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Abstract

Multi-label image classification is a foundational topic in var-
ious domains. Multimodal learning approaches have recently
achieved outstanding results in image representation and
single-label image classification. For instance, Contrastive
Language-Image Pretraining (CLIP) demonstrates impres-
sive image-text representation learning abilities and is robust
to natural distribution shifts. This success inspires us to lever-
age multimodal learning for multi-label classification tasks,
and benefit from contrastively learnt pretrained models.
We propose the Multimodal Multi-label Image Classifica-
tion (MuMIC) framework, which utilizes a hardness-aware
tempered sigmoid based Binary Cross Entropy loss func-
tion, thus enables the optimization on multi-label objectives
and transfer learning on CLIP. MuMIC is capable of pro-
viding high classification performance, handling real-world
noisy data, supporting zero-shot predictions, and producing
domain-specific image embeddings.
In this study, a total of 120 image classes are defined, and
more than 140K positive annotations are collected on approx-
imately 60K Booking.com images. The final MuMIC model
is deployed on Booking.com Content Intelligence Platform,
and it outperforms other state-of-the-art models with 85.6%
GAP@10 and 83.8% GAP on all 120 classes, as well as a
90.1% macro mAP score across 32 majority classes. We sum-
marize the modelling choices which are extensively tested
through ablation studies. To the best of our knowledge, we
are the first to adapt contrastively learnt multimodal pretrain-
ing for real-world multi-label image classification problems,
and the innovation can be transferred to other domains.

1 Introduction
Multi-label image classification has been widely studied
with supervised learning approaches, from various Convo-
lutional Neural Networks (CNNs) based models (O’Shea
and Nash 2015) to Vision Transformers (Dosovitskiy et al.
2020). Transfer learning on pretrained models becomes the
first choice for many domain-specific applications.

At Booking.com, there are more than 350 million images
from multiple sources. Understanding image content is cru-
cial for both travellers and property owners, which makes
image classification a core component serving as the back-
bone of many applications, as described in Section 6.
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To drive the various use cases, we need the ability to clas-
sify images to a large set of possible labels at a massive
scale. The first step is to formulate a label definition list to
cover the most important classes. In Section 3, we describe
the label definition, label hierarchy, and the annotation pro-
cedure. Besides the predefined labels, new travel trends
would probably require us to predict on unseen classes.
Thus, we need an efficient and scalable solution with zero-
shot learning abilities.

We first explore state-of-the-art (SOTA) multi-label clas-
sification methods which rank high in open image datasets.
They typically handle two main challenges: label imbalance,
and extracting features from different regions for multiple
objects. To handle the label imbalance, Ridnik et al. (2021a)
introduces Asymmetric Loss (ASL) that down-weights and
hard-thresholds easy negative samples, while also decou-
ples the penalties on misclassifying the positive and nega-
tive samples, which is a novel improvement compared to Fo-
cal Loss (Lin et al. 2017). For the second challenge, many
methods are proposed to learn semantic label embeddings
and attentions to visual features, like cross-modality atten-
tion (You et al. 2020), and Query2Label (Liu et al. 2021).
However, all the above approaches do not show zero-shot
abilities. ML-decoder (Ridnik et al. 2021c) is another SOTA
method, which proposes a new classifier head supporting ef-
ficient training on large number of classes, and can gener-
alize to unseen classes. However, the zero-shot setting re-
quires specific group-decoding designs, and uses one shared
projection matrix in the group fully-connected layer for all
classes, which involves additional model training and might
cause performance drop. Hence, we do observe the gaps be-
tween the current SOTA methods and our requirements.

We further explore image representation learning works
and aim to find zero-shot potential and robust pretrained
models. It has recently been shown that contrastive represen-
tation learning on images is superior to learning from equiv-
alent predictive objectives (Tian, Krishnan, and Isola 2019).
One specific approach is using natural language processing
(NLP) supervision on images to contrastively enforce bet-
ter learning of visual concepts (Zhang et al. 2020). NLP su-
pervision enables zero-shot transfer ability to generalize to
unseen image-text matching patterns, and can leverage on
broad image-text datasets.

CLIP (Radford et al. 2021) is a top performer that uses
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such NLP supervision, trained on 400 million image-text
pairs, and provides robust as well as efficient image repre-
sentations. CLIP trains multiple image encoding backbones
- 5 ResNets (He et al. 2016) and 3 Vision Transformers
(ViT) (Dosovitskiy et al. 2020), and shows that ViT pro-
vides more computational efficiency which allows produc-
tion of high performance models. As for image classifica-
tion, CLIP mainly shows the performance on single-label
tasks. To demonstrate transfer learning ability, CLIP focuses
on benchmarking zero-shot performance based on image-
text embedding similarity, and few-shot linear classifiers. It
does not demonstrate fine-tuned results but indicates high
potential on it.

Our primary focus is on training visual and text transform-
ers in an image-text pairs pattern with a modified loss func-
tion for multi-label classification. The paper’s contributions
can be summarized as follow:

• We design a practical MuMIC framework by introducing
a hardness-aware loss function - tempered sigmoid based
Binary Cross Entropy (BCE) - for multi-label classifica-
tion, and leveraging on transfer learning from CLIP.

• We share the core findings during the model develop-
ment, including: theoretically how the sigmoid temper-
ature controls the strengths of penalties on hard samples,
as well as how to tune it practically; enrichment on class
context (label-text) representation; domain specific im-
age preprocessing etc.

• We study and share efficient and practical dataset anno-
tation strategies, as described in Section 3.

• We compare the final best model’s performance to two
baselines: ASL and CLIP. We visualize the improved
MuMIC image embedding and compare it with CLIP.

• We provide zero-shot capability for unseen classes,
which performs better than CLIP when the unseen class
is in the travel domain, and improves product scalability.

• We deploy the final product at Booking.com, and share
the main deployment findings.

2 Approach
Given a batch of N images, and L labels, we have N × L
image-label pairs. MuMIC generates N ×L pairs of (I, T ),
where I is an image embedding, and T is a label embedding
(represents the class context). MuMIC is designed to predict
which of the labels are relevant and present in the image.

Our general approach is adapting CLIP to support multi-
label classification, while learning visual perceptions from
natural language supervision of class context. Specifically,
we apply ViT (Dosovitskiy et al. 2020) as the computer vi-
sion backbone, and Transformer (Vaswani et al. 2017) as
the text backbone; with initialized weights from pretrained
CLIP, we further fine-tune on the travel domain-specific
dataset. This section describes the main proposed method.

2.1 Main Framework
MuMIC learns a multimodal embedding space by jointly
training an image encoder and text encoder to maximize the
cosine similarity of the image and label-text embeddings of

Listing 1: Numpy style pseudocode mumic core.py

1 # image_encoder - Vision Transformer
2 # text_encoder - Text Transformer
3 # I[n, h, w, c] - minibatch of aligned

images
4 # T[n_c, l] - vector of tokenized

label-text (n_c is #classes, l is #
tokens)

5 # W_i[d_i, d_e] - learned image proj
6 # W_t[d_t, d_e] - learned text proj
7 # targets[n, n_c] - the ground truth
8 # logit_scale - the logit_scale param,

= ln(1/temperature)
9

10 # extract feature representations of
each modality

11 I_f = image_encoder(I) #[n, d_i]
12 T_f = text_encoder(T) #[n_c, d_t]
13
14 # joint multimodal embedding
15 I_e = l2_normalize(np.dot(I_f, W_i),

axis=1) # [n, d_e]
16 T_e = l2_normalize(np.dot(T_f, W_t),

axis=1) # [n_c, d_e]
17
18 # scaled pairwise cos similarities [n,

n_c]
19 logits = np.dot(I_e, T_e.T) * np.exp(

logit_scale)
20 # loss - only need image level loss
21 loss = nn.BCEWithLogitsLoss(logits,

targets)

real labels, as shown in Figure 1. We apply tempered sig-
moid based BCE loss on each class and then mean-reduce it
(see equation 1), optimizing across all classes.

The Listing 1 describes MuMIC’s core implementation,
and demonstrates changes on top of CLIP. Instead of getting
image-caption pairs as input, we input a batch of images,
together with a list of tokenized texts where each text is de-
rived from either the class name, or the class description.

2.2 Binary Cross Entropy Loss, Based on
Tempered Sigmoid

BCE Loss With each input image i, given the ground-truth
multi-label vector yi, we apply below BCE loss function:

LBCE = − 1

N

1

L

N∑
i=1

L∑
j=1

(pjyij · log σ(xij)

+(1− yij) · log(1− σ(xij))

(1)

where σ(·) is the Tempered Sigmoid function; xij is the
original output logits (before applying temperature scaling),
which is the pairwise image-text cosine similarity score on
image i and class j; and pj is the positive samples weight of
class j. A higher pj indicates that positive samples are given
greater weight, increasing the penalty for identifying false
negatives.

As shown in line 21 of Listing 1, we combine the BCE
loss with the tempered sigmoid calculation in one single
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Figure 1: MuMIC architecture. (1) Each label is represented as a label-text like “a photo with {label name}”, or “a photo with
{label description}”. The Image Encoder input is a batch of preprocessed images. The Text Encoder input is a list of vectors
(each vector is a tokenized label-text). The Sij is MuMIC output logit on image i and label j. (2) For inference and zero-shot
prediction, MuMIC generates predication scores (Pij) for image and label-text by - apply temperature scaling on (image, text)
embeddings’ cosine similarity, and then apply sigmoid function on the scaled cosine similarity.

layer. It is more numerically stable by taking advantage
of the log-sum-exp trick, which is widely used in machine
learning (Nielsen and Sun 2016).

Tempered Sigmoid As described in (Papernot et al.
2021), the tempered sigmoid function family has 3 hyper-
parameters - scale, temperature, and offset. Considering we
are only using tempered sigmoid for the output layer, we do
not use the scale and offset parameters, and the formula we
apply is:

σ(x) =
1

1 + exp(−x/τ)

=
1

1 + exp(−x · exp(logit scale))

(2)

where τ is the temperature, logit scale is the log-
parameterized multiplicative scalar as mentioned in Listing
1 line 8, and x · exp(logit scale) is the output logit.

Why our BCE Loss is hardness-aware Tempered losses
are recently found to provide robustness to noise during
training (Amid et al. 2019). Wang and Liu (2020) provides a
theoretical proof on why temperature makes softmax-based
contrastive loss hardness-aware, and balances the closeness
tolerance as well as the ability to learn separable features.
Papernot et al. (2021) applies tempered sigmoid activations

Figure 2: Our BCE loss’s derivative of x. Left side: for neg-
ative samples. Right side: for positive samples.

to replace unbounded activation functions like RELU, and
show better performance on noisy data.

In multi-label classification problems, sigmoid-based
BCE is widely used. We are inspired by the above men-
tioned papers, to experiment on adding temperature for sig-
moid function at the last layer, and use the temperature to
make BCE a hardness-aware loss function. With the BCE
loss formula, we can derive the gradient of the loss function
to the original logits value xij (for image i and class j):

∂LBCE(xij , yij)

∂xij
=

1

τ
(σ(xij)− yij) (3)

In Figure 2 we visualize the above partial gradient func-
tion, where T is the inverse temperature. From both formula
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and plots, it is clear that temperature plays a significant role
in controlling the strength of penalties on hard samples. We
observe that with smaller temperature (higher T ), the deriva-
tive of loss has larger magnitude, which is proportional to
the gap between the prediction probability (σ(xij)) and the
ground truth (yij). Thus, the loss is more sensitive to hard
samples and will enforce stronger improvements on them.
In Section 5, we conclude the impact of different tempera-
ture levels by showing ablation experiments results, and also
compare with normal BCE loss (τ as 1).

2.3 Image Preprocessing
For image preprocessing, CLIP applies random square crop
on resized images for training, and center square crop on re-
sized images for inference. With our use case, it could hap-
pen that objects appear at the long edge side. For example,
shower and bathtub are sometimes not the central focus of a
bathroom image. The square crops could cut them out, while
we’d like to recognize them. Our experimental studies show
that feeding original images resized to 224 × 224 with no
cropping yields best results as we do not lose important in-
formation about a whole scene, and so it is chosen as our
final image preprocessing approach. For example, the aver-
age precision on TV/Multimedia, and Coffee facilities, are
improved by 8.5%, and 7.3% respectively, by removing the
cropping step as described above.

3 In-house Dataset Construction
In this section, we describe the creation of the Booking.com
multi-label image annotation dataset.

3.1 Class Label Definition
We create a representative label list covering the majority of
potential applications. The final list has a total of 120 classes
and 8 categories. For each class, we define a label name, a
label description, and assign one category for it. One exam-
ple of a label name is “Historical structure”, which is de-
scribed as “historical structure, a building or structure with
historical value”, and is assigned to the “Outside” category.
The 120 classes contain both tangible objects with different
sizes (e.g. mirror, kitchen), and intangible items (e.g. winter,
sunset). Besides that, there are hierarchical patterns: for ex-
ample, “Swimming pool” class is a parent of both “Indoor
swimming pool” class and “Outdoor swimming pool” class.

3.2 Annotation Collection
Image Candidate Selection Considering the natural class
imbalance, we apply two strategies to generate image sam-
ples from the Booking.com database:

1) Enrich image diversity: knowing which property each
image belongs to, we apply stratified sampling consider-
ing the property features, for example property type (e.g.
Villa). 2) Enrich low-resource classes: given the image em-
bedding from the original CLIP, we apply similarity searches
with queries on each class, and randomly sample from the
top images. For example, query “a photo with dog”,
“a photo with cat” for the Pets class. Since Book-
ing.com has a substantial image dataset, we limit the image
searching scope with practical rules.

Annotation Question Design We use AWS SageMaker
Ground Truth and Mechanical Turk to collect annotations.
This subsection describes how we get full annotation.

AWS provides quality control on the annotator pool, how-
ever, the quality could still variate with different tasks. We
apply two steps to improve the quality: 1) Assign each an-
notation task to 5 annotators, and calculate the voting rate
per image per label, to infer final ground truth. 2) Smart
grouping: given one image, we can either ask 120 binary
questions, or group labels into multi-choice questions. We
annotate a “golden ground truth” set, design different group-
ing strategies, and evaluate the annotators’ performance. We
find: binary questions get highest recall but lower preci-
sion, and cost the most; it’s recommended to put mutually-
exclusive labels in one group; never put many difficult labels
together; it’s advisable to make each question focusing on
one scenario (e.g. Fireplace, Ceiling Fan and Air-conditioner
in one group) and have generally 4-6 choices per group.

Consolidation and Dataset Results As stated above, we
collect voting rate results from 5 annotators per image per
class. Our evaluation on the golden ground truth set shows:
with voting agreement threshold as 0.6, for the majority of
classes, both precision and recall are high and near 0.95;
for a few difficult classes, the annotation recall is typically
higher than precision. Based on the annotation quality evalu-
ation per class, we define customized agreement thresholds
for each class. Besides that, we also apply the hierarchical
mapping to improve the dataset quality: if one image is la-
beled as one class, then the class’s parents are also marked as
positive. We finally acquire more than 140K positive labels,
and 7 million negative labels, on around 60K images.

Even with all above practical improvements, the dataset
still contains noise, which is a common challenge for real-
world problems. We can tune the temperature of the loss
function, and make it more tolerant to noise. The experi-
mentation findings are shared in Section 5.2.

4 Experimental Setup
All of our experiments are performed on a computation in-
stance equipped with 1 NVIDIA Tesla T4 Tensor Core GPU,
4 vCPU, and 16GB RAM. The final best-performing model
has the following settings: CLIP ViT-B/32 as the pretrained
model; batch size of 64 images with full annotations; weight
decay (on all weights that are not gains or biases) with co-
efficient 0.01, with AdamW optimizer (Loshchilov and Hut-
ter 2017) and learning rate 1e-5; positive class weight as 10
for all classes. Since we apply different image preprocess-
ing from CLIP, use our own label-text input, and aim to get
in-house image embeddings, we mainly experiment with un-
freezing the image and text encoding backbones.

We split the dataset into training set, validation set, and
test set, with a ratio of 80/10/10 respectively. Since we have
a class imbalanced multi-label dataset, we apply stratified
sampling according to the lowest frequency label per image.

To accelerate training and save memory, we apply the
mixed-precision (Micikevicius et al. 2017) strategy as CLIP
does. During forward pass and backward propagation, half-
precision is applied on the convolutional layers, linear lay-
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ers, multi-head attention layers, text projection and image
projection layers. For the weight update step, the full pre-
cision is applied to prevent underflow. The training takes
roughly 40 minutes per epoch.

4.1 Evaluation Metrics
Assume the number of labels is L, and given N image sam-
ples, the ground truth and the predictions can both be rep-
resented as a matrix with size N × L. As Sorower (2010)
mentioned, the evaluation is to compare these two matrices
and determine how close they are. Comparisons can be made
in three ways: column-by-column (also called label-based),
row-by-row (example-based), or as a whole. We use below
metrics as our main evaluation criterion:

• Average Precision per class (label-based):

APj =
N∑
i=1

pj(i)∆rj(i) (4)

where pj is the precision of class j, and rj is the recall
of class j. It is equivalent to the area under the precision-
recall curve per class.

• macro Mean Average Precision (aggregate on label-
based):

macro mAP =
1

L

L∑
j=1

APj (5)

which is the unweighted average of AP across all classes.
• weighted Mean Average Precision (aggregate on label-

based):

weighted mAP =
1∑L

j=1 NPj

L∑
j=1

APj ·NPj (6)

where NPj is the number of positive samples of class j.
• Global Average Precision (global-based):

GAP =
N ·L∑
i=1

p(i)∆r(i) (7)

GAP (also called micro mAP (Yang 1999)) is imple-
mented as: collect predictions from all classes, and cal-
culate the area under the global precision-recall curve.

• GAP@K: for each sample, take the top K predictions ac-
cording to probability ranking, and calculate GAP on top
of the collected predictions from all samples.

4.2 Baselines
We implement two baselines as follows:

• ASL (Ridnik et al. 2021a): ASL authors provide a col-
lection of high performance models trained on various
multi-label datasets (Ridnik et al. 2021b). We fine-tune
the MS-COCO (Lin et al. 2014) based TResNet (Ridnik
et al. 2020) large model, on our dataset, and apply hyper-
parameter tunes to get top-performing ASL model.

Figure 3: Output logits distribution - on one image, across
120 label-texts (“a photo with {label name}”).

method GAP GAP@10 macro
mAP

weighted
mAP

CLIP 32.7 44.5 56.7 56.1
ASL 67.7 77.3 60.8 68.9
MuMIC 83.8 85.6 74.7 79.5

Table 1: Performance comparison of MuMIC against 2 base-
lines, on the test set, 120 classes. All metrics are in %.

• Original CLIP (Radford et al. 2021): Given one image,
CLIP was trained with the main objective as distinguish-
ing one text from all others. Figure 3 shows the out-
put logits distribution from CLIP and MuMIC - on one
image example. We observe that CLIP majority outputs
are centered around value 7 for all classes, while Mu-
MIC can distinguish between positive classes and nega-
tive ones. That is because CLIP was optimized for single-
label with softmax-based loss, not for multi-label. To
generate multi-label predictions with CLIP, one approach
is taking top K output logits per image. However, it’s not
feasible to define a proper unified K. Instead, we apply
the following approach: for each class, input a pair of text
- “a photo”, “a photo of {label name}”; ap-
ply softmax on the two output logits, and use the second
probability as the label prediction.

5 Results and Development Findings
In this section, we explain the final model performance and
other experimental findings.

5.1 Final Model Performance
Table 1 and Figure 4 show how the final MuMIC model out-
performs the two baselines. From Figure 4, we observe that
MuMIC outperforms the other 2 baselines across large ma-
jority of the labels. Furthermore, we see a few classes for
which none of the compared methods achieve satisfactory
results. Our investigation shows two main reasons: these
classes are more noisy since they are challenging and not
easily distinguished even by a human (e.g. Toaster, Patio);
they are still too low frequent. Table 2 shows AP scores
on some classes as examples. For general class like Bed or
Food, all methods show acceptable performance. For more
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Figure 4: AP on each class, on the test set. The x axis repre-
sents the 120 classes (decreasing order on MuMIC AP).

method Golf Bed Win-
ter Food Lob-

by

Animal
(not
pets)

CLIP 94.8 95.8 91.2 90.0 50.1 49.0
ASL 79.0 97.4 93.3 91.3 73.3 89.0
MuMIC 98.9 98.6 98.4 96.4 96.2 98.1

Table 2: Average Precision (AP) on some classes - MuMIC
against 2 baselines on the test set. All metrics are in %.

travel domain related classes, model training is necessary.
For example, Animal in travel does not include pets, and
there are various types of Lobby, where we observe the orig-
inal CLIP performance is not enough.

Regarding the training time efficiency, the ASL training
time per epoch is similar to MuMIC (40 minutes as Section
4 shows), but ASL takes around 18 epochs to saturate, while
MuMIC only needs around 3 epochs. That indicates MuMIC
training efficiency is boosted by the large-scale pretrained
CLIP, and the hardness-aware loss function. Regarding the
inference time, CLIP’s text encoding time is twice that of
MuMIC, since CLIP requires a pair of text inputs per class.

5.2 Temperature Factor Selection
As described in Section 2, the temperature τ is an impor-
tant factor. CLIP initializes the contrastive loss temperature
as 0.07 (empirical value from Wang and Liu (2020)), and
clips the value at around 0.01 to prevent training instability.
We also decide to initialize temperature, make it a parameter
for the model to learn with capping value, instead of freez-
ing it as a hyperparameter. Since we have a real-world noisy
dataset, and are fine-tuning on top of pretrained models, we
find it is necessary to search the best initialization tempera-
ture for the tempered sigmoid.

We perform Bayesian optimization (Mockus, Tiesis, and
Zilinskas 1978) search to find a proper setting. Table 3 shows
the validation set performance with various initialization
values. Our best logit scale initialization value is 3.652,
which outperforms the cases when initializing τ either as
0.07 (logit scale 2.659), or as the pretrained CLIP τ value

Figure 5: Param logit scale learning curve examples

Figure 6: Validation set AP gap examples. The x axis is the
AP gap: using class description minus using class name.

(logit scale 4.605). Figure 5 shows how the network learns
to optimize logit scale during training steps.

From both Table 3 and Figure 5, we observe it is impor-
tant to start τ from a proper value. If the temperature is too
small, the strict penalties on hard samples might make the
model too sensitive to noise like wrong annotations. If the
temperature is too big, then the penalties on hard samples
could be not enough and limit the model’s learning ability. In
addition, we run an experiment with normal sigmoid-based
BCE loss (freeze τ at value 1), the validation set can reach a
maximum macro mAP score of 43.3% and GAP@10 score
of 38.2%, which are far lower than MuMIC performance.

5.3 Enrich Class Context with Class Description
As described in Section 2, we experiment with ei-
ther using “a photo with {label name}”, or
“a photo with {label description}” as the
input text representing a label. This leads to label descrip-
tion being used across a subset of labels that benefit from
it, as the upper side examples shown in Figure 6. More
convenient labels like Parking and Mirror prefer concise
class names rather than descriptions, in comparison to
labels like Art/decor, Historical structure where descriptions
improve the label-text embedding and the performance.
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logit scale
init value 0.703 0.913 2.005 2.578 2.659 2.927 3.352 3.652 4.189 4.605 5.244 5.751

macro mAP 17.5 22.8 65.9 72.2 72.6 73.7 73.9 74.1 73.9 73.1 73.1 72.6
GAP@10 56.1 62.1 78.5 83.9 83.9 84.7 85.0 85.4 85.0 84.4 84.4 84.1

Table 3: Validation set performance - with different temperature initialization values

5.4 Image Embedding

Figure 7: t-SNE on category - original CLIP

Figure 8: t-SNE on category - MuMIC

MuMIC generates travel domain image embeddings which
can be applied to downstream machine learning applications
(e.g. gallery embedding to find similar hotels). Figure 7 and
8 display the t-SNE (Van der Maaten and Hinton 2008) vi-
sualizations of image embeddings on the test set, colored at
the category level. When an image has multiple labels, we
color the point with the lowest frequent class’s category, to
acquire more samples for low resource categories. From the

Figure 9: Zero-shot Prediction examples - Museums

two figures, MuMIC has better ability to enforce differentia-
tion among different categories. We also analyze t-SNE dis-
tributions on the class level, and reach similar conclusions.

5.5 Zero-shot Learning
With multimodal learning, we expect semantic information
to propagate from seen classes to the unseen ones. As the
predefined 120 classes covered main travel topics, MuMIC
can generalize well to unseen travel domain labels.

Figure 9 and 10 show zero-shot prediction examples from
MuMIC and CLIP. For MuMIC, we apply sigmoids on the
5 output logits to get prediction scores. For CLIP, we apply
two approaches: multi-label as Section 4.2 described; and
single-label via softmax on the 5 output logits. MuMIC gets
high scores on correct labels (internal museum, mountain
climbing etc.), and low scores on wrong labels (shopping,
door etc.), indicating good generalization. Comparing with
MuMIC, CLIP multi-label approach gets quite high scores
on wrong labels. CLIP single-label approach has the top K
selection problem as Section 4.2 explained.

6 Application Examples
The final MuMIC model supports multiple downstream use
cases. For each application, online A/B test (Fabijan et al.
2018) is required to be conducted on real traffic of Book-
ing.com and typically lasts for several weeks. Below are ap-
plication examples that can benefit from MuMIC:

Main gallery subset selection By default, the gallery
subset/preview on the property page contains the first images
uploaded. MuMIC can be applied to select more representa-
tive subset to cover different aspects - building, room, bath-
room, dining area, etc. Figure 11 shows one example: the
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Figure 10: Zero-shot Prediction examples - Trip types

left side is before applying the model, where we see dupli-
cate bedroom images, and an image with long text; the right
side is the new design, shows better gallery quality. This A/B
test results in +0.5% more users progressing to the next step
of the booking funnel, indicates better user engagement.

Content selection a) Native ads - the image classification
results are applied in a combination with an image quality
model in order to select the best images for native ads. The
A/B test results in +5% more clicks on ads. b) Destination
recommendation - some destinations have no image on their
recommendation cards. With image classification results on
outdoor classes (natural landscape, street, sightseeing, etc.),
we are able to re-purpose gallery photos and use them for
supplementing missing destination images. The A/B test re-
sults in +4.3% more clicks on the cards.

Content validation and enrichment - identifying mis-
matches between the facilities reported by the property own-
ers and the ones existing in propertys photos, and enabling
owners to take actions. This is currently in production on
Booking.com partner website, with property owners adopt-
ing 96% of the recommended gaps. When customers filter
for a certain facility, for example swimming pool, they are
able to see and book more properties with swimming pools.

7 Deployment and Maintenance
The final MuMIC model is served with Amazon SageMaker,
and deployed on Booking.com Content Intelligence Plat-
form (CIP) - a stream processing platform based on Apache
Flink, that consumes real-time events (e.g. requests on im-
age prediction) from Kafka topics, and generates model-
based results. The final product provides both real-time pre-
dictions services, and backfilling services.

The backfilling jobs run MuMIC on Booking.com image
datasets, store the predictions, image embeddings and meta-
data to databases. Thus, consumers can retrieve results from
a central place, instead of sending and managing requests on
the overlapping images per use case. To save storage space,
we decide to only save the label predictions above certain
thresholds. We perform thresholds selection per class on the
validation and test set, by analyzing the percentage of data

Figure 11: Gallery subset display

we can drop and the maximum recall still remain. We finally
drop around 87% of data while keep the recall close to 1.

The model is served on GPU instances instead of CPU,
since our analysis shows that to predict on same amount
of images, the cost on using GPU is around 3 times less
than CPU. It’s also worth mentioning the model inference
endpoints support batch predictions, which is shown to be
roughly 5 times faster than predicting images one by one.
The above optimizations match our expectations, since the
MuMIC architecture is highly parallelizable because of the
transformers backbones.

To achieve system robustness and scalability, we apply
auto-scaling, which leads to a better handling on peak times,
and a lower cost on off-peak times. In addition, model serv-
ing metrics (e.g. throughput, inference time) are monitored
using in-house dashboards and AWS CloudWatch.

8 Conclusion
Multi-label image classification is a crucial task for many
domains. In this paper, we present MuMIC, a multimodal
approach for multi-label image classification based on con-
trastively learnt CLIP model. Our main novelty lies in the
creation of an in-house dataset for the travel industry, and ap-
plication of supervised multimodal learning with tempered-
sigmoid based BCE loss. We perform ablation studies and
show the impact of different choices, including temperature
tuning, and class context enrichment with class descriptions.

Our development, performed on a real-world Book-
ing.com dataset, demonstrates that MuMIC is a practical
framework that outperforms SOTA approaches in both clas-
sification performance and training efficiency. With MuMIC
framework, the model also learns high quality in-domain im-
age embeddings, and acquires zero-shot learning abilities on
unseen classes without additional training.

For future work, we suggest improving the low perfor-
mance labels, by refining class definitions and representa-
tions, reducing annotation noise, and assigning higher loss
weights. Few-shot learning for new classes on top of Mu-
MIC embeddings could also be a promising direction.
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