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Abstract

Experience management is an emerging business area where
organizations focus on understanding the feedback of cus-
tomers and employees in order to improve their end-to-end
experiences. This results in a unique set of machine learn-
ing problems to help understand how people feel, discover
issues they care about, and find which actions need to be
taken on data that are different in content and distribution
from traditional NLP domains. In this paper, we present a
case study of building text analysis applications that perform
multiple classification tasks efficiently in 12 languages in the
nascent business area of experience management. In order to
scale up modern ML methods on experience data, we lever-
age cross lingual and multi-task modeling techniques to con-
solidate our models into a single deployment to avoid over-
head. We also make use of model compression and model dis-
tillation to reduce overall inference latency and hardware cost
to the level acceptable for business needs while maintaining
model prediction quality. Our findings show that multi-task
modeling improves task performance for a subset of expe-
rience management tasks in both XLM-R and mBert archi-
tectures. Among the compressed architectures we explored,
we found that MiniLM achieved the best compression/per-
formance tradeoff. Our case study demonstrates a speedup of
up to 15.61x with 2.60% average task degradation (or 3.29x
speedup with 1.71% degradation) and estimated savings of
44% over using the original full-size model. These results
demonstrate a successful scaling up of text classification for
the challenging new area of ML for experience management.

Introduction
Experience management enables businesses and organiza-
tions to effectively adapt to actionable feedback from their
customers and employees. Understanding and managing a
customer or employee experience requires analyzing a com-
bination of survey questions, social media, and other sources
of experience data together in order to derive insight. Deriv-
ing insight requires effectively predicting the feelings, emo-
tions, as well as the requested actions from feedback in a
scalable way. To accurately predict these insights we lever-
age state-of-the-art pretrained language models.

*This work was done while the first author was doing an intern-
ship at Qualtrics
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, many of the best pretrained models require sig-
nificant resources to deploy at scale. For example, the best
performing models for tasks such as semantic similarity of
sentences (Wang et al. 2018) can have hundreds of billions
of parameters (Smith et al. 2022). Even more pedestrian
(in terms of size) models such as BERT-base (Devlin et al.
2019) can still be relatively expensive and latency-prone for
a typical business use case, especially without specialized
hardware or accelerators. One way to both achieve high pre-
diction accuracy and scale up is to leverage model compres-
sion.

While there is substantial literature on model compres-
sion, it can be difficult to sort through all the methods and
evaluate them on a case by case basis. Our contribution is a
specific case study evaluation of model compression meth-
ods for Qualtrics models on experience management data
and its unique challenges. In this work, we are particularly
interested in building efficient text classifiers, an important
problem in the experience management domain. Indeed, un-
structured data constitutes more than 80% of the experience
management data. As such, analyzing text data across di-
mensions such as sentiment, emotion, actionability, effort,
intent, topic, urgency, and toxicity is one of the most the
foundational challenges in this emerging space. We share
details about what worked and did not, which can benefit the
industry at large as others begin to adopt model compression
in their organizations for their use cases. This is particularly
timely in our current market as many companies in emerging
business areas are looking to reduce costs and model com-
pression is an effective way to reduce ML inference costs,
both financially and environmentally.

Motivating Constraints: Engineering Overhead,
Cost, Latency
Our goal in pursuing this compression and consolidation
work was to reduce overall model hosting costs while pre-
serving model quality. Two areas we are focused on are re-
ducing burden for engineering support of hosting our new
models in production, as well as the direct cost and latency
of the models themselves.

Since we deploy and support our models in a microser-
vices framework, each model typically lives behind a spe-
cific model endpoint or service so each model has a static
cost for the base capacity, and variable cost for the elastic
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capacity. If we use single-task monolingual models, this re-
sults in needing to support in production a specific service
per task language pair. Similarly, for single-task NLP mod-
els, the encoder, which can account for 90+% of the com-
putation for classification models, must run for each task,
regardless of how similar it is between tasks.

In contrast, a multi-task cross-lingual model consolidates
this repetitive computation and removes the instance host-
ing overhead for additional languages. For this reason, we
focused on the ability to support multiple tasks per model,
as well as a cross-lingual model.

In addition, by developing smaller models, we hope to
achieve reduced latency for runtime needs while also reduc-
ing costs by providing flexibility to deploy on less costly
hardware.

The Tension Between Model Consolidation and
Compression
There is an interesting tension that arises as we both com-
bine multiple models into a single multi-task cross-lingual
model and also reduce the size and capacity of that model.
While prior work has also looked at these different facets
of model consolidation and compression in isolation (Wang
et al. 2020b,a; Mukherjee, Awadallah, and Gao 2021; Jiao
et al. 2021; Sanh et al. 2019; Jiao et al. 2020; de Wynter
and Perry 2020; Yang et al. 2019), in this work we investi-
gate how these approaches work together to consolidate and
compress a model, and how that impacts model performance
on the target tasks.

We are unable to analyze this tension for all NLP tasks in
general, but here we present evidence towards understand-
ing the tradeoffs for specific cases, relevant to work at our
company. These results can inform future theoretical work
as well as more practical application at other organizations.

Cross-Lingual Multi-Task (XLMT) Model
Compression Methods

As described above, we are motivated to both consolidate
task and language support into a single cross-lingual multi-
task (XLMT) model and at the same time pursue a com-
pressed version of that model to reduce capacity and make
the model faster and less expensive to run.

Cross-Lingual Modeling
There has been a strong movement towards multi-lingual
and cross-lingual models. One of the first multi-lingual
BERT models was “multi-lingual BERT” (mBert), from
(Devlin et al. 2019), which extended “monolingual BERT”
by training across a dataset with multiple languages repre-
sented. Cross-lingual modeling (XLM), presented in (Con-
neau and Lample 2019), further improved over multi-lingual
modeling by introducing additional cross-lingual pretraining
tasks, and XLM-Roberta (XLM-R) (Conneau et al. 2020)
developed a strong cross-lingual model using techniques
from Roberta (Liu et al. 2019) and showed better per-
formance beyond previous multi-lingual and cross-lingual
models.

In this work we show results using both the mBert and
XLM-R pretrained models on which we build our task-
specific classifiers. In the original paper (Conneau et al.
2020) the authors showed a decrease in model performance
as more and more languages were introduced. We explore
the effect of training on monolingual vs cross-lingual set-
tings, and how it impacts our combined model performance.

Multi-Task Learning for NLP
Multi-task learning (MTL) can not only merge tasks into a
single model but also improve task performance by shar-
ing common layers. For instance, (Lin et al. 2018) proposed
an architecture that shares the same character embedding
layer showing effective results for low-resource settings.
Other types of MTL include hierarchical architectures, such
as (Vijayaraghavan, Vosoughi, and Roy 2017) where sepa-
rate tasks are learned and then combined using a final atten-
uation layer and (He et al. 2019) where the first task output
feeds into a second task in sequence.

In this work we explore how combining multiple tasks
into a single cross-lingual model impacts performance on
each of those tasks individually. Our approach leverages a
common base model with multiple task heads. The multi-
task multiclass classification loss function we use consists
of a simple sum of cross-entropy losses,

LMT =
1

N
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`ti,c log p

t
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)]
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whereN =
∑T

t=1N
t is the total number of data points from

T tasks andN t is the number of data points for the t-th task.
Ct is the number of classes for task t. `ti,c is either 0 or 1,
indicating whether class label c is the correct classification
of the i-th data point from the t-th task, and pti,c are the cor-
responding predicted probabilities.

Model Compression
Knowledge Distillation Knowledge distillation (KD)
popularized by (Hinton, Vinyals, and Dean 2015) and aims
to create smaller models which approximate the perfor-
mance of the larger models by teaching the smaller model
(student model) to emulate the larger model (teacher model).

The original approach used the final layer logit-based
knowledge distillation, where the concept is to minimize
the distance (i.e., KL divergence loss function) of logit
output (final layer) between teacher and student models.
Later work, including many applications in NLP, introduced
variations on this idea, including (Sanh et al. 2019) which
applied a combined loss, including masked language
modeling loss, cosine distance loss, and KL divergence loss
to reduce BERT model size. More generally, we can also
align the intermediate features between the teacher and
the student models rather than just the final layer, such as
(Jiao et al. 2020) which used many intermediate layers for
distillation. MiniLM was introduced in (Wang et al. 2020b)
using self-attention distribution transfer and self-attention
value-relation transfer to achieve competitive performance
in both monolingual and multilingual models.
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In this work, we have primarily investigated distilling us-
ing the task specific logits produced by the final layer. Ex-
ploring additional intermediate representation distillation is
left to future work to potentially improve performance in the
smallest models we tested. Focusing on the last layer results
in the following modified loss:

LMT-KD =

1

N
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i=1

[
−
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`ti,c log p
t
i,c

)

+αF 2
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where qti,c is the teacher model prediction of the i-th data

point from the t-th task, q̂ti,c =
exp(qti,c/F )∑
j exp(qtj,c/F )

is the temper-

ature modified teacher prediction, p̂ti,c =
exp(pt

i,c/F )∑
j exp(pt

j,c/F )
is

the temperature modified student prediction, F is the tem-
perature parameter (Hinton, Vinyals, and Dean 2015), and α
is the teacher coefficient term controlling the relative impact
of distillation to the label loss.

Structural Pruning In (Le Cun, Denker, and Solla 1989)
the author introduced a notion that neural networks can be
compressed by removing entire sections without major im-
pact to accuracy. Structural pruning compress networks by
removing entire structural components like attention heads,
neurons, and even transformer layers, and leverage KD to
limit model degradation. While most previous work in com-
pression has focused on monolingual models, there is also
a growing body of work around multilingual and cross-
lingual model compression (Jiao et al. 2021; Mukherjee
and Awadallah 2020; Mukherjee, Awadallah, and Gao 2021;
Wang et al. 2020b,a). We focus on two specific compressed
architectures, MiniLM (Wang et al. 2020a) and XtremeDistil
(Mukherjee, Awadallah, and Gao 2021) and compare them
in our use case. Ultimately we found MiniLM to be the most
effective at learning our specific set of tasks.

Quantization Quantization enables reduction in model
size and memory footprint while also potentially increas-
ing inference speed. Here we consider integer quantization,
in which the precision is reduced from 32-bit floating point
to 8-bit integer. Quantization can be done during training,
known as quantization aware training (QAT), to minimize
degradation, or after training, known as post training quanti-
zation (PTQ), to compress an already trained model. (Zafrir
et al. 2019) shows that by leveraging QAT, their ”Q8Bert”
quantized model was able to match the performance of the
base BERT model on various NLP tasks.

In this work we explore combining quantization via QAT
with structural pruning to further reduce the model size
while maintaining good model performance.

Experimental Results
Our core set of results are developed around a multi-task
cross-lingual model developed internally at Qualtrics to

help develop understanding around customer feedback.
The model handles three separate but related multiclass
classification tasks on text input, we refer to these tasks
throughout this paper as Task-1, Task-2, and Task-3. They
refer to three text classification tasks our group actively uses
and develops, with similarities to models such as sentiment
or toxicity prediction (He et al. 2019). Each of these task
is implemented as a sequence classification task where
the input is direct customer feedback. Task-1 is a multi
class classification with 6 labels, Task-2 is a multi-class
classification with 4 labels, and Task-3 is a multi-class,
multi-label sequence classification with 9 classes and each
class has independent binary labels.

In our experiments our focus is on exploring the relation-
ship between knowledge distillation, multi-task modeling,
quantization and multilingualism. We do not seek to pro-
vide a complete understanding of how each axis impacts the
outcomes but instead seek to find the optimal way to op-
timize the performance of pruned and quantized model by
exploring the impact of multi-lingual fine tuning, variations
in knowledge distillation, and task specific teachers.

Dataset and Compressed Architecture Selection
Our dataset consists of a collection of internal customer ex-
perience data across multiple industries. The data has been
fully anonymized and aggregated, and is used with permis-
sion. This process protects customer data privacy and en-
sures data from any specific industry or company is not over-
represented or identifiable. The resulting text dataset con-
sists of 257k text documents across 16 languages labeled for
Task-1, and 127k text documents across 12 languages la-
beled for Task-2 and Task-3. A description of the task types,
number of labels, and label can be seen in Table 1. This ex-
perimental data is similar in nature to the production datasets
used in our production modeling system.

Task-1 Task-2 Task-3
(Multi-class) (Multi-class) (Multi-label)

# Samples # Samples # Samples
T1-L1 93738 T2-L1 83545 T3-L1 33463
T1-L2 70218 T2-L2 36018 T3-L2 21562
T1-L3 38786 T2-L3 4317 T3-L3 22556
T1-L4 26359 T2-L4 3198 T3-L4 1090
T1-L5 18792 T3-L5 7525
T1-L6 9837 T3-L6 44485

T3-L7 11341
T3-L8 2518
T3-L9 1951

Table 1: Breakdown of task label distribution. Task labels are
listed as T#-L#, where T1-L1 represents Label 1 for Task-1.

For modeling we primarily use PyTorch (Paszke et al.
2019) and the Transformers library (Wolf et al. 2019). For
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model quantization, we made use of the SparseML library
(Kurtz et al. 2020; Singh and Alistarh 2020).

Instead of developing our own target architecture, we
leverage existing cross-lingual models from the literature as
a first approach to model compression. After a review of the
literature, we settled on experimentation around two cross-
lingual models, XtremeDistil (Mukherjee and Awadallah
2020), (Mukherjee, Awadallah, and Gao 2021) and MiniLM
(Wang et al. 2020b), (Wang et al. 2020a). We summarize
the characteristics of the architectures evaluated in Table 2,
where the smallest model considered was 6 layers and 22M
parameters.

Name #Layer #Param Size
XLM-R(XLM-R Base) 12 85M 1.12GB
XtremeDistil 6 22M 91MB
MiniLM-L12(mMiniLMv2) 12 41M 236MB
MiniLM-L6(mMiniLMv2) 6 22M 215MB

Table 2: Description of model architectures evaluated.
#Params refers to the number of transformer parameters.

To further narrow to a single cross-lingual model, we per-
formed an experiment using a subset of our datasets that
covered 11 languages and evaluated how well the models
perform in two settings: with a distillation teacher and with-
out a teacher. The subset contained 57k responses labeled
for Task-1 and 20k labeled for Task-2 and Task-3.

Method Task-1 Task-2 Task-3
XLM-R 83.32 80.81 39.41
Xtremedistil
(no teacher) 67.69 69.24 31.23

Xtremedistil
(with teacher) 67.82 70.99 28.93

MiniLM-L12
(no teacher) 80.79 77.55 35.99

MiniLM-L12
(with teacher) 81.43 78.44 36.54

Table 3: Results on each task for each model architecture,
reported in Macro-F1. All models were trained for 2 epochs
and reported results are the per-task macro F1 scores.

This experiment, as shown in Table 3, indicated that
MiniLM (and its variants) would be easier to train and per-
form model distillation in our setting. Due to the above re-
sults, for compressed models we targeted the MiniLM-L12
architecture. Our definition of performing better, worse, or
the same was based on the 95th percentile confidence inter-
val of a random sample of 5 models trained from different
random seeds. If we observe differences greater than these
intervals we consider them significant; otherwise we con-
sider the result to be the same.

Cross-Lingual Model Results
Our goal in developing a cross-lingual model is to reduce the
overhead of hosting multiple monolingual models. However,
the single cross-lingual model should perform at least on
par with the monolingual model. To test this assumption, we
trained a single cross-lingual model and tested it across all
languages. We then trained 12 separate monolingual mod-
els, starting from the publicly available XLMR-base pre-
trained weights (to avoid confounding factors from alter-
native monolingual base models). We then evaluated these
monolingual models against the same cross-lingual evalua-
tion dataset as a benchmark. A summary of results is shown
in Table 4, where we report results for fr, en, de, and ja lan-
guages. We also evaluated 8 other languages and observed
the same overall relative results. The best monolingual Task-
1 result overall was 73.39 (en) and worst was 14.52 (pl), the
corresponding cross-lingual reaching 79.12 (pl). The best
cross-lingual result was 91.65 (en) and the worst was 71.05
(ko) with the corresponding monolingual result dipping to
48.84 (ko). We observe in every language we examined the
cross-lingual model does better than the monolingual model,
strongly supporting a move to cross-lingual modeling for our
tasks.

Train
Lang

Eval
Lang Task-1 Task-2 Task-3

all fr 87.69 82.43 36.16
fr 68.91 74.04 26.24
all en 91.65 79.67 40.47
en 73.39 77.2 33.69
all de 86.07 77.74 34.71
de 68.71 70.65 23.52
all ja 80.3 70.71 32.2
ja 56.22 64.21 15.9

Table 4: Cross-lingual model comparison with monolingual
models, evaluated on the same target language. Across all
languages and tasks we evaluated, we observed the cross-
lingual models to outperform monolingual models.

Cross-Lingual Multi-Task (XLMT) Model Results
We are also interested in combining multiple tasks into a sin-
gle model to reduce the engineering overhead of hosting our
model. To evaluate whether our model maintained similar
performance to single-task models, we evaluated the com-
bined XLMT model in comparison to the single-task models
for both XLM-R and mBert pretrained models. The exper-
imental results in Table 5 show that the XLMT model per-
formed similarly to, if not better than, the single-task model
on Task-1 and Task-2 prediction. For Task-3 we observed
some significant degradation in the task performance.

To further confirm these results, we performed a simi-
lar analysis using another multilingual model, mBert. Using
mBert, we again observed some modest gains for the first
two tasks and then significant degradation for the third task.

These results indicate our current multi-task architecture
does benefit two of the three tasks. However, for final de-
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ployment it will be important to consider moving our third
task into a separate model or develop alternative multi-task
architectures to reduce the performance gap.

Model Train Method Eval Task F1

XLM-R

multi-task
Task-1 82.23
Task-2 76.03
Task-3 38.32

single-task
Task-1 81.12
Task-2 74.67
Task-3 51.27

mBert

multi-task
Task-1 78.88
Task-2 75.27
Task-3 35.88

single-task
Task-1 78.63
Task-2 74.31
Task-3 51.12

Table 5: Task-specific results for cross-lingual single-task
models and multi-task models. Macro-F1 results are re-
ported on the full evaluation set, consisting of all languages
(16 for Task-1, 12 for Task-2/3).

Compressed XLMT Model Results
In developing the XLMT model, engineering overhead was
reduced from 16× 1 + 12× 2 = 40 individual models to a
single cross-lingual multi-task models, or two based on the
outcomes of Task-3 above. However, given the size of the
XLM-Roberta model, the hosting costs associated with serv-
ing inference, specifically given the need for GPU instances
to generate predictions at low latency, remained high. To re-
duce this base cost and reduce the latency of this model,
we focused on compressing the model itself. As mentioned
earlier this compressing of the model, reducing its overall
capacity, is in tension with the goals of maintaining perfor-
mance of the combined XLMT model.

Our results in Table 6 show that simply performing struc-
tured layer pruning on the model resulted in some degrada-
tion of task performance. For Task-1 with MiniLM-12 archi-
tecture, the larger of the smaller architectures considered, we
see about 1.6% relative degradation. MiniLM-6 shows 3.9%
degradation, while XtremeDistil shows over 20% degrada-
tion. This same pattern holds for the Task-2, and for Task-3
we see even less degradation for MiniLM-12.

These results strongly favor MiniLM-12 and MiniLM-6
for compressing our specific use case.

Distilled XLMT Model Results
To address the degradation resulting from structured layer
pruning we incorporated some model distillation using the
final layers of the full-size and compressed models. We ex-
plored using a single multi-task teacher and task-specific
teachers, as well as using a single cross-lingual teacher
and language-specific teachers. However we ultimately use
cross-lingual task-specific teachers because the performance

Model Task-1 Task-2 Task-3
XLM-R 82.23 76.80 35.90
MiniLM-L12 80.85 75.86 35.09
MiniLM-L6 78.97 72.42 35.34
XtremeDistil 61.83 61.59 24.00

Table 6: Results comparing the original MiniLM and
XtremeDistil models with the full-size XLM-R model across
Task-1, Task-2, and Task-3 macro-F1 scores.

of Task-3 as a single task model outperformed the multi-task
model, as shown in Table 5 and cross-lingual models con-
sistently out-performed language-specific models as shown
in Table 4. To provide additional model compression after
enabling distillation, we trained the model with QAT in or-
der to further reduce model complexity. To evaluate model
speedup, each model was run for sequences of length 128
with batch size 32 on 1 Nvidia T4 GPU leveraging TensorRT
1. Speedup was measured relative to the baseline model,
XLM-R (fp32).

Model Speedup Task-1 Task-2 Task-3
XLM-R
(fp32) x1 82.23 76.80 35.90

XLM-R
(int8 quantized) x3.64 81.09 73.60 35.80

MiniLM-L12
(fp32) x3.29 79.42 75.1 35.36

MiniLM-L12
(int8 quantized) x8.11 79.29 73.69 35.71

MiniLM-L6
(int8 quantized) x15.61 79.05 73.90 35.84

MiniLM-L12-
mBert
(int8 quantized)

x8.11 79.05 73.48 35.57

Table 7: Results on model distillation and quantization
aware training. Task-1, Task-2, and Task-3 results are re-
ported in macro-F1 scores. XLM-R models were used as the
teacher in all results, except for MiniLM-L12-mBert which
used mBert teachers.

The two best models after distillation were the quantized
MiniLM-L6 model with 2.60% average relative task degra-
dation and non-quantized MiniLM-L12 with 2.37% average
relative task degradation. We found that quantized MiniLM-
L6 was able to improve more from distillation than MiniLM-
L12. While we are still investigating full cause our current
hypothesis is that the smaller model provides some regular-
ization against overfitting versus the larger model. In terms
of speedup our quantized MiniLM-L6 model provided the
most speedup at 15.61x speedup over the baseline. In our
final assessment we found that using task-specific model
distillation on the MiniLM-L6 model with quantization pro-

1https://developer.nvidia.com/tensorrt

15665



vided a strong result in model size while maintaining model
performance, as shown in Table 7. However, in considering
the best model overall the MiniLM-L12 in Table 6 provided
the least overall degradation of 1.71% and a modest speedup
of 3.29x.

Business Impact
An implementation of these compression techniques and
choices was developed in our production training system.
At Qualtrics, this system has generated significant business
impact across customers and new features, financial, envi-
ronmental, and operational cost, system flexibility and ro-
bustness.

Feature Impact
Given the speedup the compressed and multi-task mod-
els provide, we observe significant increases in throughput
across use cases, enabling us to serve more customers, and
enabling new features for customers that were previously too
compute intensive. As an example, this speedup enables ML
pipelines that run 3-4 models serially in the same time win-
dow as a single model. Additionally, the flexibility of cross-
lingual models enables us to serve more customers in more
languages, without large training sets or comprehensive lan-
guage specialization.

Financial Impact
Conservatively, we estimate approximately 44% savings in
terms of hardware cost from the developments in compres-
sion of the multi-task cross-lingual model, in comparison to
an uncompressed system at similar latency and throughput.
In addition, by combining multiple tasks that are invoked
with similar load into a single model, we achieve a fraction
of the total inference cost.

This savings is driven by several factors: reducing base
instance capacity; reducing the amount of dynamic scaling;
and allowing for deployment of lower cost hardware. We
note that the savings is limited by the persistent cost of the
base capacity, even when reduced, which creates a floor for
cost savings even with models that are multiple times faster.

Currently, we deploy our models on a public cloud with a
cost of approximately $80K/month/model. The compression
technique used in this paper reduces cost by 44%, resulting
in $35K savings/month for a single model compared to the
current model in production for the same tasks. As we push
our compression framework to various other NLP systems
currently developed by this group, it can result in a poten-
tial yearly cost savings in the single digit millions of dollars.
Considering current macro-economic conditions when there
is industry wide need for financial costs reduction, the sig-
nificant savings can strengthen the fundamentals of a typical
SaaS company like Qualtrics.

Ethical Impact
We are pleased that our efforts to compress models will sup-
port environmental sustainability. By reducing the amount
of power and resource needed to run the same inference, we
anticipate meaningful impact on environmental footprint,
though we are unable to quantify it concretely at this time.

Operational Impact and Robustness
While MiniLM-L6 provided better speedup, business needs
required the lower degradation provided by MiniLM-L12 for
the first set of models. By leveraging the compressed XLMT
model, we enable additional flexibility in production deploy-
ment scenarios, including different instance types (CPU,
GPU, custom accelerators) that enable us to serve high
throughput inference while balancing cost. This was not pre-
viously viable with larger models, which required GPUs in
order to serve high throughput inference. By enabling this
flexibility, we also improve system robustness, as the mod-
els are robust to instance unavailability or instance downtime
for any type of instance.

Additionally, savings from moving to a single multi-task
model results in overall reduced workload for our engi-
neering teams, removing per-task deployments and deploy-
ment pipelines and lowering the barriers to new tasks and
new language support. Specifically, multi-task and cross-
lingual modeling reduces the number of models for these
tasks from 36 potential models (12 languages, 3 tasks) to
a single model, reducing operational cost from 6-7 on-
call/operations engineers to 1. Compression additionally re-
duces this cost by lowering latency and increasing through-
put, reducing the operational cost of mitigating latency
spikes and scaling issues.

Conclusion
We have presented a case study into the Qualtrics approach
for leveraging cross-lingual and multi-task modeling tech-
niques in combination with model distillation and quanti-
zation techniques, in order to develop models that can han-
dle traffic volumes at scale. The results show that for our
multi-class classification tasks, these methods can be com-
bined effectively to reduce deployment overhead and main-
tenance and achieve up to 15.61x speedup with 2.60% aver-
age degradation. Our results explore boundary cases where
compression works well, and where it can degrade past busi-
ness requirements; where combining up to 12 languages
works well; and where combining tasks works well, and
where it does not. These approaches have been necessary
for us to scale up our unique text classification problems in
the growing field of experience management. We anticipate
these results will help to guide other groups hoping to reduce
model inference costs, as well as contribute to future theo-
retical work around the tradeoff between model compression
and model consolidation. Looking forward, we plan to apply
these methods to more complex sequence labeling tasks and
to explore additional methods such as model sparsity and
neural architecture search to see if even faster models can be
developed with acceptable levels of model performance.
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