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Abstract

Underserved communities face critical health challenges due
to lack of access to timely and reliable information. Non-
governmental organizations are leveraging the widespread
use of cellphones to combat these healthcare challenges and
spread preventative awareness. The health workers at these
organizations reach out individually to beneficiaries; however
such programs still suffer from declining engagement.

We have deployed SAHELLI, a system to efficiently utilize the
limited availability of health workers for improving maternal
and child health in India. SAHELI uses the Restless Multi-
armed Bandit (RMAB) framework to identify beneficiaries
for outreach. It is the first deployed application for RMABs
in public health, and is already in continuous use by our part-
ner NGO, ARMMAN. We have already reached ~ 100K
beneficiaries with SAHELI, and are on track to serve 1 mil-
lion beneficiaries by the end of 2023. This scale and impact
has been achieved through multiple innovations in the RMAB
model and its development, in preparation of real world data,
and in deployment practices; and through careful considera-
tion of responsible Al practices. Specifically, in this paper, we
describe our approach to learn from past data to improve the
performance of SAHELI’'s RMAB model, the real-world chal-
lenges faced during deployment and adoption of SAHELI, and
the end-to-end pipeline.

Introduction

Mobile health (mHealth) programs, that leverage the
widespread use of cellphones, are a crucial resource
for bridging information inequities for underserved and
marginalized communities in the global south (Tshikomana
and Ramukumba 2022; Gupta et al. 2022), especially in ar-
eas such as public health and social services where access
to authoritative information is unevenly distributed. Many
non-governmental organizations (NGOs) periodically send
automated voice messages to improve health outcomes of
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beneficiaries. However, in spite of high adoption, adher-
ence is a key challenge in public health information pro-
grams (ARMMAN 2019; Jakob et al. 2022; Eysenbach
2005; Meyerowitz-Katz et al. 2020). NGOs often employ
live service calls made by health workers to boost engage-
ment via encouragement or through logistic changes re-
quested by beneficiaries. However, given the comparatively
large number of potential beneficiaries, it is important to
maximally utilize the limited availability of health workers,
and thus it is crucial to identify the best recipients for such
service calls.

States Covered in 19
India

Partner NGOs 40
Partner Hospitals 97
Health Workers 235K
Trained

Beneficiaries 27.2M

Scale of ARMMAN

Figure 1: A beneficiary receiving preventive health informa-
tion

While AI models can help health workers in optimizing
their service calls, deploying these models in the context
of mHealth programs for underserved communities presents
unique challenges. First, available data is sparse and skewed
(because data is necessarily limited from small numbers of
service calls). Second, NGOs are constrained by a very lim-
ited compute budget. Third, responsible deployment of the
Al models is particularly important in such settings.

In this paper, we show how we address these research
challenges in our deployed Al model — a Restless Multi-
Armed Bandits (RMAB) model — together with our NGO
partner ARMMAN (ARMMAN 2008) to improve the qual-
ity of service of their mHealth program focusing on mater-
nal and child care in India. India suffers from high mater-



nal and neonatal mortality rates (Meh et al. 2022; World
Health Organization (WHO) 2020), and ARMMAN (AR-
MMAN 2008) runs one of the largest mHealth programs in
this domain in India. Our system, SAHELI (System for Al-
locating Healthcare-resources Efficiently given Limited In-
terventions), is the result of deep partnership of an inter-
disciplinary team of researchers. SAHELI (meaning ‘female
friend’ in Hindi) is designed to assist, rather than substitute,
health workers in their normal workflow. The key contribu-
tions of deployed SAHELI are:

e SAHELI includes the first deployed application of
RMAB:s for public health, and it is continuously in use
by our partner NGO ARMMAN.

A key novelty of the deployment is that it both predicts
RMAB model parameters and computes optimal poli-
cies; in contrast with most past research that has fo-
cused on computing optimal policies. To that end, we
provide an improved and robust machine learning predic-
tion framework by performing model selection and eval-
uation of real-world RMAB systems.

We deployed SAHELI on cloud infrastructure with an em-
phasis on frugality throughout the end-to-end pipeline
given the resource constraints of the NGO partner.

We present Responsible Al practices to address ethical
considerations for deploying an Al system for impact
in underserved communities, particularly in this non-
western context.

SAHELI has been developed as a platform, with the ability
to be scaled to more NGOs in more domains. Our source
code and data dictionary are available on Github'.

Related Work

While several works in the healthcare domain have stud-
ied patient adherence for diseases like HIV (Tuldra et al.
1999), cardiac problems (Corotto et al. 2013) and tuberculo-
sis (Killian et al. 2019; Pilote et al. 1996), these largely fo-
cus on building machine learning classifiers to predict future
adherence to prescribed medication. With such models, the
pool of beneficiaries flagged as ‘high-risk’ can itself be very
large. Furthermore, the one-shot predictions of these models
fail to capture the sequential decision making aspect of the
problem. Other approaches that consider sequential decision
making challenges, such as Pollack et al. (2002); Liao et al.
(2020) adopt reinforcement learning techniques to build per-
sonalized health monitors that can send timely notifications
or activity suggestions to users. However, these models as-
sume notifications can be sent at will, and as such, do not
address the challenge of limited service call resources.
Alternatively, RMABs have seen significant theoretical
investigation, motivated by resource allocation challenges,
such as in anti-poaching patrols (Qian et al. 2016), multi-
channel communication (Liu and Zhao 2010), sensor moni-
toring and machine maintenance tasks (Glazebrook, Ruiz-
Hernandex, and Kirkbride 2006). While they provide im-
portant contributions, none of these works have seen a real
world deployment, and most have not been field tested.

"https://github.com/armman-projects/SAHELI
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Key reasons for the lack of RMAB deployment are their
significant computational and data requirements. For exam-
ple, just the optimization problem of computing the optimal
allocation 7, while assuming the transition parameters P are
available, is already known to be PSPACE-hard (Papadim-
itriou and Tsitsiklis 1999). Furthermore, in the real world,
these transition parameters are not just unknown but also
hard to infer for real beneficiaries enrolling with ARMMAN
and other similar health programs, as they come with no his-
torical transition data. Despite such difficulties, our work is
the first to deploy RMABs in tackling a real-world maternal
healthcare task via frugal design choices discussed below.

Problem Introduction

ARMMAN is a non-governmental nonprofit organization
based in India, focused on improving maternal and child
health outcomes among underserved and underprivileged
communities (ARMMAN 2008). Their flagship program,
‘mMitra’, is a mHealth service that aims to leverage the ex-
tensive cellphone penetration in India to send out critical
preventive health information to expectant or new mothers
via automated voice messages. A large fraction (~ 90%) of
mothers in the mMitra program are below the World Bank
international poverty line (World Bank 2020). Despite the
acute economic disadvantages faced by these mothers, such
automated voice messages prove to be a feasible mode of
information dissemination at scale, thanks to the wide ac-
cessibility of low-cost phones.

After enrollment into the mMitra mHealth program, ben-
eficiaries receive 1-2 minute voice messages with health
information according to the beneficiary’s gestational age
or age of the infant. Unfortunately, despite the proven ef-
fectiveness of this information program in improving ma-
ternal health outcomes, ARMMAN often sees dwindling
engagement rates among beneficiaries, including frequent
dropouts. Around 22% of beneficiaries drop out of the pro-
gram after just 3 months. To counter this issue, ARMMAN
leverages health workers that place live service calls (phone
calls) to a limited number of beneficiaries on a weekly basis
to encourage beneficiaries’ participation, address requests/
complaints, and attempt to prevent engagement drops. This
raises the key question of deciding which beneficiaries to
pick for live service calls in order to improve engagement
rates among the beneficiaries.

Restless Multi-Armed Bandits (RMAB)

The Restless Multi-Armed Bandits (RMABs) model was
first introduced by Whittle (1988) to address limited re-
source allocation problems, but has not received much at-
tention in terms of real-world deployments. An RMAB con-
sists of a set of /N arms, where each arm is associated with
a two-action MDP (Puterman 2014). An MDP {S, A, r, P}
consists of a set of states S, a set of actions A, a reward
functionr : S x A x § — R, and a transition function P,
where P, is the probability of transitioning from state s to
s’ when action « is chosen. The reward function in our setup
is given as r(s,a,s’) = s’. An MDP policy 7 : § — A
maps to the choice of action to take at each state. The long-



term discounted reward for a policy =, starting from state
50 = s is defined as R7(s) = E Y ;2 v'r(se41)|s50 = ]

where s;41 ~ P;Eﬁi)ﬂ and y € [0, 1) is the discount factor.

The total reward in the RMAB is defined as the sum of the
total rewards accrued by individual arms of the RMAB.

In the setup we consider, each arm of the RMAB mod-
els a beneficiary enrolled with ARMMAN, who can be in
one of two states S = {0, 1} (corresponding to ‘Not Engag-
ing (NE)’ and ‘Engaging (E)’ respectively). Engagement in
our setup was defined in consultation with the subject mat-
ter experts at ARMMAN: we define a beneficiary as engaged
when she listens to at least one call in a week for more than
30 seconds. The action space for each arm consists of two
actions, A = {0, 1}, where 1(0), typically called the active
(passive) action, refers to selecting (not selecting) the bene-
ficiary for the live service call. Beneficiaries may transition
from say their E state to NE state (or other transitions) from
one week to the next week based on their transition prob-
abilities defined on passive or active actions. The planner’s
goal is to select actions on arms (deliver live service calls) so
as to maximize the total reward, i.e. number of beneficiaries
in the engaged state, accrued by the RMAB. However, the
budget constraint demands that the planner can choose no
more than k arms (k < N) for the active action at any given
timestep, i.e., no more than k live service calls per week.

The dominant technique for solving RMABs uses the
Whittle Index heuristic (Whittle 1988), which is shown to
have asymptotic optimality under some conditions (Weber
and Weiss 1990), and to provide excellent performance in
practice (Qian et al. 2016). Whittle indexes are formulated
using the idea of passive subsidy, and informally rank arms
s0 as to choose the top &, based on how attractive it is for a
planner to activate each arm. For computing Whittle index,
we use binary search algorithm from Qian et al. (2016)

Previous Study: Our previous study conducted in April
2021 (Mate et al. 2022) is the first to present real-world ser-
vice quality improvement using RMABs in the context of
mMitra program. This study tested an RMAB-based policy
against two baselines of interest, and showed RMAB outper-
forming its competitors. The study spanned 7 weeks and in-
cluded 23, 003 real-world beneficiaries who were distributed
in three groups corresponding to the RMAB policy, Round
Robin (RR) and Current Standard of Care (CSOC). Whereas
RR corresponds to a non-Al heuristic for systematically call-
ing beneficiaries, CSOC did not call any individuals. The
results from this pilot study are shown in Table 1.

The pilot results demonstrated that the RMAB method
cuts ~ 30% of the beneficiary engagement drops experi-
enced by the other groups. Furthermore, whereas RMAB
achieves statistically significant improvement against CSOC
(p < 0.05) and RR (p < 0.1), RR fails to achieve any sta-
tistically significant improvement over CSOC. This key re-
sult forms the basis of relying on RMAB-based strategy over
other non-Al strategies as a basis of SAHELI. In this paper,
we describe the journey from this initial study to the final
deployment. Whereas we use the same overall RMAB learn-
ing and optimization approach, we made multiple changes
to provide significant enhancements that reduce data anoma-
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Improvements RMAB over | RMAB RR over
CSOC over RR | CSOC

% reduction in to- | 32.0% 28.3% 52%

tal beneficiary en-

gagement drops

p-value 0.044 0.098 0.740

Table 1: RMABs demonstrate statistically significant supe-
rior performance when compared against other non-Al ap-
proaches, namely Current Standard of Care (CSOC) and
Round Robin (RR), as shown by Mate et al. (2022).

lies and improve computational performance of this RMAB-
based strategy. Additionally, our deployed cloud application
now automates the data exchange process with the NGO’s
systems while requiring minimal compute resources to be
feasibly handled by the NGO. We now describe the end-to-
end SAHELI system.

Deploying SAHELI

We now introduce SAHELI and its architecture. We begin by
discussing the different components, and follow that up with
the description of the Al pipeline. We then discuss the frugal
design choices — both in modeling and infrastructure — that
were required to finalize the deployment.

System Architecture

We first describe all the interactions within SAHELI’s
ecosystem (refer Figure 2). The health workers in the field
periodically register beneficiaries through door-to-door vis-
its or at the hospitals (step 1). The socio-demographic data
such as age, language, income range, as well as the infor-
mation on gestational age is then entered into the database
maintained by ARMMAN (step 3). Automated voice mes-
sages tailored to the beneficiaries’ gestational age are sent
with the help of a telecommunication provider (step 4). The
meta-data of the outcome such as duration of the call, fail-
ure reason etc, is also pushed to ARMMAN’s database . As
beneficiaries’ engagement with the voice messages dimin-
ishes over time, live service calls are made by ARMMAN
to encourage beneficiaries to engage with the program (step
10). However due to limited resources on the NGO'’s side,
only a limited number of live service calls can be made each
week. The Al pipeline predicts which beneficiaries would
benefit most from receiving a service call in any given week.
This list of beneficiaries is then generated at the start of each
week and distributed across health workers in an automated
fashion as shown on Figure 2 in steps through 2-9.

The Al pipeline (described in the next section) for a dy-
namically growing population is deployed on infrastructure
hosted on Google Cloud Platform (GCP). The Al pipeline is
wrapped as an application using Flask, which is container-
ized using Docker. The docker image is created to contain
the requisite code scripts for the Al pipeline with apt envi-
ronment requirements. Our default GCP container settings
are to use 6 vCPUs and 16GiB memory. A weekly sched-
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Figure 2: Pipeline of Deployed System. Beneficiary information on app Ul is available only to the health worker in charge.

uler job on GCP triggers the Flask application, which then
generates the list of beneficiaries.

Step 8 in Figure 2 shows the generation of the list of ben-
eficiaries that should be intervened in the given week using
the Al pipeline. This list is ingested in ARMMAN’s cloud
databases, which serve as the back-end of a client mobile
application (screenshot provided in Figure 2) used by the
health workers. This client application randomly distributes
the list of scheduled service calls among health workers
based on their weekly availability. An illustrative screenshot
(not real beneficiary) is also shown in Figure 2. The health
worker sees a list of beneficiaries that he/she can call, along
with certain features like number of call attempts. They can
also click on a particular beneficiary and see more infor-
mation about the beneficiary and past calls with them (not
shown). The calls are made through the week with a maxi-
mum of 3 call attempts to the same beneficiary. All the ben-
eficiaries in the generated list receive the aforesaid service
calls. The model is currently providing services to benefi-
ciaries enrolling at an average rate of 20K beneficiaries per
month with a budget of 1000 calls per week.

SAHELI streamlines the entire deployment workflow in a
singular pipeline, and automates its orchestration and exe-
cution, making this process computationally efficient, cost-
effective, and easy to debug. As more beneficiaries get en-
rolled periodically, the beneficiary cohort in the application
can now be updated automatically.

Health workers can then make the calls (step 10 in Fig-
ure 2) to these beneficiaries motivating them to listen to the
voice messages and address any logistic issues (e.g. time
slots, language of communication, and others) that might
be affecting their engagement. As we show later in the pa-
per, motivating the beneficiaries is key to driving adherence.
However, it bears repeating that given the limited availability
of the health workers, they can only make a limited number
of calls. In our Al pipeline we focused on identifying the
right set of beneficiaries to call, and not on automating the
contents of the service call. This is a key design choice in
SAHELI: we thus complement the human-to-human engage-
ment between the health worker and the beneficiary, and to-
gether they contribute towards aiding a particular beneficiary
and driving higher engagement with the mHealth program.
This model of working together with the health workers em-
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bodies ARMMAN’s core ‘tech plus touch’ philosophy (AR-
MMAN 2008) and is essential to our successful outcomes.

Pipeline Description

This section describes the modules in the Al pipeline for
both the offline model training and the online model exe-
cution. The offline model creation begins with the process-
ing of the training data (i.e. historic data from past mHealth
studies), clustering of processed data, and the RMAB mod-
eling per cluster. The transition probabilities and the Whittle
indexes are then learned per cluster. Additionally, a map-
ping from socio-demographic features of a beneficiary to
a cluster is also learned offline. This mapping is used to
treat a new beneficiary during model execution — transition
probabilities and Whittle index values for the new benefi-
ciary are given by the corresponding values of the benefi-
ciary’s mapped cluster. These individual modules are now
described. For data privacy reasons, the data pipeline only
uses anonymized data and no personally identifiable infor-
mation (PII) is made available to the AI models.
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Figure 3: Figures (a) and (b) show anomalous engagement
behavior while figures (c) and (d) are genuine behaviors. The
y-axis shows the proportion of cluster-population in engag-
ing state.

Data Processing: We train the model on a dataset ob-
tained from historic data collected by ARMMAN, consisting
of demographic features and listenership patterns. However,
during the pre-deployment trials, we observed some anoma-
lous engagement behaviors — the engagement behavior for



some beneficiaries was extremely spiky and unexpected.
Figures 3(a) and (b), show two such anomalous groups with
a clear peak and dip contrasted with groups having genuine
engagement behavior. Upon investigation we found that this
spiky behavior resulted from unanticipated real-world events
like network outages.

We detect and exclude such anomalies from SAHELI’s
data training pipeline. We first group beneficiaries based on
their passive transition probabilities. For grouped beneficia-
ries, we then obtain a running mean of their engagement
over time where the mean is calculated over a window of 3
weeks. We filter out all groups with more than 20% change
in running mean engagement within a week. Figures 3(c)
and (d) show two groups that don’t exhibit anomalous be-
havior and are maintained in the data pipeline.

Additionally, further discussions with ARMMAN pointed
out long-term engagement issues in some beneficiaries, such
as the registration of a wrong or out-of-service phone num-
ber, or the beneficiary not being pregnant. Live service calls
in these cases are not productive. Thus, as a pre-processing
step, we do not consider beneficiaries who have not listened
to any automated voice calls in the past 6 weeks.

Clustering: We face a data scarcity and skew challenge
in our domain. Specifically, our training dataset comprises
beneficiaries from our own past studies where intervention
data is available for only a limited set of these beneficia-
ries. Thus, to define the parameters of the RMAB model,
we cluster beneficiaries as an effective way of addressing
data scarcity. We cluster the beneficiaries per their transition
behaviors for passive actions using k-means clustering. We
obtain transition probabilities for each of these clusters by
aggregating their transitions as a whole.

However, the optimal number of clusters is a design
choice not readily addressed by k-means. We experimented
with the number of clusters ranging from 1 to 100, and
looked at the distortion metric. Distortion is the sum of
squared distances of each point from its corresponding cen-
troid, where smaller distortion implies better clustering. We
plot the distortion values for multiple number of clusters and
find 20 to be the ideal choice using elbow-method. The re-
sults are shown in Figure 4a where the x-axis is the number
of clusters and the y-axis is the distortion value. This has the
added advantage of offering computational frugality.

Mapping Features to Clusters: When a new beneficiary
enrolls into the system, the system only knows about their
demographic data. We therefore need to learn a mapping
of a beneficiary’s socio-demographic features to clusters, to
enable inferring transition probabilities and Whittle indexes
for newly enrolled beneficiaries (step 6 in Figure 2). We ex-
perimented with different mapping functions to identify the
best one: Features Only (FO) mapping - beneficiaries’ socio-
demographic features only; Warm-up Only (WO) mapping -
transition probabilities computed from warm-up period (first
6 weeks post enrollment); and lastly Feature and Warm-up
(FW) mapping - using a combination of the above two.

We compute Mean Absolute Error between predicted and
ground truth passive transition probabilities as a perfor-
mance metric and found them as [0.40, 0.37,0.38] for FO,
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Figure 4: Figure (a) shows elbow plot with distortion for
varying number of clusters. Figures (b), (c), and (d) show
the distribution of predicted clusters using the Feature Only
(FO), Feature and Warm-up (FW), and Warm-up Only (WO)
mapping functions.

FW, and WO strategies respectively. In addition to MAE,
we plot the distribution of beneficiaries predicted in differ-
ent clusters (refer Figures 4(b), (c) and (d)). Having a sparse
cluster distribution is undesirable since large clusters low-
ers the granularity of Whittle index planning. As an extreme
example, if all beneficiaries are mapped to a single cluster,
they would all have the same transition probability and thus
the same Whittle indexes. Since the cluster size is now much
larger than the number of arms to be pulled, the beneficiaries
within that cluster would be chosen randomly for receiving
service calls, which would degrade the performance.

Thus, to ensure equitable cluster distribution, we com-
puted Entropy and Gini index values for the predicted distri-
bution of number of beneficiaries per cluster. Entropy values
came out to be [2.81,2.56,2.04] for FO, FW, and WO re-
spectively, and Gini indexes were [0.29,0.48,0.57]. Given
the error similarities for the three strategies, and higher en-
tropy / lower Gini index implies more equitable clusters, we
chose FO as our strategy.

RMAB Modeling and Whittle Index Computation:
These transition probabilities per cluster are used to compute
Whittle indexes for all beneficiaries, similar to Mate et al.
(2022), i.e., computing 2 x k unique indexes where k is the
number of clusters. There are two Whittle indexes per clus-
ter as beneficiaries may be in the engaging or non-engaging
states. Whittle index indicates the benefit of performing an
active action on a beneficiary. Thus, we rank beneficiaries
by Whittle Index and top-K beneficiaries are chosen to re-
ceive service calls (step 7 in Figure 2). By mapping benefi-
ciaries to clusters, the Whittle indexes can be pre-computed
per cluster at the beginning of the deployment, thus provid-
ing a frugal solution ideal for large scale deployment with
minimal resources.

Frequency of Repeated Live Service Calls: We initially
enforced a frequency restriction that required ensuring no
beneficiary be called more than once in n+1 weeks (we set
n = 3). Algorithmically, we implement this by appending
7 sets of dummy ‘sleeping states’ to the state space that we



force the beneficiaries to transition through each time they
are called. This augmentation yields a state space of size
27 + 2 and a transition matrix of size (2 + 2) x (21 + 2).
However, our pilot tests reveal that repeat calls made within
just n = 3 weeks are less effective. For instance, we ob-
served that 30% of ‘Non-engaging’ beneficiaries converted
to ‘Engaging’ due to the first service call; however this num-
ber drops to 20% for repeat calls made just three weeks later.
To address this, along with the subject matter experts at AR-
MMAN, we increased the sleeping period, 7, to 12 weeks.

Frugality of System Design

Successful deployments of Al systems like SAHELI in social
good settings requires conscious focus on frugality across
the system design. This is to reduce both the direct costs
(e.g. number of calls) and indirect costs (e.g. computational
requirements) on our NGO partners. Here are some design
choices in SAHELI that have led to frugality in its operations:

1. Clustering of beneficiaries allows us to compute tran-
sition probabilities and Whittle indexes at a cluster level as
opposed at the beneficiary level. Since we use 20 clusters
for thousands of beneficiaries, it provides a significant scale-
up in performance, while simultaneously reducing data de-
mands for learning RMAB model parameters.

2. As described above, we updated the ‘sleeping states’
parameter 1) to 12. However, this increases the Whittle index
computation time sharply, owing to a bulky transition matrix
of size 26 x 26. With frugality in mind, we use the insight
that a sleeping constraint with large 1 can be approximated
as a permanent sleeping constraint, akin to setting 7 to oo,
for the purposes of index computation. This is because in
index computation, the contribution of reward terms appear-
ing after 7 timesteps is discounted by a factor of " (v < 1),
which precipitously diminishes to zero. This simplification
compresses the transition matrix to 4 x 4, and unlocks a 25x
speedup in index computation, as shown in Figure Sc.

3. Lastly, multiple frugal design choices were made in the
orchestration of cloud infrastructure. Specifically, we run
our services on-demand using a task scheduler on default
container settings of 6 vCPUs and 16GiB memory.

Application Use and Payoff

We now discuss the impact of SAHELI on both the benefi-
ciaries as well as the AI community in more detail. SAHELI
is deployed and in continuous use at ARMMAN. It has al-
ready reached 100K beneficiaries, and is on track to reach
one million beneficiaries by the end of 2023.

Engagement Results

In order to evaluate the impact of live service calls through
SAHELI, we track the engagement behavior of a cohort of
5000 beneficiaries for 12 weeks, registered between Febru-
ary 2022 to April 2022. Additionally, we create a holdout set
of beneficiaries registered in the same time period but are not
given any live service calls (we obtained ethical approvals
before our studies; see section Responsible Al practices for
further discussion). We make sure that both the SAHELI and
holdout groups have equal number of beneficiaries, equal
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number engaging beneficiaries at the start of experiment,
and similar socio-demographic features.

Figure 5(a) shows how many engagements did not occur
in the holdout group that occurred in the SAHELI group, ag-
gregated cumulatively across months. It demonstrates that
the SAHELI group received significant benefit with an ad-
ditional 300 engaging beneficiaries over the holdout group
cumulatively at the end of three months. We also measured
the difference in terms of time spent listening to mMitra
voice calls. More time spent implies more content exposure,
as well as better adherence with the mHealth program. In
particular, by the end of month 3, the SAHELI group had
listened to 60,000 seconds more of content than the hold-
out group (Figure 5(b)). Overall, at the end of three months,
SAHELI prevented drop in engagements by 30.5% with
an additional content exposure of 46.4% in comparison
to the holdout group. This analysis demonstrates SAHELI’s
success in achieving our core objectives of improving infor-
mation dissemination.
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Figure 5: (a) Prevention in drop in engagement (cumulative)
(b) Increased time spent listening to calls (cumulative) (c)
Index computation is significantly faster with the infinite
sleeping approximation.

Impact of Live Service Calls

We performed a qualitative study to understand the experi-
ences and challenges faced by healthcare workers upon the
introduction of SAHELI. We conducted a total of 24 in-
terviews, 2 focus group discussions, and approximately 90
hours of observation over a period of six weeks. Conclu-
sions were drawn by analyzing interview transcripts (audio
recorded with consent). We found that with SAHELLI, health
workers were able to have more interactive conversations
with their beneficiaries as they were aware that they had to
provide support to people who were at high risk of drop off
otherwise. In one of the interviews, one of the health work-
ers mentioned that:

Women don’t remember that they registered by the time
they go home. A lot is happening during their visit. When
they get a call, then they remember. We are able to do this
better now since we know we are targeting those who need
this call the most.

We also investigated the reasons for why live service
calls helped improve engagement with ARMMAN’s mMi-
tra mHealth program from the perspective of the beneficiary.
Specifically, we conducted a follow-up study with a sample
of beneficiaries who were given live service calls one year
ago. We could successfully reach out to 306 beneficiaries,
out of which 134 recalled the details of the service call from



a year ago. Table 2 shows the responses to our follow-up
study by these 134 beneficiaries. Particularly, 50.75% bene-
ficiaries engaged more with mMitra calls after getting more
information about the program. The service calls also helped
improve listenership by making logistical updates such as
updating delivery date (9.7%), changing time slot of receiv-
ing the call (8.21%) or updating the phone number (2.99%).

Did the call help you to listen to the | # of Ben- | % Bene-
mMitra calls more regularly? eficiaries | ficiaries
Yes, after getting more information | 68 (in | 50.75%
about mMitra, I am listening to the | 134)

calls more regularly

Not really 30 22.39%
Yes, after updating my delivery date, I | 13 9.7%
was able to get the right information

Yes, after changing time slot, lam able | 11 8.21%
to listen to the calls more regularly

Have not asked my wife 4 2.99%
Yes, after changing the number, I am | 4 2.99%
able to listen to the calls more regu-

larly

Any other 4 2.99%

Table 2: Follow-up study responses

Fairness of the RMAB Model

Model fairness in non-western contexts has not received
much attention in the literature (Sambasivan et al. 2021). Re-
sponsible Al principles of the Government of India’s NITI
AAYOG (2021) for example, requires non-discrimination
based on sensitive markers like caste and religion. These
sensitive data are specifically not collected by ARMMAN
for mMitra, thereby, making it inaccessible to SAHELI’s Al
models. We worked with public health and field experts to
evaluate other indicators such as education, and income lev-
els that signify markers of socio-economic marginalization.
ARMMAN’s goals for SAHELI are to favor beneficiaries of
lower income and lower education levels for service calls.
We conducted a post-hoc analysis of the deployment to eval-
uate if SAHELI indeed met such preferences.

Figure 6(a) shows the distribution of beneficiaries aggre-
gated across SAHELI’s enrollments split into different ed-
ucation levels in India. We compare those who were cho-
sen for live service calls by SAHELI versus the enrolled
population. The x-axis portrays the education levels; for in-
stance grade 1-5 represents primary school, grade 6-9 mid-
dle school, 10th pass junior high, and 12th pass represents
senior high school. The y-axis is the % of beneficiaries per
education category. For instance, SAHELI calls 5.5% of ben-
eficiaries who had no formal education (illiterate), whereas
this group was 2.8% of the overall enrolled population.

We did a similar analysis split by income as depicted in
Figure 6(b). The x-axis contains buckets of average monthly
income of the beneficiary household in Indian Rupees, and
the y-axis denotes the % of beneficiaries in that income cate-
gory. As an example, the category ‘5SK-10K’ contains around
30% of the beneficiaries in the population, and almost 40%
of the beneficiaries who received a service call. This shows

15600

mmm Received Live Service Call
@ Whole Population

15 6-9 10 Pass 12 Pass Graduate Post

Graduate

Illiterate

(a)
N

BN Received Live Service Call
mmw Whole Population

N
10K-15K 15K-20K 20K-25K  25K-30K
Income

(b)

% beneficiaries

0-5K

5K-10K >30K

Figure 6: Distribution of (a) education (highest education
received) and (b) income (monthly family income, INR)
across cohort receiving service call vs. whole population.

that SAHELI favors the beneficiaries in the ‘illiterate’ educa-
tion category and in the ‘5K-10K’ income category. This dis-
tribution is in line with ARMMAN’s goals — SAHELI favors
beneficiaries of lower income and lower education levels for
service calls. Nonetheless, the goal of prioritizing beneficia-
ries belonging to certain socio-demographic groups more di-
rectly into the RMAB objective is potentially an important
issue for future work.

Enabling New Research

From identifying the right problem to solve, to creating an
Al solution, testing it in pilot, iterating on learnings and fi-
nally, establishing an end-to-end integrated system, we made
our journey to this deployment. With this, we provide other
Al researchers an important case study to take an AI model
from the lab out on the field. In our pursuit of deployment
of SAHELI, we uncover several research challenges, e.g.,
we overcame the challenges of data scarcity and frugal de-
sign. This hopefully inspires additional research in robust
and computationally efficient approaches for RMABs and
other Al applications for mHealth.

Responsible AI Practices

We recognize the responsibility associated with deploying
real-world Al systems that impacts underserved communi-
ties. In our approach, we have iteratively designed, devel-
oped and deployed the system in constant coordination with
an interdisciplinary team of ARMMAN’s field staff, social
work researchers, public health researchers and ethical ex-
perts. Along with seeking ethical approvals through review
boards at Google and ARMMAN, we have taken additional
steps to constantly monitor and mitigate the risks associated
with SAHELI by abiding with Al principles at Google (2018)
and key policy making bodies in India such as the NITI
AAYOG (2021). Our success draws attention to practices
around responsible Al including ethics, fairness and ac-
countability in non-western context (Sambasivan et al. 2021)



where SAHELI is deployed. We now discuss three of the core
Responsible Al principles that impacted SAHELI’s design.

Socially beneficial: The intent of this work is to bring the
power of Al in service to some of the most marginalized
communities in the global south. The challenges faced by
our team were limited resources in every dimension — lim-
ited data on the beneficiaries, limited compute available to
the NGO, and limited health workers to make the outreach
calls. Thus, we had to develop new algorithms that were not
data hungry, and were bounded in their computational re-
quirements. To that effect, SAHELI is the first large-scale
deployment of RMABs for public health.

Avoid reinforcing unfair bias: As discussed in the previ-
ous section, we have undertaken extensive analysis to study
the model’s fair treatment of beneficiaries.

Incorporate privacy design principles: We take signif-
icant measures to ensure participant consent is understood
and recorded in a language of the community’s choice at
each stage of the program. Data stewardship resides in the
hands of the NGO, and only the NGO is allowed to share
data. This dataset will never be used by Google for any com-
mercial purposes. In this dataset, sensitive features such as
caste and religion are never collected and stored. SAHELI’S
data pipeline only uses anonymized data and no person-
ally identifiable information (PII) is made available to the
Al models. Lastly, domain experts at ARMMAN have been
deeply involved in the development and testing of SAHELI
and have provided continuous input and oversight in data
interpretation, data consumption and model design.

Maintenance

Since SAHELI has been automated end-to-end, there has not
been any manual intervention in the run of the system. We
have been reviewing the system regularly in collaboration
with ARMMAN. Though no updates have been required
since deployment, the modular composition of SAHELI en-
ables us to make updates to the AI model seamlessly.

Lessons Learned

Over the course of one year of our experiments moving from
Pilot study to Deployment, we learned several lessons along
the way. Most importantly, we learned that even a successful
pilot study can’t be translated as-is into a full-scale deploy-
ment, and that several considerations are critical for wide-
scale adoption of Al tools and scaling up of impact.

Selecting the right problem: There are multitude of
problems that require to be solved to address the needs of the
underserved communities. In our interactions with ARM-
MAN, we realized that we could create the most impact with
our techniques by improving the selection of the right ben-
eficiaries for manual intervention, as opposed to automat-
ing the communication with the beneficiary. Our choice of
problem is consistent with the ‘tech plus touch® philosophy
of ARMMAN (2008), and ensures that we complement the
human expertise of the health worker. This way, each chosen
beneficiary continued to have a one-on-one interaction with
a health worker, while simultaneously improving the overall
engagement with the mHealth program.

15601

Immersion into the real-world problem: We learned
that immersing in working of NGO and public health infras-
tructure is critical in understanding problem’s context. The
authors went on multiple field visits to understand the stake-
holders involved in mMitra’s workflow. The health work-
ers interact with beneficiaries across multiple mHealth pro-
grams, and thus can speak to needs of beneficiaries. For
instance, upon interacting with health workers, we under-
stood how telecom outages lead to more anomalous and in-
complete data than we had anticipated. We also understood
decreased value in utility of calling same beneficiary again
shortly after a previous call. These field visits forced us to re-
evaluate our assumptions, and led to better data processing
and modeling choices, as discussed in the earlier sections.
For instance, after these discussions, we incorporated new
anomaly detection mechanism in our data pipeline, and im-
pacted choice of horizon (1) in our RMAB model.

Fairness of AI models: Al algorithms and datasets can
reflect, reinforce, or reduce unfair biases. It is imperative
on Al designers to seek to avoid unfair impacts on peo-
ple, particularly on underserved and marginalized commu-
nities. 94% of our potential beneficiary population are below
WHO’s poverty index (World Bank 2020). Studying multi-
ple socio-demographic attributes was essential to evaluate
fairness of our approach. We worked closely with ethics ex-
perts within ARMMAN’s ethics team, and Google’s ethics
teams and extensively evaluated the fairness of our models.

End-to-end integration testing: We also ran into sev-
eral issues in our end-to-end integrated pipeline. On one oc-
casion, we saw poor results because the data schema had
evolved in the data storage pipeline at ARMMAN. Testing
of our application required our NGO partner to be equally
involved in the validation of SAHELLI’s outputs — as domain
experts, they are better equipped to identify counter-intuitive
behaviors. Our experiences uncovering issues in the end-to-
end pipeline led to improved communication practices, bet-
ter documentation and tighter test goals. Social good appli-
cations like SAHELT have real-world consequences for ben-
eficiaries in underserved communities, and it is critical that
there be a real partnership for testing and integration.

Conclusion

In this paper, we presented SAHELI, the first ever deploy-
ment of RMABs in the public health domain for allocation
of limited resources. SAHELI is built on an improved and
robust framework that both predicts RMAB parameters and
computes optimal policies for it, in contrast with most past
research that has only focused on computing optimal poli-
cies. It has been built with careful design choices inspired
by close interactions with all stakeholders. It incorporates
numerous lessons learned by embedding ourselves in the
real-world domain. SAHELTI has been deployed on cloud in-
frastructure with an emphasis on frugality, and has reached
out to 100K beneficiaries so far and aims to reach 1 mil-
lion by 2023. Furthermore, we also discuss the importance
of responsible Al practices in deploying Al systems at scale,
especially in the social domain. This work serves as an im-
portant case study for Al researchers and NGO’s alike to
take ML models from the lab and deploy them in the field.
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