marharjan et al. 2020). Another aspect that we
must consider is explainability. These models should be used
to augment care rather than replace healthcare providers and
therefore a great deal of utility lies in the model’s ability
to report key information to the healthcare provider. We al-
ready took a step in this direction by highlighting YOLO
regions in our iOS application and by beginning to inves-
tigate explainable AI methods. However, in the future we
plan to further improve both the model and user interface to
maximize the information that healthcare providers receive.
We also consider guidelines regarding integrating AI into
healthcare outlined by the FDA Digital Health Center of Ex-
cellence. Our system does account for some of the guiding
principles, such as ‘leveraging multi-disciplinary expertise’
and ‘tailoring our model design to reflect the intended use
of our device.’ However, there are some principles that we
will need to integrate during deployment. For instance, our
system needs to be ‘directly evaluated in clinical settings, fo-
cusing on the performance of a human-AI team, rather than
just the model itself.’

Conclusion
In this work, we presented a LUS video classification sys-
tem. We focused on developing a model in a constrained
setting. Due to the high cost of labeling and collecting ul-
trasound video, we limited our model to just a few dozen
labeled training examples. Therefore, we leveraged expert
knowledge to construct a model pipeline that was able to
achieve performance on par with human experts on a bi-
nary PTX classification task. We provided a robust set of
experiments analyzing our performance compared to other
architectures, evaluated on two different LUS datasets, and
provided a qualitative analysis of the features learned by
our sparse coding model. Lastly, we demonstrated that our
model was able to run on an iPad Pro in less than 4 seconds
and discussed additional deployment considerations that we
must address as we proceed with developing our applica-
tion. Ultimately, we hope our system will increase POCUS
adoption and improve quality of care.
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