The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

Detecting VoIP Data Streams: Approaches Using Hidden Representation Learning

Maya Kapoor', Michael Napolitano', Jonathan Quance'!, Thomas Moyer?, Siddharth Krishnan?

! Defense and Intelligence Sector, Parsons Corporation
2 University of North Carolina at Charlotte
maya.kapoor @parsons.com, michael.napolitano @ parsons.com, nic.quance @ parsons.com,
skrishnan @uncc.edu, tmoyer2 @uncc.edu

Abstract

The use of voice-over-IP technology has rapidly expanded
over the past several years, and has thus become a significant
portion of traffic in the real, complex network environment.
Deep packet inspection and middlebox technologies need to
analyze call flows in order to perform network management,
load-balancing, content monitoring, forensic analysis, and in-
telligence gathering. Because the session setup and manage-
ment data can be sent on different ports or out of sync with
VoIP call data over the Real-time Transport Protocol (RTP)
with low latency, inspection software may miss calls or parts
of calls. To solve this problem, we engineered two different
deep learning models based on hidden representation learn-
ing. MAPLE, a matrix-based encoder which transforms pack-
ets into an image representation, uses convolutional neural
networks to determine RTP packets from data flow. DATE
is a density-analysis based tensor encoder which transforms
packet data into a three-dimensional point cloud representa-
tion. We then perform density-based clustering over the point
clouds as latent representations of the data, and classify pack-
ets as RTP or non-RTP based on their statistical clustering
features. In this research, we show that these tools may allow
a data collection and analysis pipeline to begin detecting and
buffering RTP streams for later session association, solving
the initial drop problem. MAPLE achieves over ninety-nine
percent accuracy in RTP/non-RTP detection. The results of
our experiments show that both models can not only clas-
sify RTP versus non-RTP packet streams, but could extend to
other network traffic classification problems in real deploy-
ments of network analysis pipelines.

Introduction

Internet telephony, or Voice-over-IP (VoIP), allows for every
form of video and audio communication from one-on-one
calls to live streams on the web. It began as an alternative to
landline-based telephone and has continued to replace these
devices in individuals’ homes, enterprises, and government
facilities. In 2021, it was projected that 3 billion people use
VoIP technology as a regular part of their daily lives. In the
era of the COVID-19 pandemic, online/hybrid learning sys-
tems and the work from home movement encouraged the use
and market of online streaming platforms which use under-
lying VoIP technology to transport network traffic data. In
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2021-2022, Zoom reported over 300 million users (Team-
Stage 2022) Webex reported over 600 million, and Microsoft
Teams recorded 275 million participants (Curry 2022).

The widespread adaptation of VoIP technology has high-
lighted several cybersecurity vulnerabilities. It is simple to
spoof IP addresses or URIs with VoIP technology and pro-
duce robocalls used in phishing/spam or in denial of service
attacks (Edwards, Gonzales, and Sullivan 2020). Malware
can also be embedded into VoIP packet data, and is thus vul-
nerable to being the transport for backdoors, worms, trojans,
and viruses (Wu et al. 2021; Nagaraja and Shah 2019). Cy-
bersecurity specialists designing intrusion detection systems
need to be able to intercept and process VoIP streams in or-
der to detect these kinds of intrusions (Choti et al. 2021). In
the forensic environment, VoIP call analysis and reconstruc-
tion can provide critical evidence of criminal activity. Policy
or content rights violations or copyright infringement may
also be detected through the analysis of the reconstructed
calls (Kmet, Matousek, and Martin 2014; Sha, Manesh, and
El-atty 2016). This process and search capability is also use-
ful to intelligence operations to find mission critical data
from the enormous amount of traffic flowing in mission net-
works (Kao, Wang, and Tsai 2020).

A majority of mainstream VoIP protocols use the real-
time transport protocol (RTP) as their transport layer for
encapsulation. The application layer protocol, for example
the Session Initiation Protocol (SIP), Media Gateway Con-
trol Protocol (MGCP), or H.248, will establish the connec-
tion between endpoints and carry important session informa-
tion such as codec encoding and metadata for the call. The
application then relies on RTP to manage the dataflow be-
tween the connected systems. In the complex, real network
environment, the implementation of SIP and RTP data flow
is often sent de-coupled across physical signals and ports
which presents a challenge for cybersecurity specialists us-
ing middlebox technologies for packet inspection and call
reconstruction. Because the RTP data is encoded, it is nec-
essary to know the signaling information in order to retrieve
the codec information for proper decoding. Furthermore, the
metadata associated with signaling protocols such as the STP
URI identifier provides necessary enrichment and context
for the actual call. Lastly, RTP data may arrive at the mid-
dlebox before the signaling information which contains the
port numbers associated with the RTP stream for that partic-



ular call; thus, the middlebox must retrospectively identify
data packets which belong to particular signaling informa-
tion headers.

Deep packet inspection, or DPI, is the process of inspect-
ing packet payload contents in order to derive metadata or
classify the packet. Industry is currently dominated by filter-
ing and signature-matching solutions for deep packet inspec-
tion. Detecting the RTP stream itself this way without port
numbers from other types of traffic can be a difficult problem
because the RTP signature is weak. Furthermore, the rise of
encryption (SRTP) makes text-based signatures ineffective.
The problem of accurately classifying network traffic has
expanded beyond the scope of capability of text-based so-
lutions. Instead, we propose using higher dimensionality of
network traffic in order to advance RTP detection capability.

We propose two methods of embedding higher dimen-
sionality features of network traffic into processable input
for deep learning models. The deployable system MAPLE, a
matrix-based payload encoder, transforms network packets
into two-dimensional grayscale images. Doing this, the
system is capable of encoding hidden latent representations
from the structure of the byte payload. The MAPLE model
uses these embeddings as input to a two-dimensional
convolutional neural network (CNN) which then classifies
the packet as RTP or non-RTP. We also propose DATE, a
cluster density analysis-based tensor encoder model which
expands network packets into three-dimensional point
clouds, which we then extract features of regarding cluster
density in order to find commonalities and classify based on
data shape. Using MAPLE and DATE, specialists are capable
of detecting RTP streams without signaling information
from other types of data in the real field.

MAPLE provides the following contributions to the state-
of-the-art:

* An algorithm for encoding packet payloads to image-
based embeddings for latent representation,

* an empirical evaluation and comparison of CNN models
on RTP data,
DATE provides the following additional contributions:

e an algorithm for generating three-dimensional point
clouds from packet data, creating spatial latent represen-
tations as a novel method of packet analysis,

a novel application of density-based cluster analysis on
packet payloads,

Both tools as part of a DPI framework contribute the fol-
lowing:

deployable classification models for identifying RTP
streams from unknown data for real system application,
a descriptive end-to-end pipeline for packet analysis
using both header features as well as density-based
payload analysis.

Convolutional Neural Networks

Convolutional neural networks are designed to process pix-
elated data and discover visual patterns in the latent space.
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CNNSs organize their data into three dimensions, the spatial
dimensionality of the input (height and width) and the depth.

The CNN model is comprised of three types of layers fol-
lowing the input layer. A convolutional layer uses a kernel
filter in order to compute feature maps. The feature value of
location (i, 7) in the kth feature map of the ith layer zﬁ ik
is calculated by:

T
Zf,j,k = wfg xij + be (D)
where wfe and bgc are the weight vector and bias term of
the kth filter at the [th layer. The activation function, usually
sigmoid, tanh, or rectified lineur unit (ReLU), may then be

calculated as:
@ = al2) )
A pooling layer performs down-sampling along the spa-
tial dimensionality of the given input in order to reduce di-
mensions. For each feature map aé_’ j.k» booling can be calcu-
lated as follows:

3)

where R;; represents the local neighborhood around point
(4, 4). Common pooling functions include max pooling and
average pooling (Gu et al. 2018). Finally, fully-connected
layer takes input from the previous layer and connects them
to neurons of the output layer in order to perform high-
level reasoning or learn some global semantic informa-
tion (O’Shea and Nash 2015).

yﬁ,j,k = pOOl(a{rn,n,k)vv(man) S RLJ

LeNet

LeNet (LeCun et al. 1998) is a traditional CNN architec-
ture for image recognition. It consists of two sets of con-
volutional, activation, and pooling layers. There is a final
set of fully-connected, activation, and fully-connected layers
with a softmax normalization and classification at the output
layer.

ResNet

Deep neural networks suffer from accuracy degradation due
to how difficult it can become to map intermediary or resid-
ual layer outputs to inputs. A residual convolutional neu-
ral network (ResNet) is built up of blocks of stacked layers
formed from a series of convolutions and non-linear activa-
tion functions. Following the authors who first introduced
deep residual networks (He et al. 2015), we define a block
as:

y=F(z,{W;}) +a )

Where x and y are the input and output vectors, respec-
tively, and F'(z, {W;}) is the residual mapping with a set
of weights W;. If H(z) represents the ideal output mapping
that corresponds to the ground truth, residual networks hy-
pothesize that F'(z) + = H(x). The residual function
is pushed to zero such that the equation becomes an iden-
tity function H(z) = x. This identity mapping, or short-
cut layer, is what reduces the degradation problem and min-
imizes training error as the network becomes deeper (He
et al. 2015).



Point Clouds

Point clouds are a set of Cartesian coordinates (x,y, z)
which represent some points in a three-dimensional space. In
computer vision, point clouds may be used as a method for
mapping high-dimensional shapes into lower-dimensioned
space. We emulate the work of Quach et al (Quach, Valen-
zise, and Dufaux 2020) and treat the point clouds as static
representations analagous to manifolds in three dimensional
space. This captures a geometrical representation of packet
data which we use for cluster analysis.

Density-based Clustering

Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) uses three different point classifications
(see Figure 1): Core points represent centers of clusters and
points are labeled as such based on the number of neighbors
they have compared to their neighbors. Border points rep-
resent the edges and possess the least number of neighbors
but are still within the range of a core point. Noise or Out-
lier points are neither borders nor cores and do not belong
to a cluster. The DBSCAN algorithm visits each point and
classifies them as such in order to paint a picture of where
clusters of data are (Schubert et al. 2017).

Core Point

Border Point

Outlier

Figure 1: Illustration of types of points in DBSCAN.

Related Work

Costeux et al (Costeux, Guyard, and Bustos 2006) provide
early work on the fast detection of Skype and other RTP-
based telephony traffic. They focus their work on detecting
applications, but specify several fields from the RTP and en-
capsulation header which can be used to filter out non-RTP
traffic. We employ this technique in the end-to-end scenario
discussed in this paper.

Kmet et al (Kmet, Matousek, and Martin 2014) build on
the previous work by incorporating additional header fea-
tures for per-packet selection and add a flow-based solution
to reduce the over-selection problem. They were able to min-
imize mis-classification to nearly zero by buffering up to 10
packets of the RTP stream. The synchronization source num-
ber from the header is used along with timestamps to check
for proper increment and stream correlation. In this set of
experiments we focus on per-packet identification only.

CNNs have been used to classify network traffic in mul-
tiple problems for both per-packet and per-flow scenar-
ios. Lim et al (Lim et al. 2019) also transform packets
into grayscale images and label them by application (RDP,
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Skype, BitTorrent, and others). They use both a CNN and
ResNet architecture. When using payloads of 1024B and a
ResNet architecture, they achieved a 0.97 F1 score for accu-
rately classifying the packets as one of eight types of appli-
cations.

Deep Packet (Lotfollahi et al. 2020) is a well-cited
work in deep learning for traffic classification. They use a
stacked auto-encoder and CNN to perform traffic classifica-
tion into traffic types and application types as labeled in the
VPN/non-VPN UNB ISCX dataset (Gil et al. 2016). Their
solution achieves 94% accuracy in the traffic classification
task per traffic type, and 97% accuracy in the application
classification task. Incorporating the same dataset as well as
additional, more recent flows, we are able to achieve higher
accuracy in RTP detection with a less computationally com-
plex framework in MAPLE.

DATE is a novel contribution to the field of packet pro-
cessing as there is little published, previous work in generat-
ing 3D point cloud representations of packets. Raw packet
data from LiDAR (light detection and radiation) systems
have been shaped losslessly into 2D matrices and point
clouds (Tu et al. 2019). This work introduces the problem
of spatial correlation in packet data, namely that packets in
their raw state are not usually uniform or in a state which
may be processed using the spatial or geometric strategies
employed by image and computer vision algorithms. Thus,
data compression or pre-processing must be performed to
create the necessary uniformity.

Some early research (Patwari, Hero III, and Pachol-
ski 2005) describes expanding NetFlow data generated by
routers into 2D manifolds. We reference this as an intial
introduction of spatial expansion of traffic data in order to
perform dimensionality reduction, which is a key theoretical
linkage to our work.

MAPLE Methodology

It is expected that even in highly entropic or variable packet
data, there will be some level of standardization (i.e. method
names or status codes) or some commonalities such as user
names, device details, semantic contexts, and other con-
versation or implementation-specific indicators. In order to
delve deeper into these hidden layers and capture more la-
tent space representations in packets, we propose in MAPLE
to transform packets into grayscale images, hypothesizing
that RTP packets will appear similar to one another. We base
this assumption on previous work (Lim et al. 2019) which
has shown similarities in grayscale images rendered from
packet data in order to classify traffic by application and
protocol type which are detectable by CNNs. Figure 2 as-
serts the validity of this assumption by showing comparative
images rendered from packets in our combined dataset.

To shape RTP packet payloads into an image, we extract
the payloads and convert them from byte encoding to a nor-
malized decimal integer ¢ € [0,255] (Jo et al. 2020). For
image size, we chose a 28 x 28 representation, for a total
of 784 input features. In cases where the payload is shorter
than 784 bytes, we apply padding for input normalization,
or otherwise truncate the payload data.
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Figure 2: Grayscale images generated from packets in our
combined dataset used in the following experiments.
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Detection Model
Model 1: LeNet

We selected LeNet as a standard model in order to test the ef-
ficacy of convolutional neural networks to the RTP detection
problem. LeNet has a low complexity, so has higher poten-
tial for practical use in real-time, line-rate packet inspection
systems than deeper models which require more time. Fig-
ure 3 shows the set up of the model which we use as a base-
line. We designed two separate models where one employed
6 and 16 kernels per convolutional layer (A) and another
that used a 16 and 32 kernels (B). Each model contained
two fully-connected, dense layers of size 1024 with a binary
softmax classifier at the output layer.

L,z 3 AN
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Figure 3: The architecture of our LeNet models.
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Model 2: ResNet

For deployment purposes in real network environments, it
is imperative that artificial intelligence solutions are capable
of scaling to line-rate while still being able to perform the
classification task to the required level of accuracy. While
the definition of line-rate varies per network environment,
the identity mappings of ResNet do not introduce additional
complexity (He et al. 2015). Thus, we introduce residual
mapping as a potential solution to adding additional layers of
representation and thus improve classification through more
hidden features, while also minimizing overhead.
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Figure 4: The architecture of our ResNet models.

We developed four ResNet-based models for the MAPLE
system’s experiments. The first model (C) consists of three
convolutional layers with 32, 32, and 64 kernels of dimen-
sion 3 x 3, and three dense layers with output sizes of 64, 32,
and 2 respectively. The second model (D) follows a similar
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architecture except the values are halved. Convolutional lay-
ers had 16, 16, and 32 kernels per layer and the three dense
layers had output sizes of 32, 16, and 2. Model (E) corre-
sponds to the same number of kernels and output sizes as
(C), except it uses a kernel dimension of 7 x 7. For all mod-
els, the adam optimizer was used as well as ReLU activation
between all layers except the final, which used softmax for
normalization and classification. Categorical cross-entropy
was used as the loss function for training. We also employed
a dropout layer in order to reduce model overfitting.

Type Model | # Kernels | Kernel Size | FC Dim

LeNet | A 3x3 6, 16 1024, 2
B 3x3 16, 32 1024, 2

ResNet | C 3x3 32,32, 64 64,32,2
D 3x3 16, 16, 32 32,16,2
E 77 32,32, 64 64,32,2

Table 1: Configurations of each model used in the experi-
ments.

DATE Methodology

DATE describes the density-based clustering analysis which
is a novel contribution of this work; we also present DATE
in the context of a larger packet processing system for real
Al applications.

Point Cloud Creation

Payload data is extracted from the RTP packets and trun-
cated to 1024 bytes. In cases where the payload is shorter
than 1024, we add padding to normalize the input size. We
convert the byte values v to decimal values v/ € [0, 255].
A sliding window technique is then used to create three-
dimensional points in our feature space. We map each byte
to a value in the (x,y, z) coordinate. The coordinates are
mapped to a three-dimensional space to form point clouds
like Figure 5. We expect that packets with similar data will
thus result in similar point clouds.

120
100
80
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40
20

Figure 5: 3D point cloud made out of a Session Initiation
Protocol (SIP) packet.

Clustering Analysis

After the point clouds are created, we process them using the
DBSCAN algorithm in order to determine natural clusters
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Figure 6: K-nearest neighbors graph generated for packets
in the dataset using amin_samples =6.

that exist in RTP packets versus non-RTP packets. The min-
imum number of samples must at least be the number of di-
mensions, and as a heuristic, it is generally twice the dimen-
sions. All tests were performed with the DBSCAN configu-
ration of € =7 and min_samples = 7. Having a baseline
of 7 points to make a cluster within a 3D dimensional plane
would be forgiving enough to create more clusters in a lower
populated point cloud. An € value of 7 should also allow for
a greater number of clusters to be recognized (Rahmah and
Sitanggang 2016).

Tuning DBSCAN has the potential to uncover great per-
formance when it comes to creating recognizable clouds
within the 3D space. As stated earlier, two inputs to DB-
SCAN can be tuned: € and min_samples. It is important
to have these values set reasonably to see favorable results.
As arule of thumb, the minimum number of samples needed
to classify a cluster should be set to at least the number of
dimensions. If it is set below this threshold, then singular
points or two points that are close together would constitute
a cluster, which would not be an accurate way of determin-
ing where data is clumped (Mullin 2020). Similarly, € needs
to be set based on general rules. If the value of € chosen is
too small then more clusters will be created, and more data
points will be taken as noise. However, if set too large, then
a number of smaller clusters will be more likely to merge
into one large cluster. One way that a value of € can be es-
timated is by examining the input data and finding the aver-
age distance between each point and its k nearest neighbors.
Because each packet is highly variable, choosing an exact
value for € is a difficult problem. An estimation of € must
be taken from a conglomeration of the packet’s k-nearest
neighbors data where k is the value of min_samples cho-
sen. As shown in the figure above, the point of each line with
the greatest curvature is considered the ideal value for €. A
line has been illustrated in Figure 6 where an estimated av-
erage is made for every sample. The variation in an ideal ¢
value could be a major factor in why some packets are rec-
ognizable in their cloud state and others are not (Rahmah
and Sitanggang 2016).

We extract the following features as the feature vector for
classification from the DBSCAN results (i) clusterCount =
number of clusters; (ii) averageClusterSize = average clus-
ter size; (iii) standardDeviation = standard deviation; (iv)
noisePercent = percent of cloud containing noise; (v) total-

15523

Size = number of points in the cloud.

Packet Classification

For deep learning, we feed the extracted cluster features for-
ward into a two-layer multilayer perceptron unit (MLP) with
a final softmax layer for classification. We use binary cross
entropy as the loss function.

Experiments and Results

We ran several experiments to test each model configura-
tion for binary RTP/non-RTP detection as well as multi-
class protocol identification. Instead of using a single dataset
or network environment, we used several available public
datasets. Our sources include the CDX 2009 captures (Sang-
ster et al. 2009), the Skynet Tor dataset (Guarnieri 2012), the
Canadian Institute for Cybersecurity’s ISCX VPN/non-VPN
and Tor/non-Tor datasets (Gil et al. 2016), and repositories
from Wireshark, Cloudshark, and IEEE Dataport. Investiga-
tion has shown that using captures from only a single envi-
ronment can lead to bias in results (Silva et al. 2022). A ma-
chine learning algorithm might learn characteristics of the
network or environment such as IP addresses rather than ac-
tual protocol features, which can hurt generalizability of the
model. Real network environments, particularly at scale, are
more diverse. To increase scope, we merged PCAPs from
these experiments and created our own repository of PCAPs
containing 26 different protocols (see Table 2 for break-
down). This dataset is publicly available .

In the binary confusion matrix, true positive (TP) indi-
cates correct classification of data as RTP. True negative
(TN) is correct classification of data as non-RTP. false neg-
ative (FN) implies incorrect identification of traffic as non-
RTP, and false positive (FP) is the incorrect classification of
data as RTP. We use traditional measurements of precision,
recall, and F1-score for model evaluation.

Experiment 1: RTP Detection

For the binary RTP/non-RTP classification for both mod-
els, we re-labeled all non-RTP and non-SRTP traffic as non-
RTP, and merged SRTP and RTP traffic into an RTP label.
For testing the different configurations of the MAPLE model,
traffic was first processed and transformed into a matrix im-
age, and then used as input for each of the models. We per-
formed random under-sampling to avoid bias in the dataset,
and then split the data into 60%/40% for training and testing.
We ran tests with training for 3 epochs for each CNN model.
As we plan to deploy this technology in a real RTP detection
and deep packet inspection system, we also measured clas-
sification throughput in order to determine how much traffic
the MAPLE system would be able to process given the de-
tection model configuration. Results are provided in Table 3
and 4.

Generally, the ResNet model performed exceedingly well
at the RTP detection task, exceeding ninety-nine percent ac-
curacy across all the configurations. Decreasing the num-
ber of kernels may have slightly impacted accuracy, but im-
proved overall throughput significantly and lessens memory

"https://github.com/mayakapoor/protocol-dataset



Protocol Number of Packets
Bittorrent 20648
DHCP 1444
DNS 10563
FTP 10015
FTP_DATA 4000
GPRS 9981
GQUIC 1740
H.225 1300
HTTP 21298
IMAP 3318
LDAP 1354
MGCP 1568
NBNS 1216
NTP 1940
POP3 1675
PPTP 1288
RTCP 1626
RTP 15552
SIP 1112
SMB 3554
SMTP 5981
SSDP 8504
SSH 3039
Telnet 1888
TLS 4000
XMPP 1553

Table 2: Breakdown of dataset per protocol.

Model P R F1

A
Non-RTP | 0.96 | 0.99 | 0.98
RTP | 099 | 0.96 | 0.98

B
Non-RTP | 0.97 | 0.99 | 0.98
RTP | 0.99 | 0.97 | 0.98

C
Non-RTP | 1.00 | 0.99 | 1.00
RTP | 099 | 1.00 | 1.00

D
Non-RTP | 1.00 | 1.00 | 1.00
RTP | 1.00 | 1.00 | 1.00

E
Non-RTP | 1.00 | 1.00 | 1.00
RTP | 1.00 | 1.00 | 1.00

Table 3: Classification results of RTP vs non-RTP detection
for all MAPLE models.

footprint. The LeNet models performed marginally worse in
terms of accuracy, but the smaller of the two models had
the highest throughput of any of the tested configurations.
In a real network environment, it may be worth considera-
tion to sacrifice some accuracy in order to be able to monitor
more traffic or more effectively load-balance the received in-
put depending on hardware capability. Thus, the ideal model
configuration is often environment-dependent and inspired
us to incorporate configuration capability in MAPLE so that
the deployed system may best suit the environment. Another
configuration choice which may have significant impact on
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Model | Accuracy | Mb/s
A | 0975348 | 125
B | 0978258 | 9.28
C | 0996934 | 7.07
D | 0.995908 | 10.41
E | 0.996847 5.3

Table 4: Throughput results of RTP vs non-RTP detection
for all MAPLE models.

model accuracy is the number of epochs trained. Real sys-
tems place an emphasis on minimizing down time of a sys-
tem, but in actual deployment many models may be trained
offline and then embedded. In systems where training time is
not a factor of performance, we can thus increase the number
of epochs with little real impact. In order to test the efficacy
of such a design choice, we re-ran MAPLE models A and
C with 10 epochs to see if performance improved. Results
in Tables 5 and 6 show that ResNet appears to learn faster
than LeNet, as it gained very little improvement with ad-
ditional training time. Interestingly, with additional training
time LeNet approaches similar accuracy to ResNet but still
maintains higher throughput.

Model p R F1

A
Non-RTP | 0.99 | 0.99 | 0.99
RTP | 099 | 0.99 | 0.99

C
Non-RTP | 1.00 | 1.00 | 1.00
RTP | 1.00 | 1.00 | 1.00

Table 5: Classification results of RTP vs non-RTP detection
for MAPLE models A and C with additional training time.

Model | Accuracy | Mb/s
A | 0.990499 | 14.99
C | 0.998172 | 7.38

Table 6: Throughput results of RTP vs non-RTP detection
for MAPLE models A and C with additional training time.

Class P R F1

1 Epoch
Non-RTP | 0.85 | 0.84 | 0.84
RTP | 0.83 | 0.85 | 0.84

10 Epochs
Non-RTP | 0.94 | 0.81 | 0.87
RTP | 0.83 | 0.95 | 0.89

20 Epochs
Non-RTP | 096 | 0.79 | 0.87
RTP | 0.82 | 0.96 | 0.89

Table 7: Classification results of RTP vs non-RTP detection
for the DATE model.

We use the same data and experimental setup in order to
test the performance of DATE. First, packets are processed



into three-dimensional point clouds, and run through DB-
SCAN in order to glean statistical features. The features are
used as input into the multi-layer perceptron for classifica-
tion. The results are provided in Table 7. In order to bench-
mark the system for real deployment, we recorded the time
classification took. While this is heavily system dependent
and showed some variance across parameter tuning or model
configuration, the average classification time for a single
packet by DATE was 0.15823 seconds. All tests were per-
formed on a single CPU of a 1.6 GHz dual-core Intel i5 pro-
cessor with 16 GB DDR3 RAM. In future work, we propose
implementing multi-threading and multi-core processing as
potential optimizations. We observed that point cloud gener-
ation was a pain point for the system in terms of cycles, and
propose offloading such repetitive calculations to a special-
ized hardware such as FPGA (Song and Lockwood 2005)
when available in the deployed system.

Experiment 2: H.225 Detection

A similar detection problem to the RTP situation exists for
H.225 signaling protocol, which handles the registration and
call setup for certain VoIP architectures using the H.323 pro-
tocol suite. Like RTP, the H.225 data may arrive to an end-
point first before the H.323 data, and also suffers from a
weak signature. Thus, we additionally tested DATE’s ability
to detect H.225 traffic from non-H.225 traffic. Our setup of
the dataset labels and the DBSCAN configuration was simi-
lar to the RTP test (results in Table 8).

Class P R F1

1 Epoch
Non-H.225 | 0.98 | 0.83 | 0.90
H.225 | 0.85 | 0.99 | 0.92

10 Epochs
Non-H.225 | 091 | 0.87 | 0.89
H.225 | 0.88 | 0.92 | 0.90

20 Epochs
Non-H.225 | 0.98 | 0.83 | 0.90
H.225 | 0.85 | 0.99 | 0.92

Table 8: Classification results of H.225 vs non-H.225 detec-
tion for the DATE model.

Experiment 3: Header-based Filtering

Middleware boxes which perform packet capture on sig-
nals are commercially available. Processing the entire traffic
stream with deep learning techniques will overwhelm NICs
in a real system and cause buffer overflow as data is waiting
to be processed. For this reason, we add an initial culling fil-
ter on the traffic which may be optimally performed in data
plane processing. The following checks are performed:

* Ethertype: 0x800 or 0x86dd (IPv4/IPv6)
IP Next Protocol Field: 17 (UDP)

UDP Header Length: >12

UDP Source/Dest Ports: >1023

RTP Version Field: 2
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* RTP Payload Type: t € {0-34, 96-127, 192, 193, 200-
204}

e RTP Layer Length: 12+ 4-CCgrrp+Prrp-PLengrp+
Xgrp - XLengrp - X > Lenypp — 8

Prefiltering is effective for load-balancing for systems at
scale (Baboescu and Varghese 2001). Another filter we im-
plement is locality-sensitive hashing in order to approxi-
mate the Jaccard similarity of encapsulation header features
among packets. From the IP layer of packets, we extract the
type of service field, total length field, IP flags, and next
protocol field. From the transport layer, we add the source
port and destination port. We treat all these values as to-
kens in the set .S and approximate the Jaccard similarity of
packets by calculating their MinHash (Broder 2000). Our
implementation uses LSHForest (Bawa, Condie, and Gane-
san 2005) for similarity search. Overall, Table 9 shows the
system was 100% accurate in classifying RTP traffic, and
over 99% successful in accurately classifying H.225 pack-
ets. DATE as part of a multi-embedding improved overall
classification accuracy for H.225, as well.

Class P R F1

DATE & LSH
Non-H.225 | 1.00 | 0.99 | 1.00
H.225 | 0.99 | 1.00 | 1.00
Non-RTP | 1.00 | 1.00 | 1.00
RTP | 1.00 | 1.00 | 1.00

LSH
Non-H.225 | 1.00 | 0.97 | 0.99
H.225 | 097 | 1.00 | 0.99
Non-RTP | 1.00 | 1.00 | 1.00
RTP | 1.00 | 1.00 | 1.00

Table 9: Classification results for the end-to-end pipeline for
each of the configurable payload embedding models.

Comparison of Models

We propose both MAPLE and DATE as potential methods
for generating hidden, latent-space representations of traf-
fic as their capabilities extend to different problem areas.
MAPLE works well on input data such as a payload which
may be distinct one data sample from another, but can be
divided and matricized into units for comparison (i.e. turned
into a grayscale image of uniform dimension). On the other
hand, DATE has the potential to expand to include other
non-network features and represent more heterogenous data.
For example, input sensor data from IoT devices or light
detection and ranging (LiDAR) equipment have used DB-
SCAN for data processing and normalization (Wang et al.
2019); it could be combined with cloud/network data inputs
as an additional embedding model for classification prob-
lems. While for the RTP problem MAPLE provides high ac-
curacy with more efficiency than DATE, there is a trade-off
within the embedding space as DATE may be able to repre-
sent data of higher complexity in other problems for future
work.



End-to-End Deployment

As real deployable systems, MAPLE and DATE are suited
well to fit into any middlebox technology or processing flow.
In order to demonstrate its capability, we provide an example
end-to-end deployment using available technologies along
with the models for VoIP call reconstruction and analysis
for forensic, intelligence, law enforcement, and cybersecu-
rity applications.

Tool i Middleware Box

C &

| - Transf ! EE |
SOTSIENAS 1 using MAPLEDATE |

i - Detect signaling

i protweol

Packet Caprun: = ﬁ ‘

Detect RTP data packets |

Network | 10 PCAPs Network

Call
Reconstructor |

: : - Re-armange data stream | | - Display video/audio i
| - Apply | daa H

Figure 7: Our proposed data processing pipeline for analyz-
ing VoIP calls.

Packet Capture Tool

In order for our middle box technology to process the incom-
ing VoIP streams, a packet capture tool is necessary to pro-
cess signals. A detailed capture system is outside the scope
of this work, but commercial packet sniffers are available.
As an open source example, Wireshark may be used to cap-
ture traffic and write it to a file storage system as packet
captures (PCAP). In this scenario, we assume that there are
more traffic types than VoIP in the network, for example web
traffic like HTTP/HTTPS and DNS, or email data like POP3
and SMTP. We also assume that the analysts who are con-
trolling our end-to-end system are interested in more data
types than just VoIP, and are thus configured to capture more
than just that.

Middleware Box

The middleware box is the core component which performs
RTP detection. In the scenario, the middleware box may per-
form additional filtering and searching on header features
as we previously mentioned in Experiment 3. Once traffic
has been reasonably thinned, the data selected will be fur-
ther classified as RTP or non-RTP by the MAPLE or DATE
model. We assume in this scenario that the model has been
pre-trained on RTP data. The system encodes packets into
a matrix image representation as described in the methods
section. Packet images are then processed through the CNN
or density-based analysis algorithm and classified as RTP or
non-RTP.

Packet Analyzer

Once data is captured, it must be directed from multiple sig-
nals to the same packet analysis software. This is done so
that signaling information can be matched to the RTP pack-
ets. In the scenario, the packet analyzer recognizes the SIP
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handshake process and establishes the clients and their com-
munication channels. From the signaling information, the
corresponding dynamic ports being used for RTP transport
can be parsed and paired with incoming RTP traffic for cor-
relation (Sha, Manesh, and El-atty 2016).

Call Reconstructor

Once the session information is connected with the RTP
flow, the codec information found in the RTP payload type
field can be associated with the call for further decoding.
This also requires the re-ordering of RTP packets as they
may be sent out-of-order over UDP. RTP packets have a 16-
bit sequence number which may be used for re-ordering. Sha
et al (Sha, Manesh, and El-atty 2016) describe the call recon-
struction process in further detail.

Media Analyzer

Once the call is fully reconstructed, the codec may be ap-
plied for video and/or audio playback using any media
player which supports the format. Further software analy-
sis of the VoIP data will be implementation specific. Exam-
ple applications would include a signature-matching compo-
nent to detect embedded malware (Rehman, Hazarika, and
Chetia 2011). A software could be implemented to search
VoIP calls for content of interest for policy checking, in-
telligence operations, or forensic analysis (Kao, Wang, and
Tsai 2020). Call quality could also be monitored for net-
work administration, or statistics on call data flow recorded
for load balancing and network health monitoring (Assem
et al. 2013).

Conclusion

We present MAPLE and DATE, deployable representation
learning-based solutions to RTP detection in a middlebox
software pipeline. For deep packet inspection, these sys-
tems are able to create latent representations of payload data
which uniquely identify traffic of different types at a higher
dimension than is considered by current signature-matching
or filter-based solutions used in industry. Our implemen-
tations for this initial deployment solve the RTP detection
problem with high accuracy using a minimal framework
ideal for line-rate. We plan to expand this emerging tech-
nology to deployed VoIP processing solutions as an applied
Al in the real network environment.
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