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Abstract

Artificial intelligence (AI)-empowered industrial fault diag-
nostics is important in ensuring the safe operation of indus-
trial applications. Since complex industrial systems often in-
volve multiple industrial plants (possibly belonging to differ-
ent companies or subsidiaries) with sensitive data collected
and stored in a distributed manner, collaborative fault diag-
nostic model training often needs to leverage federated learn-
ing (FL). As the scale of the industrial fault diagnostic models
are often large and communication channels in such system-
s are often not exclusively used for FL model training, ex-
isting deployed FL model training frameworks cannot train
such models efficiently across multiple institutions. In this
paper, we report our experience developing and deploying
the Federated Opportunistic Block Dropout (FEDOBD) ap-
proach for industrial fault diagnostic model training. By de-
composing large-scale models into semantic blocks and en-
abling FL participants to opportunistically upload selected
important blocks in a quantized manner, it significantly re-
duces the communication overhead while maintaining model
performance. Since its deployment in ENN Group in Febru-
ary 2022, FEDOBD has served two coal chemical plants
across two cities in China to build industrial fault prediction
models. It helped the company reduce the training commu-
nication overhead by over 70% compared to its previous AI
Engine, while maintaining model performance at over 85%
test F1 score. To our knowledge, it is the first successfully
deployed dropout-based FL approach.

Introduction
In modern industries, machinery is becoming increasingly
sophisticated and facing highly demanding operational con-
ditions. For example, rotating machinery (e.g., turbines, fans
and pumps) are key components that are widely used in pow-
er generation and chemical plants. Slight performance dete-
rioration, if not addressed early, could lead to sudden break-
downs or even serious accidents involving significant finan-
cial losses and/or human casualty. As industries modernize
towards the vision of Industry 4.0 (Ghobakhloo 2020), a
wide variety of sensing devices are starting to be deployed
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in industrial settings to help monitor important equipment.
The data collected by such devices make it possible to train
intelligent fault diagnostic models for system maintenance
decision support.

Artificial intelligence (AI) technologies have increasing-
ly been applied in industrial fault diagnostic model training.
The performance of such machine learning-based solutions
depends on having access to large amounts of high quali-
ty data. However, data from a single factory might not be
adequate to train such models effectively. As data are often
collected and owned by different organizations in a given
field, collaborative model training (Warnat-Herresthal et al.
2021) has been recognized as a useful technique to improve
the quality of AI solutions in such situations.

As societies become increasingly aware of data priva-
cy protection issues (e.g., following the introduction of da-
ta privacy regulations such as the General Data Protec-
tion Regulation (GDPR) (GDPR 2018)), federated learning
(FL) (Yang et al. 2019; Kairouz, McMahan et al. 2021) - a
privacy-preserving collaborative machine learning paradigm
- has emerged. It has been rapidly gaining traction and has
been applied in wide-ranging applications including safety
management (Liu et al. 2020), banking (Long et al. 2020)
and smart healthcare (Liu et al. 2022b).

In recent years, industrial fault detection applications
powered by FL are starting to emerge (Ma, Wen, and Wen
2021; Zhang et al. 2021; Geng et al. 2022; Wang et al.
2022). These applications generally build on top of the pop-
ular Federated Averaging (FedAvg) FL model aggregation
approach (McMahan et al. 2017). Although they are useful
for supporting privacy-preserving collaborative model train-
ing, they are not optimized for training large-scale deep neu-
ral network (DNN) models which are commonly required to
build effective industrial fault diagnostic models (Liu et al.
2022a). This is exacerbated by constraints on bandwidth for
FL model training imposed by industries as the communica-
tion channel is often shared by multiple applications, some
of which are safety critical.

To address the aforementioned challenges facing FL-
based industrial fault diagnostics solutions, we propose the
Federated Opportunistic Block Dropout (FEDOBD) ap-
proach (Chen et al. 2022). Its advantages are as follows:

1. Training Large-scale DNNs Efficiently: FEDOBD di-
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vides a DNN into semantic blocks. Based on evaluating
the importance of the blocks (instead of determining indi-
vidual parameter importance like in the cases of (Bouaci-
da et al. 2021; Gunesli et al. 2021)), it opportunistically
discards unimportant blocks in order to drastically reduce
the size of the resulting model. Combined with parameter
quantization, FEDOBD significantly reduces the com-
munication overhead incurred during FL model training.

2. Preserving Model Performance: As blocks that are
most important to the performance of the FL model are
retained, FEDOBD can preserve model performance.

3. Supporting Incentive Distribution: By storing the his-
torical records of the important blocks contributed to FL
model training by each data owner, FEDOBD can pro-
vide useful information for contribution-based incentive
allocation (Cong et al. 2020; Yu et al. 2020).

Compared to existing efficient FL model training frame-
works, FEDOBD offers new capabilities which can support
more sophisticated use cases.

The FEDOBD approach has been deployed through a
collaboration between ENN Group1 and the Trustworthy
Federated Ubiquitous Learning (TrustFUL) Lab2, Nanyang
Technological University (NTU), Singapore since February
2022. It is used to replace the FedAvg model aggregation
approach in the ENN FL model training platform to sup-
port FL model training under server-based horizontal FL set-
tings (Yang et al. 2019). In such scenarios, FL participants’
datasets have large overlaps in the feature space, but little
overlap in the sample space. It has helped ENN Group train
intelligent industrial fault diagnostic models involving two
factories from two cities in China. Throughout the deploy-
ment period, FEDOBD has helped ENN Group reduce the
training communication overhead by over 70% compared to
its previous implementation, while maintaining model per-
formance at over 85% test F1 score. To the best of our
knowledge, it is the first dropout-based federated learning
method successfully deployed in industrial settings.

With the help of FEDOBD, the ENN Group federated
learning subsystem has avoided the problems of long de-
lays of training/updating industrial fault prediction models
through FL, while maintaining comparable model perfor-
mance. This capability allows it to provide more rapid up-
date of such models to its enterprise customers and sub-
sidiaries, thereby improving safe operation.

Application Description
Founded in 1989, ENN Group’s business encompasses a di-
verse range of segments within the natural gas and green
energy industry including distribution, trade, transportation
and storage, production, and intelligent engineering, with
the aim of creating modern energy systems that improve
people’s quality of life. Leveraging its diverse industrial e-
cosystem, ENN has been building up an industrial digital in-
telligence platform in order to empower the stakeholders in-
volved (including more than 25 million household customer-

1https://www.enn.cn/
2https://trustful.federated-learning.org/

Figure 1: An overview of the ENN intelligent industrial fault
diagnostics platform.

s and over 200,000 enterprise customers in 20 provinces
across China). In this section, we provide detailed descrip-
tions of the ENN FL model training platform, which is part
of its industrial digital intelligence platform.

The overall flow of this platform is shown in Figure 1. En-
terprise customers under the ENN Group (e.g., coal chem-
ical plants) deploy sensing devices within their factories to
monitor equipment operation and collect data. These data
are stored locally within the data silo. Standard data prepro-
cessing (e.g., Fourier transform, wavelet transform) is car-
ried out locally to prepare the data for analysis and model
training. Nevertheless, as equipment faults do not occur fre-
quently, such data tend to be sparse and biased within each
data silo. The ENN Group offers its enterprise customers
and subsidiaries from the same industry sectors the option to
join FL to collaboratively train fault diagnostic models. Our
focus is on its FL model training subsystem with a client-
server architecture. It consists of two components (Figure
2): 1) the ENN FL Server, and 2) the ENN FL Client.

ENN FL Server
The ENN FL Server hosts the FL model aggregation server
and a set of utility modules supporting the operations which
system administrators need to perform. It allows the system
administrators to select from a range of FL model training
and aggregation approaches (e.g., FedAvg (McMahan et al.
2017), FEDOBD) incorporated into the system, select the
base model to be trained via FL, and configure the FL model
training process. These operations can be carried out through
a dedicated set of user interfaces. Once the configuration
steps are completed, the information is sent to the FL mod-
el aggregation server for execution via a local area network
(LAN). As the LAN is a dedicated communication channel
for FL related operations, it does not place any restrictions
on bandwidth usage.

The FL model aggregation server is implemented follow-
ing a modular design to enable it to host alternative FL
model aggregation approaches. It takes local model updates

15486



Figure 2: An overview of the ENN FL model training platform - Client-Server FL Subsystem.

Figure 3: An example user interface of the ENN Client-
Server FL Subsystem (configuring FL training).

from FL clients as inputs, and produces a global FL mod-
el as the output, while making decisions on whether addi-
tional rounds of FL training are required. Communication
with the clients is managed by the Communication Manage-
ment module, which can accommodate special requirements
(e.g., the need for compressing the transmission via stochas-
tic quantization (Alistarh et al. 2017)). This is because com-
munications between the ENN FL Server and the ENN FL
Clients (which are deployed in different factories) take place
over the ENN wide area network (WAN), which is not dedi-
cated to just FL model training. Transmissions for other op-
erational and business purposes also go through the ENN
WAN. Thus, this channel places a limit of up to 2 MB/sec
to be used for FL model training purposes, which severely
restricts the speed of training large-scale models through FL.

Figure 3 to Figure 5 illustrate the user interfaces (UIs)
through which the ENN FL model training platform visual-
izes the FL training process for the system administrators.
As it is designed for Chinese speaking users, we have an-
notated regions in the UIs to highlight key design features.
Figure 3 shows the screen for the administrator to configure
the FL training process for a particular model by specifying
important parameters (e.g., mode of federated learning, the
selected model training and aggregation approach). Once FL
training commences, the training activities are visualized in
Figure 4 for the administrators to monitor. In the example
in Figure 4, one FL server and two FL clients are involved.
Activities performed by the server and each client are listed

Figure 4: An example user interface of the ENN Client-
Server FL Subsystem (FL training process visualization).

Figure 5: An example user interface of the ENN Client-
Server FL Subsystem (model performance summary).

in the corresponding box, making it easy to scroll back and
forth for an overview, and drill down into each record for
more detailed information. The overall training progress is
illustrated in the FL training flowchat on the left hand side
panel. After training is concluded, a summary of the perfor-
mance of the resulting FL model as shown in Figure 5 is
presented to the administrators. Detailed FL model training
activities and performance evaluation results are stored by
the platform to support review and auditing in the future.
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ENN FL Client
Typically, each ENN FL Client is deployed in an industri-
al facility (e.g., factory, power plant, coal chemical plant).
In the application of our focus, industrial fault diagnostics,
each facility deploys a set of sensors to monitor the industrial
equipment and collect the necessary data. The Communica-
tion & Storage Management module aggregates the data and
stores them into the Local Database Server in the correct for-
mat. On top of this infrastructure, the ENN Industrial Fault
Diagnostic System carries out data and signal processing,
and performs fault prediction using a DNN-based model. In
order to leverage industrial fault data collected by differen-
t facilities, this DNN-based fault prediction model is to be
trained through FL.

Each ENN FL Client is incorporated with an FL Client A-
gent module. Similar to the ENN FL Server, it is also imple-
mented following the modular design approach to enable it
to host alternative FL model training and updating approach-
es. The dedicated Communication Management module is
also included to accommodate special transmission require-
ments and to comply with the 2 MB/sec transmission band-
width limit placed on the ENN WAN for FL model training.

Use of AI Technology
In this section, we describe the AI Engine of the ENN FL
model training subsystem, which is based on FEDOBD. The
workflow of the AI Engine is illustrated in Figure 6. FE-
DOBD (Chen et al. 2022) enables the FL server and each FL
client to determine the most important subset of parameters
of a large-scale deep neural network (DNN) model (which
are organized into semantic blocks) to be sent back and forth
during FL model training, thereby reducing the communica-
tion overhead incurred. Currently, it only supports horizon-
tal federated learning (HFL) in which data owners have large
overlaps in the feature space, but little overlap in the sample
space (Yang et al. 2019).

In a client-server HFL system, there are in general n
clients who can participate in FL model training. Each clien-
t i has a local dataset Di =

{(
xj ,yj

)}Mi

j=1
. xj denotes

the j-th local training sample. yj denotes the correspond-
ing ground truth label of xj . Mi denotes the total number of
data samples inDi. The aim of HFL is to solve the following
optimization problem under the aforementioned setting:

min
w∈W

n∑
i=1

Mi

M
Li(w;Di). (1)

Here, W denotes the parameter space determined by a given
neural network. M := Σn

i=1Mi denotes the total number of
samples. Li(w;Di) := 1

Mi

∑Mi

j=1 `(w;xj ,yj) denotes the
local loss of a given client i.

Opportunistic Block Dropout (OBD)
A DNN can be divided into semantic blocks consisting of
consecutive layers. Under the FEDOBD FL model training
approach, important semantic blocks in a DNN are identi-
fied at the end of any given round of FL client local train-
ing or FL server aggregation. Once this is done, semantic

Algorithm 1: OBD
Input : global model wr−1, local model wr,i in client

i, the set of identified block structures B,
dropout rate λ ∈ [0, 1].

Output: retained blocks.
1 important blocks← MaxHeap();
2 foreach b ∈ B do
3 important blocks[MBD(br−1, br,i)]← br,i;
4 end
5 revised model size← 0;
6 retained blocks← List();
7 while important blocks do
8 br,i ← important blocks.pop();
9 new size← revised model size + |vector(br,i)|;

10 if new size > (1− λ)|vector(wr,i)| then
11 continue;
12 end
13 revised model size← new size;
14 retained blocks.append(br,i);
15 end
16 return retained blocks;

blocks are selected in descending order of their importance
until a dropout rate pre-specified by the system administra-
tors has been reached. Then, only these selected blocks of
the DNN, instead of the entire model, are transmitted to fa-
cilitate FL model training. This design of FEDOBD is d-
ifferent from existing dropout-based FL training approach-
es including FedDropoutAvg approach (Gunesli et al. 2021)
and Adaptive Federated Dropout (AFD) approach (Bouaci-
da et al. 2021). Both of which randomly select individual
model parameters to be dropped out without organizing the
model into semantic blocks first, making the resulting model
difficult to compress during transmission.

FEDOBD can support popular NN architectures when
decomposing the models. Layer sequences such as
〈Convolution, Pooling, Normalization, Activation〉 are com-
monly found in convolutional neural networks (CNNs). En-
coder layers are commonly found in Transformer based
models. Other NNs can include basic building blocks which
can be used to divide a given model into blocks. Other layer-
s which cannot be grouped into commonly found functional
block patterns can be treated as singleton blocks. FEDOBD
uses the Mean Block Difference (MBD) metric to measure
block importance. It can be computed as follows:

MBD(br−1, br,i) :=
‖vector(br−1)− vector(br,i)‖2
NumberOfParameters(br−1)

.

(2)
br−1 denotes the blocks of a previous model (e.g., the re-
ceived global FL model). br,i denotes the corresponding
blocks in an updated model (e.g., the local model trained by
a client i in the current round). vector is an operator that
concatenates parameters from different layers of a block (if
there are multiple layers involved) into a single vector. The
larger the MBD value of a block, the more important the
newer version of this block is.
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Figure 6: The workflow of the FEDOBD approach.

The Opportunistic Block Dropout (OBD) algorithm of
FEDOBD is shown in Algorithm 1. Before a model is sent
out either by the FL server or client, each block is assigned
an importance score. To achieve this goal, the sending entity
stores wr−1 which can be used to compare with the current
model wr,i in a block by block fashion by following Eq. (2).

Once the MBD values for all the blocks have been com-
puted, FEDOBD determines which blocks to retain and
which to be dropped (Lines 5-15) by ranking in descend-
ing order of their MBD values (with the MaxHeap data
structure), and putting the blocks into the retained blocks
list one by one until the size of the revised model reach-
es (1 − λ)|vector(wr,i)|. λ ∈ [0, 1] is the dropout rate
(where 1 indicates the entire model is dropped out, and 0 in-
dicates no dropout). The retained blocks are then quantized
in preparation for transmission. Each retained block is stored
in the form of the differences between the corresponding pa-
rameter values in block br and block br−1.

Overall Workflow of FEDOBD
The overall workflow of the FEDOBD approach is illustrat-
ed in Figure 6.
1. Model Distribution: If it is the first time the initialized

global FL model is distributed to the FL clients, the entire
model is sent out by the FL server. Otherwise, the server
performs OBD to determine the list of important blocks
of the model to be retained based on the given dropout
rate, and only sends out the quantized version of these
retained blocks to the clients.

2. Reconstruction of the Global Model: When the re-
tained blocks from the server in round r is received by a
client, it combines them with unchanged (i.e., not trans-
mitted) blocks from the global model wr−1 which it has
received in the previous round to reconstruct wr. Local
training is then carried out based on this reconstructed
global model.

3. 2-Stage Local Model Training: FEDOBD is imple-
mented as a two-stage training process. In the first stage,
small local epochs are used. OBD selects importan-
t blocks to be transmitted, and these blocks are further
compressed via quantization. In this way, FEDOBD en-
courages frequent aggregation to prevent overfitting in a
communication efficient manner. As the global FL model
approaches convergence, FEDOBD transits into the sec-
ond stage in which FL model training is switched to the
training-aggregation mode. It consists of a single round
of training with more local epochs with FL model aggre-
gation being executed at the end of each epoch. In this
way, the global FL model is fine-tuned through more fre-
quent aggregations in order to improve its performance.

4. Model Aggregation: When the retained blocks from a
client i in round r is received, the FL server combines
them with unchanged (i.e., not transmitted) blocks from
the previous global model wr−1 to reconstruct wr,i. The
reconstructed local model updates for all clients are then
aggregated into a new global FL model wr following Fe-
dAvg (McMahan et al. 2017).
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Figure 7: Deployment of FEDOBD into the ENN Client-Server FL Subsystem.

Steps 1 to 4 are repeated until model convergence. For more
details about FEDOBD, please refer to (Chen et al. 2022).

Application Development and Deployment
The FEDOBD framework has been developed based on the
PyTorch (Paszke et al. 2017) framework by teams from
the Trustworthy Federated Ubiquitous Learning (TrustFUL)
Lab, Nanyang Technological University (NTU), Singapore,
and the Digital Research Institute, ENN Group, Beijing,
China. Before deploying the AI Engine, we have evaluated it
against the classic FedAvg and four state-of-the-art efficient
FL model training approaches. They are:

1. FedAvg (McMahan et al. 2017): It is a classic FL
approach which does not involve any compression or
dropout operation.

2. SignSGD (Bernstein et al. 2018): It is a distributed gradi-
ent compression approach which only requires the signs
of the gradients of client model updates to be sent to the
FL server. The server aggregates the gradients by major-
ity voting.

3. FedPAQ (Reisizadeh et al. 2020): It is a stochastic
quantization-based FL approach designed to reduce com-
munication overhead.

4. Adaptive Federated Dropout (AFD) (Bouacida et al.
2021): It is an FL approach that optimizes server-client
communications and computation costs jointly. Each
client trains a selected subset of the global model pa-
rameters. We adopt the Single-Model Adaptive Federat-
ed Dropout (SMAFD) variant for comparison.

5. FedDropoutAvg (Gunesli et al. 2021): It is an FL ap-
proach that randomly drops out a subset of model param-
eters as well as randomly drops out some clients before
performing FedAvg.

To compare the efficiency and performance of these ap-
proaches under different FL settings, we designed FL sce-
narios involving 10 clients to perform image classification
on the CIFAR-10 datasets (Krizhevsky 2009) and sentiment
classification on the IMDB dataset (Maas et al. 2011). The
original test data are split uniformly to form separate val-
idation and test datasets. The local training and validation
dataset of each client are sampled following an i.i.d. setting.

The FL server holds the test dataset. For the image classifica-
tion tasks under CIFAR-10, we use FL to train a DenseNet-
40 (Huang et al. 2017) base model which contains around
190,000 model parameters. For the sentiment classification
task under IMDB, we use FL to train a Transformer based
classification model consisting of 2 encoder layers followed
by a linear layer with around 17 million model parameters.

The results are summarized in Table 1. Communication
overhead is computed as the product between the average
fraction of model size (in MBs) transmitted per FL training
step and the total number of FL training steps required. It
can be observed that FEDOBD significantly outperforms al-
l existing approaches in terms of reducing communication
overhead. In terms of test accuracy of the resulting model,
FEDOBD significantly outperforms existing compression or
dropout-based efficient FL training approaches, achieving
comparable performance to FedAvg which does not engage
in any model compression or dropout. The results helped the
design team make the decision to adopt FEDOBD as the FL
approach for training large-scale industrial fault diagnostic
models in the ENN platform.

FEDOBD is deployed into the ENN Client-Server FL
Subsystem as an alternative FL training approach the sys-
tem administrators can choose to use. It is added into the
user interface as a new option that can be selected during FL
training configuration (Figure 3). Once FEDOBD is select-
ed as the FL training approach from the user interface, the
model reconstruction method, the global model aggregation
method and the the block dropout and model distribution
method under FEDOBD are loaded into the FL server. The

CIFAR-10 IMDB
Overhead Test Overhead Test

(MB) Acc. (MB) Acc.
FedAvg 1,467.30 89.36% 131,494.20 84.68%
SignSGD 7,208.75 60.18% 327,100.00 50.21%
FedPAQ 463.54 89.22% 41,541.05 82.94%
SMAFD 522.23 17.38% 63,365.16 63.94%
FedDrop- 512.20 87.53% 43,992.33 84.17%
outAvg
FEDOBD 101.59 90.17% 12,899.03 84.98%

Table 1: Pre-deployment experiment results.
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Figure 8: The architecture of the fault prediction deep neural network model.

intermediate model logs module is also included in the FL
server to store the global model from the previous round to
facilitate the evaluation of block importance by FEDOBD,
as illustrated in Figure 7 (within the dashed rectangle A). At
the same time, the model reconstruction method, the 2-stage
model training method and the the block dropout and mod-
el uploading method under FEDOBD are loaded into the FL
Client Agent. Similarly, the intermediate model logs module
is included in the FL Client Agent to store the global model
from the previous round to facilitate the evaluation of block
importance by FEDOBD, as illustrated in Figure 7 (within
the dashed rectangle B). In this way, FEDOBD is incorpo-
rated into the ENN FL platform.

Application Use and Payoff
FEDOBD has been deployed in ENN Group since Febru-
ary 2022 as part of its intelligent industrial fault diagnostics
platform. Since its deployment, the company has switched
from the original FedAvg based FL model training and ag-
gregation approach to FEDOBD for part of its enterprise
customers. So far, FEDOBD has been used to help two well-
established coal chemical plants located in two cities in Chi-
na to train AI models for industrial fault prediction.3

Figure 8 illustrates the architecture of the DNN adopted
by the ENN Group for fault prediction in the current de-
ployment cycle. The model consists of a variety of vibration
signal analysis methods to preprocess the original vibration
signals to improve the interpretability of the model. Among

3At the request of our industry partners, the identities of these
factories are withheld.

ENN FL Training Communication Test
Approach Overhead (MB) F1 Score
Previous AI Engine 368, 407.60 85.52± 0.83%
FEDOBD AI Engine 104, 188.50 85.02± 0.23%

Table 2: Deployment results.

them, the spectrum and the axis trajectory can show the fre-
quency doubling component related to the rotating speed in
the signal, which is helpful for diagnosing shaft faults. En-
velope, continuous wavelet transform (CWT) and wavelet
packet transform (WPT) can extract high-frequency impact
components from the signal, which is helpful for diagnos-
ing bearing and gearbox related faults. The attention block
is used to adjust the importance of the features from differ-
ent input blocks. At the end, two ResNet blocks are used
to diagnose the two major types of faults, respectively. The
model contains 29 million model parameters.

FEDOBD is configured with the same hyperparameters
as the previous FedAvg FL model training approach in the
system. Specifically, a local learning rate of 10−5 is used
in the ENN FL Clients. A quantization weight of 0.01 is
used for quantizing uploaded and distributed models. Only
a single local epoch is used in FedAvg and the first stage
of FEDOBD. For the second training stage of FEDOBD,
two local epochs are used.

Table 2 shows the average communication overhead of
training the fault prediction model until convergence for
each round of model update, as well as the average test
F1 score of the resulting models thus far into the deploy-
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ment period under FEDOBD. The results under the Previ-
ous AI Engine reflects the same items but were collected
during system operations in 2021 prior to switching to FE-
DOBD. It can be observed that FEDOBD saves commu-
nication overhead by 71.72%, while achieving comparable
model performance. Due to the 2 MB/sec bandwidth usage
limit placed on FL model training related communications
by ENN Group, under the previous AI Engine, it took more
than 2 days (around 52 hours) to train an updated version of
the fault prediction model involving the two factories. Under
the FEDOBD AI Engine, this time is reduced to about half
a day (around 14.5 hours).

As new data generated by the equipment monitoring sens-
ing devices are continually accumulated over time from and
new equipment can be deployed in the factories from time
to time, it is necessary to frequently retrain the fault predic-
tion model via FL to keep it update to date. The deployment
of FEDOBD has cut down the model training time by more
than half while maintaining model performance, thereby en-
abling timely retraining of the model for enhanced safety
and efficiency of operation.

Maintenance
The AI Engine follows a modular design approach to
achieve separation of concerns. Thus far into the deploy-
ment period, although there have been changes in person-
nel access rights and operating parameters in the system as
well as frequent retraining of the fault prediction model via
FEDOBD, such changes have not necessitated any AI main-
tenance task for the AI Engine.

Lessons Learned During Deployment
During the process of deploying the FEDOBD approach,
there are several lessons worth sharing.

Firstly, the quality of training data is important to training
effective industrial fault prediction models. The data clean-
ing and preprocessing steps by each participating data owner
play an important role in model training. As data preprocess-
ing is still mainly performed based on human experience, it
can be expensive and prone to human errors. Since not all
industry data owners have an in-house data science team, it
could be a challenge to obtain preprocessed local data with
consistently high quality. Thus, it could be useful to adop-
t privacy-preserving data selection approaches such as (Li
et al. 2021) to automate this process.

Secondly, as industrial fault prediction is an important
application with high impact on operation safety and con-
tinuity, industry partners prefer some degrees of model in-
terpretability. Although there exist parameter dropout-based
FL approaches that can improve training efficiency (Bouaci-
da et al. 2021; Gunesli et al. 2021), their lack of inter-
pretability on parameter dropout decisions hinders industry
adoption. The block importance values produced during the
intermediate steps of FEDOBD are helpful in providing the
decision-makers with much needed transparency to alleviate
such concerns.

Last but not least, as time goes by, new monitoring da-
ta from the participating factories will continue to be gen-

erated. Previously unencountered fault types may emerge.
In addition, the data distribution might also change, result-
ing in concept drift (Lu et al. 2018). These factors can be
especially pronounced when new machines are incorporat-
ed into the factories. Thus, the performance of previously
trained FL models can deteriorate in the face of these factors.
Therefore, appropriate incremental training and updating s-
trategies of the FL model need to be put in place to ensure
successful deployment.

Conclusions and Future Work
In this paper, we reported on our experience using a dropout-
based technique to enhance efficient collaborative training
of large-scale deep models through federated learning for
industrial fault diagnostic models involving multiple facto-
ries. We developed the FEDOBD FL model training and
aggregation approach, which leverages a novel opportunis-
tic importance-based semantic block dropout method in
combination with quantization-based FL model parameter
compression to drastically reduce communication overhead
while preserving model performance. Since its deployment
in February 2022 in ENN Group, FEDOBD has helped two
well-established coal chemical plants in two cities in Chi-
na to train machine learning models for fault diagnostics in
order to support predictive maintenance, and has made sig-
nificant positive impact on ENN Group’s operations. To the
best of our knowledge, it is the first successfully deployed
dropout-based FL approach in industrial settings.

In future, we will enhance the robustness of FEDOBD a-
gainst malicious FL participants (Lyu et al. 2022). We will
also explore how to link block importance evaluation with
FL client contribution evaluation to enhance fairness (Yu
et al. 2017; Zheng et al. 2018; Shi, Yu, and Leung 2021), as
well as personalizing the resulting models (Tan et al. 2022)
to FL participants. Eventually, we aim to incorporate FE-
DOBD into an opensource FL framework such as Federated
AI Technology Enabler (FATE) (Liu et al. 2021) and make it
available to more developers, researchers and practitioners.
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