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Abstract

It has become increasingly common that sponsored content
(i.e., paid ads) and non-sponsored content are jointly dis-
played to users, especially on e-commerce platforms. Thus,
both of these contents may interact together to influence their
engagement behaviors. In general, sponsored content helps
brands achieve their marketing goals and provides ad rev-
enue to the platforms. In contrast, non-sponsored content con-
tributes to the long-term health of the platform through in-
creasing users’ engagement. A key conundrum to platforms
is learning how to blend both of these contents allowing their
interactions to be considered and balancing these business
objectives. This paper presents a system built for this pur-
pose and applied to product detail pages of JD.COM, an e-
commerce company. This system achieves three objectives:
(a) Optimization of competing business objectives via Vir-
tual Bids allowing the expressiveness of the valuation of
the platform for these objectives. (b) Modeling the users’
click behaviors considering explicitly the influence exerted
by the sponsored and non-sponsored content displayed along-
side through a deep learning approach. (c) Consideration of
a Vickrey-Clarke-Groves (VCG) Auction design compatible
with the allocation of ads and its induced externalities. Exper-
iments are presented demonstrating the performance of the
system. Moreover, our approach is fully deployed and serves
all traffic through JD.COM’s mobile application.

Introduction
Presently, it is quite common that sponsored content (i.e.,
paid ads) and non-sponsored content (i.e., curated material
selected and displayed to users free of charge to brands;
hereafter referred to as organic content) are jointly displayed
to users, especially in e-commerce. An example is the rec-
ommended products section commonly displayed in the de-
tail pages of products. In principle, the development of a
system for the allocation of ad content must consider the
presence of organic content in order to avoid duplicated con-
tent, adverse competition between ads and organic content,
and other possible interactions. A key conundrum for the
optimal allocation of ads is satisfying multiple competing
objectives (e.g. click-through rate [hereafter CTR] for ads
and/or organics, ad revenue, time spent in pages of certain
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advertised product categories, etc.). The multiple objectives
may arise as representative proxies of various components
of long-term platform health; or due to the fact that such a
complex system usually involves many teams with different
focuses in midsize to large companies. The multiple objec-
tives may be competing with each other when improving one
degrades another, leading to complex trade-offs.

In this research, we describe the development of a system
for the personalized allocation of ad content in the presence
of organic content and multiple objectives. Our system is
applied to the product detail pages in JD.COM’s mobile ap-
plication, an e-commerce company. A concrete example of
this environment is the product recommendation section of
the page presented in Figure 1 for several e-commerce ven-
dors. In the example from JD.COM shown in the last panel,
there are 6 positions available to display recommended ad
or organic content, labeled “P1-P6”. On JD.COM’s mobile
app, the product recommendation section is located on the
product page between a panel containing product summary
and user reviews, and a panel containing a detailed descrip-
tion of the product. Our system focuses on personalized ad
allocation at these positions. All users arriving at hundreds
of millions of product detail pages available on the app can
potentially be exposed to such ads.

Our system has three distinctive features. Firstly, it al-
lows analysts to flexibly accommodate the multiple compet-
ing objectives in a virtual-bid formulation discussed subse-
quently. It presents a novel approach for the computation
of these virtual bids without requiring explicit elicitation of
these bids or even the specification of constraints from stake-
holders. This new approach has yet to be presented in the
literature of multiobjective optimization for personalized ad
allocation systems (Agarwal and Chen 2016). In addition,
the virtual bids have an economic interpretation; they repre-
sent the implicit valuation of the platform for each of these
multiple objectives, i.e., the willingness to pay. Thus, these
virtual bids allow the platform to express its desired trade-off
between these objectives as its implicit valuations for each
of these competing objectives of interest relative to the ad
revenue, e.g., marginal rates of substitution between ad rev-
enue and user engagement for ads. This aids interpretability
and may have independent business decision value for other
related questions e.g. deciding optimal ad load.

A second feature is the explicit modeling of users’ click
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behavior as a function of their characteristics, the individ-
ual characteristics of each sponsored content displayed, and
more importantly, the influence exerted by other ad and or-
ganic content displayed alongside. Thus, our system offers
a unified modeling solution that allows the platform to im-
plement personalized ad allocation while capturing flexibly
relevant joint effects (i.e., any substitution and/or comple-
mentarity effects within ads and between ads and organics).

The third feature of our allocation of ads mechanism is its
compatibility with the Vickrey-Clarke-Groves (VCG) auc-
tion mechanism (Roughgarden 2016). In our system, the
joint effects and the virtual-bid approach induce an alloca-
tion mechanism requiring a payment mechanism that prop-
erly constructs charges recognizing the externalities im-
posed by an arbitrary ad content on other ad and organic con-
tent. Generally, the widely used Generalized Second Price
(hereafter GSP) auction mechanism does not consider such
externalities in the payment mechanism (Gomes, Immor-
lica, and Markakis 2009; Roughgarden and Tardos 2012),
whereas the VCG mechanism does consider them.

The system has been deployed and it serves on average
tens of millions of auctions per day. In the rest of this paper,
we describe first our approach; and report on a battery of
experiments to evaluate the performance of our approach.
Also, we review the literature to contrast our approach with
related work and lastly we conclude.

Figure 1: Ads and org. recommendations on product-detail
pages on apps: (L-R) Amazon, Etsy, Instacart, JD.COM.

Application Set-up
Our applied problem is to decide how to do personalized al-
location of ads to users arriving at a product detail page. The
allocation needs to respect possible interactions with other
ads and organics on the page, so as to optimize against multi-
ple, possibly competing, platform objectives. While our pro-
cedure can be framed and implemented more generally, we
present it in the context of specific decisions made in its de-
ployment at JD.COM. These decisions are about the identity
and the ordering of the ads. Due to organizational reasons,
both the number and the location of ad slots on the page
were pre-determined and not optimized.

For a user arriving at a product’s detail page, we need to
select Kads to be placed in Pads positions given Korgs or-
ganics already placed in Porgs positions. The positions are

decided a priori from positions P1-P6 on the product recom-
mendation section in Figure 1. TheKads selected for display
must be optimal for two objectives: (1) Expected ad revenue
obtained from a Click-per-Cost (hereafter CPC) billing op-
tion, where the CPC charge is determined from an auction
mechanism; and (2) Expected CTR from the displayed ad
content. This second objective is a metric representing user
engagement with the ad content. The two objectives may not
be aligned due to joint effects as explained below. There are
two key challenges in optimal ad allocation:

1. Externalities. There are generally two types of joint ef-
fects that may influence users’ click behavior: (1) iden-
tities of the ads and organics; (2) arrangement of the ads
and organics. The former refers to the possible substi-
tution and complementarity effects within the ads and
also between ads and organics. For example, displaying
jointly multiple ads for pencils of different colors can
induce substitution within the ads, and/or complemen-
tarity between the ads and organics, when organics are
erasers. The latter refers to effects produced by display-
ing different permutations with the same ads and organ-
ics. In many ad contexts such as traditional search ad-
vertising, ads and organics are selected and ranked sepa-
rately, neglecting such joint effects between such content,
so that the externalities arising in the allocation scheme
are ignored, partly because it makes the resulting auction
more complex (Gomes, Immorlica, and Markakis 2009;
Roughgarden and Tardos 2012).

2. Dual Objectives. For the platform, choosing the optimal
set of ads Kads given a set of organics Korgs is a balanc-
ing act between maximizing ad revenue and user engage-
ment (i.e. ad click-through-rates for our case; hereafter
ad-CTRs). An approach followed in the literature (i.e.
multiobjective optimization of ads in recommendation
systems (Agarwal et al. 2012; Agarwal and Chen 2016;
Yan et al. 2020)) is to frame the problem as maximizing
an unconstrained platform objective by assigning shadow
prices to the ad-CTRs in order to evaluate both the en-
gagement objective and the ad revenue objective in the
same units (i.e., currency). However, an open challenge
is to properly choose the shadow prices. Alternatively,
the problem has been formulated in this literature (Agar-
wal et al. 2012; Yan et al. 2020) as a constrained opti-
mization problem where the shadow prices are traded for
minimum thresholds for the user engagement goal, e.g.
CTR, and then optimal ad allocation is found by max-
imizing ad revenue subject to this constraint. The chal-
lenge now is the minimum thresholds must now be prop-
erly set. A strategy generally followed in this literature is
to use a fraction of the optimal CTR obtained by solving
an unconstrained maximum CTR problem as the mini-
mum thresholds, but this creates a new hyper-parameter
to set, which is the fraction. The principled determina-
tion of these hyperparameters, which is a major fo-
cus of this article, is barely discussed in the literature
(Agarwal and Chen 2016).
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Listwise Ranker System for Ads Allocation
The system in place prior to the deployment of the new sys-
tem (hereafter baseline) consists of (1) a deep learning based
model (hereafter pointwise model) for predicting the CTR of
an ad as a function of the characteristics of the user and the
characteristics of only that ad considered separately from
others and organics; (2) an allocation algorithm that ranks
ads by computing an exponentially weighted effective cost
per mille (eCPM) for each ad, with a hyperparameter t tuned
using experimentation, e.g., the weighted eCPM for an ad is
bidCPC × pCTRt where bidCPC is the (CPC) bid submit-
ted by the advertiser and pCTR is the predicted CTR of
the ad; and (3) a GSP auction mechanism to compute the
corresponding payment given the ads allocation. It is repre-
sented as the Pointwise ranker in figure 2. The new system
consists of three key components in addition to the compo-
nents of the baseline system: (1) An enhanced deep learning
model (hereafter listwise model) for predicting the CTR of
ads considering the joint effects from other advertisements
and organics displayed together; (2) a listwise ranking of ads
using a virtual bids composite objective function; and (3) a
listwise generator to enumerate multiple lists of size 6 of
ads and organic content. It is represented as Listwise ranker
in figure 2. Key difference between the baseline system and
the new system is the former neglects the presence of the
organic content in the allocation of ads in addition to the
challenges discussed previously about externalities and dual
objectives.

The unit of analysis in the new system is a mixed tuple, de-
noted by ω. ω is of size 6 composed of Kads ads and Korgs

organics (i.e.Kads+Korgs = 6) placed in 6 positions P1-P6
as shown in Figure 1. For an arriving user, the new system
takes as inputs, a ranked list of candidate adsA1:Nads of size
Nads, and a ranked list of organic content O1:Norgs of size
Norgs. The list of candidate ads is ranked using the base-
line; and the organic list is ranked based on a model outside
of ads. Figure 2 presents a schematic.

Figure 2: System overview for an arbitrary product’s detail
page in the the company’s mobile app

For an arriving user, a candidate ω is generated by choosing
the top Korgs < 6 organics of the ranked list O1:Norgs and
Kads = 6−Korgs ads from the ranked list A1:Nads . The set
of possible ω−s is denoted Ω, whose size is Kads!×

(
Nads
Kads

)
as the order of ad placement matters. Since there is a set

Porgs of positions for organics that are fixed, and the place-
ment of the top Korgs organics from O1:Norgs in this set
are decided a priori, the organic components of all candidate
ω−s considered will be the same. However, the identity and
order of the Kads placed in Pads will vary across candidate
ω−s, and are what we optimize over.

Optimization Problem We let x(ω) denote the Kads +
Korgs dimensional vector of predicted CTRs for the com-
ponents of ω. The fact that x(·) is indexed by ω reflects the
joint effect of the ads and organic components on each other.
Denote the Korgs organic components in ω as ωo, and the
Kads ads as ωa. Then, we denote the predicted CTR of the
jth organic element ωo

j of ωo as xoj(ω); and the predicted
CTR of the jth ad element ωa

j of ωa as xaj (ω). We find the
best allocation by searching for the ω that solves the follow-
ing virtual bids problem,

max
ω∈Ω

|Ω|∑
ω∈Ω

Kads∑
j=1

vaxaj (ω) +

|Ω|∑
ω∈Ω

Kads∑
j=1

bjx
a
j (ω) (1)

The term to be maximized is a composite objective, reflect-
ing the platform’s interest in serving ad allocations that re-
spect both the expected ad-CTR and the expected ad rev-
enue. The virtual bids problem converts all objectives to
the same units (money), so that the overall objective is ad-
ditive. The first term, which we refer to as money-metric
ad-CTR uses a parameter va to convert expected ad-CTR
into money metric terms; while the second term represent-
ing ad revenue is already in monetary terms. This is a linear
optimization where we search for the ω∗ ∈ Ω that maxi-
mizes this composite objective. We call this formulation the
virtual-bid problem, because the virtual bid va can be inter-
preted as the platform’s valuation for one click of ad content.
This is analogous to the advertisers’ CPC bids submitted to
the platform, which are the advertisers’ valuations for each
click on their ads. In a VCG auction context, this formula-
tion has the interpretation of the platform and the advertisers
bidding jointly for the user impression. However, the chal-
lenge of this formulation is that it is difficult to elicit from
the platform, its implicit valuations encapsulated in the vir-
tual bids. Assume for a moment that va is known, and that
for each ω ∈ Ω, x(ω) is given. Thus, a linear search algo-
rithm (i.e. search for the tuple with the maximum composite
objective value out of the set of tuples) can find the optimal
ω∗ for the virtual bids problem. In practice, the size of Ω
is likely to grow very large, leading to concerns about la-
tency in ad-serving. A solution is the heuristic: construct ω
choosing only the top N ′ads of the ranked list of ads A1:Nads

where N ′ads << Nads, restricting |Ω| = Kads! ×
(
N ′
ads

Kads

)
.

This heuristic assumes that the top N ′ads are likely to have
the largest joint effects. N ′ads is treated as a hyperparameter
that is tuned from experimentation.

An alternative to solving the virtual bids problem is to set
a minimum desired ad-CTR threshold, C, and find the allo-
cation that maximizes ad revenue subject to this constraint.
This formulation is followed in the literature, e.g. (Agarwal
et al. 2012; Yan et al. 2020), and thus our approach may
be understood as its Lagrangian relaxation (Bertsimas and
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Weismantel 2005; Fisher 1981) and our virtual bids can be
interpreted as shadow prices that penalize ad revenue for the
violation of implicit ad-CTR constraints.

Obtaining Virtual Bids from Historical Data If one in-
terprets the virtual bids as the platform’s willingness to pay
for one click of ad content, in principle, one could consider
eliciting va directly from key decision-makers. However, it
is difficult for decision-makers to articulate this construct in
monetary terms (an expressivity problem). Also, the willing-
ness to pay may be dynamic, and change based on platform
competition. Further, heuristically picking va can reduce ad
revenue and potentially ad-CTR (due to externalities). This
motivates a data-driven approach to obtaining virtual bids.

To obtain va, we solve a separate sub-problem in his-
torical data. Collect data D = {Xi(ω)|i = 1 : N} from
an epoch of i = 1, .., N past impressions with their re-
spective set of mixer tuples Xi, and for an impression i
in the data, define V ∗ia(va) and V ∗ir(va) as the optimized
values of the money-metric ad-CTR and ad revenue terms
obtained by maximizing the platform’s composite objec-
tive in the virtual bids problem for a given virtual bid va.
We define the Utopia Point of the sub-problem as the tuple
(V̄ u

a (va), V̄ u
r (0)), where V̄ u

a (va) = 1
N

∑N
i=1 V

∗
ia(va), and

V̄ u
r (0) = 1

N

∑N
i=1 V

∗
ir(va = 0), i.e., the best the platform

could do on average across theN impressions in terms of its
objective, if it cared only about each sub-objective in isola-
tion, ignoring the other. The idea of our method is to find a
va so that the induced money-metric ad-CTR and ad revenue
come as close to the Utopia Point as possible on average
across the N impressions. We do this by locating a point on
the possibility frontier of ad-CTR and ad revenue that is as
close as possible to the Utopia Point. The possibility fron-
tier is the surface defined by all possible combinations of
ad-CTR and ad revenue that can be generated by solving the
virtual bids problem for a given vector of virtual bids that
is Pareto efficient. Generally, the Utopia Point is not a point
on this surface; if it was, the virtual bid should be 0 by def-
inition as there is no trade-off between these two objectives.
See Fig. 3 for graphical intuition.

Figure 3: Stylized Plot of Bi-dimensional Possibility Fron-
tier and Utopia Point

Algorithm 1: Virtual Bids Search - SPSA
Input: D = {Xi(ω)|i = 1 : N} data set of mixer tuples
for each impression i with their respective predicted CTRs;
K maximum number of iterations; α, γ, A, a, c: hyper-
parameters of SPSA, see (Spall 1998) for instructions on
tuning.
Output: va : Optimal virtual bids

1: Initialize ak = 0; ck = 0; ~gk = ~0; ~vak = ~0
2: Define FD(~va) of size p, i.e. solve the virtual bids prob-

lem for each impression i in D
3: for k ← 1 to K do
4: ak = a

(k+A)α ; ck = c
(k)γ

5: Sample ~∆k of size p from 2(Bernoulli(0.5))− 1

6: ~vaplus = ~vak + ck ~∆k

7: ~vaminus = ~vak − ck ~∆k

8: yplus = FD(~vaplus) ; yminus = FD(~vaminus)

9: ~gk =
yplus−yminus

2ck ~∆k
(elementwise operation)

10: ~vak = ~vak − ak~gk
11: end for
12: return ~vaK

We formulate this search as a bilevel optimization prob-
lem. In the upper level, we search for a va that minimizes
the L2-norm distance between the Utopia Point and the tu-
ple of averages across all N impressions in the data of
optimized money-metric ad-CTR and ad revenue, denoted
(V̄ ∗a (va), V̄ ∗r (va)). (V̄ ∗a (va), V̄ ∗r (va)) are obtained in turn,
by solving a lower-level problem for each va chosen by the
upper level. In particular, for each chosen va from the up-
per level, the lower level solves the virtual bids problem for
each i, and computes the averages across i of the tuple of
optimized ad-CTR and ad revenue. Formally, we solve

min
va
FD(va) =

[
(
V̄ ∗a (va)

V̄ u
a

− 1)2 + (
V̄ ∗r (va)

V̄ u
r

− 1)2

] 1
2

s.t. V̄ ∗a (va) =
1

N

∑
i∈D

V ∗ia(va)

V̄ ∗r (va) =
1

N

∑
i∈D

V ∗ir(va)

(2)
For the case of one virtual bid va (our application), the up-
per level is one dimensional; we can solve this program ef-
ficiently using the Golden search method e.g. (Luenberger
and Ye 2010). For the case of more than one virtual bid
(e.g. if organics CTR was another objective with a virtual bid
vo), we can solve the upper level using Simultaneous Pertur-
bation Stochastic Approximation (SPSA) (Spall 1998). For
completeness, Algo 1 presents the algorithm using SPSA.
The lower level is solved impression by impression using
a linear search algorithm discussed previously. While this
Program is solved offline, it can be updated frequently with
recently logged data so the computed virtual bids reflect rel-
evant changes in the platform environment. The frequency
of updates will be platform-specific, depending on data dis-
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tribution shifts, execution time, etc. Our experiments below
document that re-tuning va is important for effective perfor-
mance (which again motivates the need for a data-driven ap-
proach to do so). Also, although in this implementation we
compute one value of va per epoch for use in ad-serving,
conceptually, it is straightforward to allow it to vary by
product-category, time-of-day, and other contexts, by pool-
ing the data and making va a function of these variables.

Predicting CTRs for a mixed tuple To obtain the pre-
dicted CTRs, x(ω) for each candidate ω, we develop a novel
deep learning model (hereafter listwise model) here not as
much in terms of its architecture and training, but its use
in conjunction with the problem solutions described pre-
viously for ad allocation with externalities; hence, the de-
scription is intentionally brief (for a more in-depth discus-
sion of such models, see for instance (Covington, Adams,
and Sargin 2016; Pei et al. 2019)). The model uses as in-
put features:(1) user; (2) ads/organics; and (3) contextual
characteristics. The first and second are self-explanatory and
the third category corresponds to features describing the
product in the product detail page. Figure 4 presents the
model architecture. Briefly, (1) Categorical features are fed
into embedding layers; (2) Numerical features are fed into
Fully Connected Layers along with the Embedding Layers
for the categorical features; (3) Sigmoid output layers are
used for the prediction. Six dense networks are used to learn
product low-dimensional representations from features. The
Output Layer has six Sigmoid units corresponding to the
mixed tuple; the self-attention layer utilizes a multi-head
self-attention mechanism to learn interactive and context in-
formation among six products. The model is trained with an
entropy loss function and batch normalization is used. Train-
ing is done via an offline-online scheme, i.e., training data is
logged from online experiments where traffic is randomly
allocated to the two models, and also retraining is done of-
ten. The training set for the listwise model consists of the set
of features and the whole observed mixed tuple with realized
clicks on any of the six positions in contrast to the pointwise
model which only sees the position with realized clicks. The
model is large-scale as in typical ad-industry applications,
with an embedding size of about 500 millions and about 4
billions parameters. In offline validation, the listwise model
performs superior on key performance metrics (AUC 0.75 vs
0.65, F1 Score 0.08 vs 0.065, and Accuracy 0.65 vs. 0.55).

Figure 4: Architecture of listwise model for CTR prediction.

Experiments
This section presents experiments ran on JD.COM’s mobile
app to assess the effectiveness of our approach on a vari-
ety of scenarios and metrics. In addition, we report exper-
iments to demonstrate the existence of joint effects in our
application and study how accommodating shifts in the en-
vironment is important for effectively choosing virtual bids.
In all experiments, impressions on product-detail pages are
randomized into treatments, wherein treatment is defined as
a particular way of doing ad allocation. When reporting re-
sults, we use the lift transformation for all the metrics in or-
der to protect proprietary information. Except in the last ex-
periment in Section Distribution Shift and Virtual Bids, the
lifts reported in all the experiments are obtained by compar-
ing a model A against the baseline system B. Specifically,
the lift transformation is liftA = 100× metricA−metricB

metricB
.

Further, the statistical significance of the results in the sub-
sequent tables follows the convention: * for 1% significance
and ** for 0.1% significance. For the figures, the confidence
intervals are for 99% confidence. Also, in some figures, the
x-axis or y-axis are deliberately removed to protect propri-
etary information. Lastly, the ads payment scheme used in
these experiments remains the GSP payment scheme.

Existence of Joint Effects

There are three treatments in this experiment: Random shuf-
fle of the order of optimal ads from the baseline model; Ran-
dom selection of ads from the top X (X = Kads + 1 and
X = Kads + 2) of the pre-ranked ads list and placement
of these in random order on the available ad-positions. The
control is the ad allocation from the baseline model. The
organic content is not adjusted in any group. As for perfor-
mance metrics, we consider the average ad-CTR, average ad
revenue, and average organics CTR across impressions in
each group. Table 1 summarizes the lift estimates for these
metrics. Looking at the first row, ads shuffling is seen to only
barely affect organics, but to reduce the overall ads-CTR sig-
nificantly. This suggests the order of the served ads matters.
Looking at rows two and three, randomly selecting and ran-
domly placing ads is not a good solution for ads-metrics as
expected. Finally, because there is no change in the selec-
tion rule of organics compared to the baseline, the evidence
seen of a significant impact on organics CTR due to changes
in ads identity and location indicates an externality induced
by ads. These results motivate the importance of considering
joint effects for ad allocation.

Lift over baseline model
Treat Advertisements Organics Sample
group CTR Revenue CTR size
Shuffle -1.44%** -0.24% 0.03% 15.6M
Kads+1 -1.90%** -0.41% 1.32%** 15.6M
Kads+2 -4.07%** -3.01%** 1.41%** 15.7M

Sample size of control group: 31.3M

Table 1: Randomly allocating ads − Dec, 2020
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Lift over baseline model
Treat Advertisements Organics Sample
group CTR Revenue CTR size
va 1.06%** 6.60%** -0.17% 10.2M
va − 1 -3.14%** 11.45%** 0.95%** 10.2M
va + 1 3.57%** 3.89%** -0.12% 10.2M

Sample size of control group: 20.5M

Table 2: Grid around the optimal virtual bid − Dec, 2020

Virtual Bids
This experiment demonstrates the efficacy of our approach
compared to the baseline approach. Also, we demonstrate
that our approach for choosing a virtual bid is able to find
a tipping point for ad-CTR and ad revenue (i.e., improving
both objectives to a point where improving one may worsen
another). We consider three treatments corresponding to ad
allocations that solve the virtual bids problem for three dif-
ferent values of va: (1) va = the virtual bid chosen as dis-
cussed in Section Obtaining Virtual Bids from Historical
Data; (2) va − 1; (3) va + 1. The control is the ad alloca-
tion from the baseline model. Looking at the first row in Ta-
ble 2, we see the new system is able to increase ad-CTR by
1.06% and ad revenue by 6.60% relative to the baseline sys-
tem. In addition, the organics CTR is not statistically signif-
icantly different compared to the baseline for the treatment
va. Rows two and three show that va is a tipping point and as
we decrease or increase this virtual bid one of the objectives
increases or decreases. Figure 5 explores heterogeneity in ad
revenue increases across product categories. Substantial het-
erogeneity is seen. The fact that the impact on ad revenue is
different across categories (and is negative in one), suggests
that fine-tuning of va to specific categories could improve
overall revenue even further. Figure 6 compares va vs. the
CPC/bid distributions of advertisers across 10 selected cate-
gories. There are big disparities in the bid distribution across
categories. This shows that even with full information of ad-
vertisers’ bids/valuation, manual tuning of the virtual bids
can be a difficult challenge for the platform.

Figure 5: Distribution of ad revenue for optimal VB vs. base-
line

Figure 6: VB and Advertisers’ Bid Distributions

Impact on Diversity
This experiment has one treatment and the control: the ad
allocation with va chosen as discussed in Section Obtaining
Virtual Bids from Historical Data and the baseline. The goal
of this experiment is to better understand possible sources
of improvement under the new system. We demonstrate em-
pirically that considering the joint effects explicitly induces
the selection of mixed tuples with greater diversity in terms
of products. For the metrics, we consider: (1) More than 1
Subcat. in the mixed tuple meaning that at least one of the
ads is of a product from a different subcategory than the
product on whose page the ads are served; (2) Number of
Subcat. in the mixed tuple meaning the number of different
unique subcategories of products tied to the ads shown; and
(3) Herfindahl-Index for the unique product subcategories of
the ads shown (the index is a widely used measure of diver-
sity, see (Rhoades 1993)). Looking at Table 3, we see our ap-
proach is able to present more diverse mixed tuples than the
baseline as measured in the three metrics. For the Herfind-
ahl Index, a smaller value reflects more diversity. Notably,
there is no change in diversity among organics as expected
because the selection rule for organics is the same as in the
baseline. Finally, Figure 7 shows this effect occurs not just
at the mean: the distribution of the number of subcategories
shown to users under our approach at the optimal virtual bid
(termed “VB”) is shifted to the right of the baseline.

Lift over baseline model
Type More than 1 Number of Herfindahl

Subcat. Subcat.
ads 6.06%** 1.34%** -0.80%**
organic -0.16% -0.02% 0.01%
overall 2.82%** 0.94%** -0.40%**

Sample sizes - treatment and control: 21.8M & 21.8M

Table 3: Diversity for new system − Jan, 2021

Constrained Optimization
This experiment features two treatments: ad allocations
based on (1) va chosen as discussed in Section Obtaining
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Figure 7: Distribution Changes of Number of Subcat. in the
mixed tuple

Virtual Bids from Historical Data; (2) Constrained optimiza-
tion with manually chosenC (i.e. ads CTR) following previ-
ous methods (Agarwal and Chen 2016). Ad allocation under
the baseline remains as the control. The purpose of this ex-
periment is to compare the data-driven approach for choos-
ing virtual bids vs. a constrained optimization using a C an
analyst may consider. By analogy to the virtual bids ver-
sion of the problem, another way to interpret the constrained
version is it represents an ad-allocation under a virtual bids
problem where the virtual bid is not picked by principled
tuning. We consider the same metrics discussed in previous
experiments. Table 4 indicates that the manually selected
thresholdC (as explained using methods reviewed in section
Related Works) increases ad revenue but at the expense of
ad-CTR relative to the baseline. In contrast, the data-driven
selected virtual bid va is able to find a balanced tipping point
increasing ad-CTR by 2.05% and ad revenue by 9.25% rel-
ative to the baseline. It’s worth noting this experiment was
done separately from the experiment in Section Virtual Bids,
and serves as a replication of the value of the new system.
Being able to find a balanced tipping point both times show-
cases the reliability of our approach.

Lift over baseline model
Treat Advertisements Organics Sample
group CTR Revenue CTR size
va 2.05%** 9.25%** 0.32% 10.1M
C -4.79%** 13.57%** 1.19%** 10.1M

Sample size of control group: 20.2M

Table 4: New system with Const. Opt. − Dec, 2020

Distribution Shift and Virtual Bids
The purpose of these experiments is to demonstrate the im-
pact of distribution shifts in the environment, and how it may
have an adverse impact on the metrics of interest if the vir-
tual bids are not adjusted with proper frequency, or fixed
manually to a static value. To implement this experiment,

we repeat the two-treatment experiment described in the sec-
tion above, two weeks later. For ease of exposition, we call
the first the T1-experiment and the second, implemented two
weeks later, the T2−experiment. The T2−experiment is ex-
actly the same as the T1−experiment except that for its first
treatment, we use the optimal value of va obtained from the
T1−experiment. For its second treatment, we continue to use
constrained optimization with manually chosenC. Then, for
each treatment, we report in Table 5 the lift in various met-
rics between T2 and T1. Looking at the table, we see that us-
ing the same virtual bid in T2 as was optimal in T1 leads to
worse performance; also, holding fixed the manually tuned
C is bad for performance. Figure 8 shows this occurs not just
at the mean, documenting that the entire distribution of rev-
enue is shifting between the two periods. Clearly, the virtual
bids require adjustment in order to function properly.

Lift over respective T1 metrics
of the same treatment

Treat Advertisements Organics
group CTR Revenue CTR
vaT2

= vaT1
-0.33% -8.55%** -0.40%

C -1.61%** -9.33%** -0.64%*

Table 5: Virtual Bids on two periods
Dec, 2020 & Jan, 2021

Figure 8: Distribution Shift in Revenue

Related Work
In the contextual ad-recommendation literature, the main
thrust is on developing systems for serving recommenda-
tions considering the additional information available in the
environment, e.g., a user interacting with a related item,
which provides the context for recommendations. (Barbieri,
Manco, and Ritacco 2014; Agarwal and Chen 2016; Zhang
et al. 2019) provide recent treatises on this literature. In
this stream, our work fits into feature-based deep supervised
learning systems for item recommendations. A novelty of
our approach is considering joint effects in the CTR predic-
tion; we relax the assumption of conditional independence
of the CTRs of the ads and organics displayed jointly given
the context of the product featured.
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Within the multiobjective optimization problem of rec-
ommendation systems, our work is closest to the stream of
constrained optimization approaches proposed in (Agarwal
et al. 2011, 2012; Yan et al. 2020). (Agarwal et al. 2011)
proposed a linear constrained optimization problem to op-
timize the engagement time spent of users on an article’s
landing page subject to CTR constraints. The minimum de-
sired CTRs are a fraction of the optimal CTRs obtained
by maximizing an unconstrained maximum CTR problem.
Thus, this fraction is a hyperparameter that requires tuning.
(Agarwal et al. 2012) improves the constrained optimization
problem of (Agarwal et al. 2011) to allow personalization,
and uses Lagrangian Duality to construct a scalable solution.
(Yan et al. 2020) also formulate a constrained optimization
and propose a scalable solution where the Lagrangian Du-
als are taken as given. For optimal performance, these duals
have to be tuned. While there are many suggestions, devel-
oping a structured approach to tuning such hyperparameters
is an open question. A novel contribution of this study is to
present a principled approach to tuning these virtual bids.
Our approach uses a bilevel optimization problem for tun-
ing the hyperparameters of our problem (the virtual bids),
which to the best of our knowledge has not been proposed
in this literature. We show that tuning the virtual bids appro-
priately is critical for optimal performance. Furthermore, our
work is easily extendable to the setting of (Yan et al. 2020)
where both ads and organics are jointly optimized. Also,
our formulation uses theoretical results of obtaining Pareto
optimal solutions from the literature on compromise opti-
mization (Miettinen 1999). Lastly, our work forms the allo-
cation scheme of an Auction Design problem (Nisan 2007;
Roughgarden 2016). The other part is the payments scheme.
Our formulation links our allocation scheme to a VCG pay-
ment scheme which is attractive for contextual advertising
with externalities, see (Lahaie et al. 2007; Varian and Har-
ris 2014). In computing VCG payments, the objective in
the virtual bids problem also serves as the VCG−auction
payoff, thus linking the allocation and payment parts in
an internally-consistent way. While our allocation scheme
may be used with GSP auctions, the externalities present
would not be properly priced (see (Gomes, Immorlica, and
Markakis 2009; Roughgarden and Tardos 2012)). In the de-
ployed version, the payment scheme is the GSP scheme as
moving to a VCG system involves complex business and en-
gineering decisions requiring further evaluation.

Deployment
Our approach was developed for the product recommenda-
tion section located for all the product detail pages accessed
through JD.COM’s mobile app. This recommendation sec-
tion is located between a panel containing a short summary
of the product and user reviews, and a panel containing a de-
tailed description of the product. The recommendation sec-
tion corresponds to 6 positions available to display recom-
mended ad or organic content (see the last panel in Figure
1). This product section serves on average tens of millions of
auctions per day. The development of the approach started in
May 2020. Mainly, the development of the new components
needed for the Listwise ranker presented in Figure 2. This

Listwise ranker is build on top of the baseline (i.e. Point-
wise ranker), and thus as a fallback the baseline ranking may
be served in case of any issues. These new components are:
(1) Mixed tuple candidate generation; (2) CTR Prediction
for the Mixed tuple candidates; (3) Optimization using the
Mixed tuple candidates; (4) Batch service for Virtual Bid
Optimization. Component 1-3 are used in real-time and meet
the latency requirements per impression of less than 30 ms.
Component 4 is run periodically offline to tune the virtual
bid due to data distribution shifts. The small traffic experi-
ments started in July 2020 and the fraction of the traffic allo-
cated to the tests gradually increased in multiple phases un-
til January 2021. The test results in the Experiments section
showed significant improvements in the business metrics of
ad revenue and user engagement (i.e. ads CTR for our case)
without impacting negatively other key metrics (e.g. organ-
ics CTR) over the baseline system. For example, table 4 re-
ports a lift of 9.25% revenue for ads for our approach rel-
ative to the baseline. Thus, suppose the baseline brings on
average $1M USD in revenue per day then our approach
brings on average $1M + 92,500 USD per day. These num-
bers are for illustrative purposes only. Table 4 also reports
lifts for Ads CTR and Organics CTR. We do not report the
precise values of the virtual bid and other parameters of the
deployed model due to these being proprietary information.
Nevertheless, the impacts of the deployed model on revenue
and engagement are both positive, and consistent with the
test results. Thus, the new system was cleared for the of-
ficial launch and completed in January 2021. Additionally,
testing with full traffic continued until February 2021 to ver-
ify the stability of the results. Furthermore, a summary of
the key milestones of the project from development to de-
ployment is as follows: (1) Identifying the existence of joint
effects through experimentation; (2) Revision of the Deep
Learning architecture to model explicitly these joint effects;
(3) Proposing a heuristic to solve the virtual bids problem
defined in equation 1 with a latency constraint of 30 ms per
auction served; (4) Proposing a system to update the virtual
bids with minimal intervention that maintains the balance
between the business objectives; (5) Measuring the bene-
fits of the approach on key dimensions, e.g. diversity of the
mixed tuples and the interpretation of the virtual bids within
distinct product categories. Milestone 1 served as the moti-
vation for this work, while Milestones 2-4 tackled the chal-
lenges of developing the approach. Milestone 5 studied the
benefits of the approach.

Conclusion
We developed a system for ads allocation in the presence
of organic content on product detail pages in e-commerce
and report on the system’s deployment on JD.COM’s mo-
bile app. We demonstrate empirically the presence of moti-
vating joint effects in our application. We show that consid-
ering these effects explicitly has benefits such as increased
diversity in the ads presented. Also, we demonstrate that our
data-driven approach for choosing virtual bids is able to find
tipping points for the objectives. Lastly, we emphasize the
importance of properly updating these bids for good perfor-
mance to deal with distribution shifts in the data.
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