
The Many Faces of Adversarial Machine Learning

Yevgeniy Vorobeychik
Washington University in Saint Louis

yvorobeychik@wustl.edu

Abstract

Adversarial machine learning (AML) research is concerned
with robustness of machine learning models and algorithms
to malicious tampering. Originating at the intersection be-
tween machine learning and cybersecurity, AML has come
to have broader research appeal, stretching traditional notions
of security to include applications of computer vision, natu-
ral language processing, and network science. In addition, the
problems of strategic classification, algorithmic recourse, and
counterfactual explanations have essentially the same core
mathematical structure as AML, despite distinct motivations.
I give a simplified overview of the central problems in AML,
and then discuss both the security-motivated AML domains,
and the problems above unrelated to security. These together
span a number of important AI subdisciplines, but can all
broadly be viewed as concerned with trustworthy AI. My goal
is to clarify both the technical connections among these, as
well as the substantive differences, suggesting directions for
future research.

1 Introduction
The deployment of machine learning in open-world safety
critical settings has created a need to ensure that such
approaches are robust to adversarial encounters. In re-
sponse emerged a subfield of adversarial machine learn-
ing (AML), which studies vulnerabilities in machine learning
approaches. AML takes two common forms: 1) attacks on
deployed (learned) models, commonly known as adversar-
ial examples or perturbations, and 2) attacks on algorithms,
commonly known as poisoning.

Historically, the field of AML was motivated by classi-
cal security issues, such as the use of machine learning for
spam, intrusion, and malware detection (Biggio et al. 2013;
Barreno et al. 2010; Dalvi et al. 2004; Laskov et al. 2014;
Lowd and Meek 2005). Over time—particularly since mid-
2010s—the scope expanded significantly to include domains
such as computer vision (often motivated by autonomous
driving), natural language processing (motivated, for exam-
ple, by hate speech detection), and network science (moti-
vated, for example, by identifying malicious actors on social
media platforms), among others. Common to these domains
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are concerns about malicious actors who aim to subvert pre-
dictions to some anti-social ends. Moreover, recent years
have seen the emergence of problems that have nothing to
do with security considerations at all, and yet use essen-
tially the same mathematical formalization as conventional
AML. Most prominent among these are strategic classifica-
tion, algorithmic recourse, and counterfactual explanations.
Despite the close mathematical connection, however, cross-
pollination of ideas between these three problems and AML
has been surprisingly limited, and there appears to be lim-
ited appreciation in the literature of just how closely related
they are, with commonly made distinctions often more su-
perficial than substantive.

Below, I formally describe the canonical AML problem,
then describe several common AML domains motivated by
security, and finally discuss the formal connections between
AML and the three non-security problems above that share
a strong connection to AML despite distinct motivations.

2 Adversarial Machine Learning
Perhaps the most recognizable form of adversarial machine
learning is the addition of small adversarial noise (adver-
sarial perturbation) to inputs into machine learning models
aimed at changing predictions. To formalize, let f(x; θ) be a
model parameterized by θ (that are learned from data) which
takes a feature vector x as an input and outputs a prediction.
Let δ denote an adversarial perturbation. A common design
goal for adversarial perturbations involves solving the fol-
lowing optimization problem:

min
δ:c(δ)≤ϵ

l(f(x+ δ; θ), yT ), (1)

where c(δ) measures the cost of implementing the perturba-
tion δ if the original feature vector is x, yT is the target pre-
diction, and l(ypred , yT ) is the prediction error that the ad-
versary aims to minimize. presumed to be exogenously spec-
ified. The c(δ) ≤ ϵ constraint on the magnitude of the per-
turbation commonly leverages a highly stylized cost func-
tion that aims to capture whatever practical constraints are
faced in generating such attacks (which are in actuality diffi-
cult to model formally). As we shall see below, it is precisely
the nature of the choice of such a cost function that appears
to vary most by particular domain in which adversarial ma-
chine learning has come to play a role.
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Formulation (1) is commonly referred to as a targeted at-
tack. An untargeted attack, on the other hand, aims to max-
imize error with respect to the true output y. Note, however,
that we can fit such attacks into formulation (1) by simply
redefining yT = y and redefining the objective to be the
negative of the learner’s loss.

Problem (1) admits many variations. For example, we
can interchange the objective and the constraint, minimizing
modification cost subject to a hard constraint that the target
class yT is predicted, or we can transform this into an un-
constrained optimization of the weighted sum of the loss and
cost terms. Further, it may be natural to restrict which fea-
tures can be modified (for example, a malware designer may
be unable to modify some features which are essential to the
malicious payload (Laskov et al. 2014; Tong et al. 2019)).
Moreover, one may impose further constraints that ensure
that the attack is not easily detected, such as constraining it
to be similar to examples in training data (Maiorca, Corona,
and Giacinto 2013; Ghafouri, Vorobeychik, and Koutsoukos
2018). Finally, it is often natural to restrict only a subset
of possible inputs to be adversarial; for example, in mal-
ware detection settings, it is only the malicious instances that
would aim to evade detection by changing features (Vorob-
eychik and Kantarcioglu 2018).

While either the untargeted or targeted attack problem
above is non-convex for complex non-linear models f , such
as deep neural networks, there are several common heuristic
approaches for obtaining high-quality solutions. If the fea-
ture vectors x are (approximately, or actually) continuous, a
common option is a form of projected gradient descent algo-
rithm, often referred to as PGD (which becomes ascent in the
case of untargeted attacks) (Madry et al. 2018). If features
are discrete, stochastic local search methods can be highly
effective (Li and Vorobeychik 2018; Tong et al. 2019).

A conceptual dual of these adversarial problems is the
problem of learning models that are robust to adversarial
perturbations. Perhaps the most useful way to formalize the
problem of robust machine learning in this context is as the
following robust optimization problem:

min
θ

∑
i

max
δ:c(δ)≤ϵ

l(f(xi + δ; θ), yi), (2)

where i indexes input data points in the training data. Com-
monly, solutions to this problem are approximated by using
adversarial training (AT). In AT, one iterates between updat-
ing θ (e.g., using minibatch gradient updates) while fixing
adversarial perturbations δi for the update, and updating δi
(i.e., generating adversarial perturbations by solving Prob-
lem (1)) for inputs that will be used for training in the next
iteration. An important feature of AT is that one need not
make any specific assumptions on how adversarial perturba-
tions δi are generated; they could even be generated using
a model of the behavior of human adversaries (Ke, Li, and
Vorobeychik 2016; Li and Vorobeychik 2018).

A crucial aspect of the adversarial models above that we
have yet to instantiate is the cost c(δ) incurred by the at-
tacker for the modification δ. Indeed, we will observe below
that what is commonly viewed as a “natural” cost function

varies by domain, although ultimately all of the commonly
used cost function models are highly stylized.

Adversarial perturbation attacks that we described so far
are just one class of threat models considered in the broader
AML literature. Another important class of attacks presumes
adversarial ability to tamper with training data, and are re-
ferred to as poisoning attacks. Many variations of poison-
ing attacks exist, but most share the following structure. The
attacker modifies a training dataset D, transforming it into
a new dataset D′. There is, again, a stylized cost function
c(D,D′) that penalizes significant modifications, beyond
whatever constraints the model itself admits, such as restrict-
ing modifications to flipping labels (Patrini et al. 2017), in-
serting data points (Biggio, Nelson, and Laskov 2012), etc.
Additionally, the attacker aims to achieve some goal encap-
sulated by a utility function U(θ(D′)), where θ(D′) is a
model parameter vector obtained if the learning algorithm
trains on the transformed data D′. A generic way of model-
ing the poisoning problem is as a bi-level optimization prob-
lem (Vorobeychik and Kantarcioglu 2018):

max
D′

U(θ(D′))− c(D,D′) (3a)

s.t. : θ(D′) ∈ argmin
θ

∑
d∈D′

l(d, θ), (3b)

where l(d, θ) is the loss on data point d when model param-
eter vector is θ.

The bi-level nature of poisoning attack model as exem-
plified by Problem (3) means that in general these are ex-
tremely difficult optimization problems. Consequently, ap-
proaches tend to make strong assumptions, such as that the
learning problem itself is convex (allowing one to lever-
age KKT conditions in the poisoning attack) (Mei and Zhu
2015). Interestingly, the problem of robust learning with poi-
soned data often admits simpler solutions, with common ex-
amples involving some form of data sanitization prior to, or
as a part of, learning (Vorobeychik and Kantarcioglu 2018).

3 AML in Security
The most natural context for adversarial machine learning
is security. And, indeed, this is a central concern. However,
as we shall see presently, what constitutes “security” is ex-
tremely broad, covering areas within AI that range from
machine learning applications within core security (such as
malware detection) to network science. Nevertheless, our
overview in this section concerns what are predominantly
security-related considerations. Thereafter, I consider set-
tings that involve no security implications whatsoever, and
yet share the core mathematical structure with AML.

Core Security Security considerations served as the early
motivation for adversarial machine learning research. The
traditional problems in security in which this issue is most
salient are detection problems, most notably, spam, malware,
and intrusion detection. A canonical form of the detection
problem involves a binary classifier f(x; θ) which predicts
whether an input x is malicious (often, +1) or benign (of-
ten, either 0 or −1). In this context, the adversarial problem
is only relevant for malicious inputs x, since benign inputs
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certainly wish to remain benign. In the context of detection,
the most common (arguably, dominant) variant of the per-
turbation cost function c() is c(δ) = ∥δ∥p, where ∥ · ∥p is an
ℓp norm for p ≥ 0, much as it is widely understood that this
fails to capture actual constraints faced by attackers (such as
ensuring that the malicious payload remains effective).

Natural Language Processing One traditional security
application that was a particularly common motivation for
early work on adversarial machine learning is spam (or
phishing email) detection. The simplest variation embeds
words in a document in a binary bag-of-words feature rep-
resentation. In this case, one can naturally adopt a ℓ1-norm
cost function, and use local search to approximately solve
the adversarial problem, where the aim of the attacker is to
cause a predicted spam email to be misclassified as benign.

The preoccupation with adversarial text clasification
problems has recently received a broader interest in the nat-
ural language processing (NLP) community for prediction
tasks that go beyond traditional security (such as sentiment
prediction). An important consideration both in the earlier,
and more recent work on AML in NLP is preservation of
semantic similarity. For example, arbitrary changes of fea-
tures (words) in the superficial bag-of-word representation
would typically fail to preserve semantic similarity, even if
we only change a small number of words. One natural varia-
tion of the problem that helps address this is to use semantic
word embedding to represent words in text. By working di-
rectly in the embedding space, one achieves two advantages
over the older approaches: 1) we can now optimize Prob-
lem (1) over the real-valued embedded features directly, and
2) ℓp-norm cost is more semantically relevant. Nevertheless,
such approaches still fail to achieve adequate semantics at
a sentence level, and more complex mathematical models
of modification cost functions have been proposed to better
capture semantics (Zhang et al. 2020).

Computer Vision An explosion of recent interest in AML
has been much stimulated by the work on adversarial ex-
amples in computer vision that specifically target deep neu-
ral networks in image classification problems (Goodfellow,
Shlens, and Szegedy 2015). One of the most intriguing ob-
servations was that adversarial noise that is imperceptible to
a human can change the prediction for an otherwise high-
performing image classifier. Notable in this work is that it
makes use of the cost function c(δ) = ∥δ∥p just as in the se-
curity problems discussed above. However, there is an inter-
esting particular distinction: in the earlier AML approaches
in security, common cost functions were based on either ℓ1
or ℓ2 norms, whereas in the domain of vision, the choices
tend to be either ℓ2 or ℓ∞. These distinctions seem to have
arisen largely out of different research conventions in these
areas of focus, rather through any principled threat analysis.
In any case, the original motivation for the choice of ℓp cost
in adversarial computer vision was simply that it was a nat-
ural and easy way to obtain imperceptible noise by setting
ϵ to be sufficiently small. Not surprisingly, much work has
subsequently identified alternative ways to obtain impercep-
tible adversarial examples (Hosseini and Poovendran 2018;
Xiao et al. 2018), but it seems fair to say that the dominant

focus remains on ℓp cost functions.

Network Science One of the major aims in network sci-
ence is to develop technical tools for quantitative analysis
and inference on data represented by a graph (often referred
to as network analysis). Such a graph may be directed or
undirected, with edges possibly weighted, and may change
in time. There are too many particular network analysis
problems to enumerate here; I will therefore limit discussion
to link prediction and node classification on a fixed graph.

In link prediction, the observed (sub)graph is leveraged to
predict existence or non-existence of particular edges of in-
terest. Node classification, in turn, takes as input a graph in
which all nodes are also associated with feature vectors, but
only a subset of nodes have observed labels, and the task is
to predict labels for the remaining nodes. Both link predic-
tion and node classification can be viewed as tasks that ap-
ply some function f(x; θ) to predict a label for the target of
interest (a node or a potential link), where the input x com-
bines both the network identity of the prediction target (e.g.,
node index) and any relevant observed features thereof, and
θ are any relevant model parameters. However, note that this
representation is myopic, as it fails to account for longer-
range interactions in networks which can be informative in
inference. A key generalization, therefore, can include as in-
puts a combination of the full feature matrix X (with each
row corresponding to a feature vector of the associated graph
node) and the graph adjacency matrix A. Thus, the predic-
tion model takes the form fi(X,A; θ) where i can refer to
either the identity of a node or an edge.

Clearly, in the context of network analysis of the form
above, the adversary has considerable latitude for modifica-
tion: they can modify X (that is, the full feature matrix of
relevance) as well as the adjacency matrix A (for example,
by removing or adding edges). If we take θ as fixed, how-
ever, the nature of the adversarial problem is qualitatively
similar to what we had previously, if we view the combi-
nation of X and A as a “long” feature vector. In particular,
one would typically define a cost function c(δ) in a manner
quite similar to other adversarial machine learning settings.
For example, a common adversarial model in the context of
network analysis focuses solely on removing and/or adding
edges (Wang et al. 2021; Zhou et al. 2019; Zhou, Michalak,
and Vorobeychik 2019). In that context, a natural cost func-
tion simply bounds the number of edges that can be modified
in the graph. Furthermore, if edges are weighted, the asso-
ciated feature space is real-valued, and standard gradient-
based approaches can be applied.

However, many approaches in network analysis treat
problems such as node classification as semi-supervised
learning, where the parameters θ of f are learned from ob-
served data about node labels, and subsequently the learned
f is used for predicting unobserved labels (Zügner et al.
2020). In this context, the most meaningful threat model
would involve modifying the graph (and/or the features)
prior to learning—that is, this becomes a poisoning attack.

Our discussion of adversarial network analysis has pre-
sumed a security motivation. One example setting motivat-
ing security concerns would be network security (for exam-
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ple, if the goal is to predict the presence of compromised
devices on the network). Another example would be in law
enforcement, where the goal is to identify members of a
crime organization, and their connections with one another,
as well as with others who may facilitate (but not be directly
involved in) criminal activities.

4 Strategic Classification
My overview thus far has considered adversarial machine
learning settings motivated primarily by security considera-
tions (hence, adversarial). The problem of strategic classi-
fication, in contrast, is motivated by the economic consid-
eration of incentives, instead of any actual adversarial be-
havior (Hardt et al. 2016). Nevertheless, nearly all common
variations of strategic classification are mathematically iden-
tical to adversarial machine learning, and differ primarily in
the convention about what cost function c(δ) is used in the
analysis. Moreover, the only reason for the difference in con-
ventions appears to be a greater emphasis on mathematical
convenience in the strategic classification literature.

A canonical motivation for strategic classification is a
problem like college admissions. Suppose we use an algo-
rithm (represented by f(x; θ), and perhaps using machine
learning to learn f from data) for admissions decisions, with
each applicant represented by a feature vector x (e.g., SAT
scores, GPA, number of extracurricular activities, etc). For
the moment, let us say that admissions are decided indepen-
dently for each student based on their acceptability (the col-
lege is not particularly selective). Clearly, if individuals wish
to be accepted but have f(x; θ) = 0, they have an incentive
to change their features x. There are two ways this change
can be implemented: if features are self-reported, the ap-
plicants could outright misreport them to make themselves
look stronger; if features are collected from a neutral third
party (such as SAT scores), students can expend resources,
such as money, to change the associated features (for ex-
ample, pay for expensive test preparation). Considering the
latter situation, it is natural to consider a total budget on the
amount of resources one can expend modifying application
characteristics, so we obtain two constraints, c(δ) ≤ ϵ, and
f(x + δ; θ) = 1, where δ is the change in the individual’s
features. This essentially mirrors the canonical adversarial
machine learning problem (1), with the caveat that only in-
dividuals who would not otherwise be accepted do this (just
as in the malware detection domain, where only malware
authors would modify their code to evade detection).

In general, individuals in the strategic classification set-
ting are faced with a selection algorithm, and their goal
is to maximize their chances of obtaining a social or eco-
nomic benefit which comes with being selected. Neverthe-
less, there is no substantive mathematical difference be-
tween this problem and the problem which is motivated
by adversarial agents. A common difference in this liter-
ature, however, is that in place of the ℓp cost function
c(δ) = ∥δ∥p conventional in security settings, the strategic
classification literature typically assumes separable costs,
c(δ) = max{0, vT δ}, or simply linear costs c(δ) = vT δ for
some known v. This assumption has proved to be very con-
venient for obtaining robust classifiers in closed form (Hardt

et al. 2016), as well as other mathematical analyses (Hu,
Immorlica, and Vaughan 2019; Milli et al. 2019). How-
ever, recent work considers the issue of training classifiers
which are robust to strategic manipulation for more gen-
eral cost functions (Levanon and Rosenfeld 2021). Inter-
estingly, this work illuminates a surprising gap in cross-
pollination of ideas between the AML and strategic classifi-
cation literatures. For example, adversarial training—a ma-
jor workhorse in AML—is not mentioned by Levanon and
Rosenfeld (2021). On the other hand, the contributions to
robust learning by the strategic classification literature (e.g.,
Hardt et al. (2016); Levanon and Rosenfeld (2021)) seem to
have also had minimal impact on the adversarial machine
learning literature.

One could argue that in strategic classification, the game
is not strictly zero-sum, in that strategic agents are not nec-
essarily maximizing error. However, this is unconvincing for
two reasons. First, maximizing error is in any case a proxy
in adversarial machine learning, but has proved an effective
means of making progress. Second, one can note that ad-
versarial training as described in Section 2 actually needs
to make no assumptions on the way adversarial perturba-
tions are generated; and, indeed, prior work has shown that
this general scheme is effective even in non-zero-sum set-
tings, and even if strategic behavior is generated using some
alternative “mechanistic” adversarial model (e.g., a model
that learns to mimic adversarial behavior from data) (Li and
Vorobeychik 2018).

Does all this mean that strategic classification is just an-
other variation on the adversarial machine learning theme,
with nothing of its own to contribute? I do not think so. The
central motivating problem behind strategic classification is
in fact very different, and gives rise to interesting new kinds
of analysis and approaches that make little sense when the
setting is purely adversarial. Some of these pertain to algo-
rithmic recourse; we discuss these in Section 5. Two others
are: scarcity of resources and incentive compatibility; I dis-
cuss these briefly next.

Strategic Classification with Scarce Resources Con-
sider again the college admission setting. In our example,
everyone gets in as long as they are “above the bar”, so-to-
speak. However, it seems unlikely that people would expend
financial resources just to get into an “above-the-bar” type
of college; this is a problem that’s salient in highly competi-
tive college admissions, and it is the highly competitive part
that’s critical: scarcity is significant.

Indeed, many settings of social interest where strategic
classification is well-motivated involve scarce resource al-
location: allocation of promotions and social services are
among the many that come to mind. And scarcity breaks the
key assumption above that the decisions f(x; θ) depend only
on the features x of the individual: clearly, scarce resources
will be allocated to individuals from a population, and al-
location will depend on the features of all members of this
population. For example, if college admissions are particu-
larly competitive one year, what would have been sufficient
to be accepted the previous year may no longer be enough.

Let us simplify the problem somewhat. Suppose we still
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have a scoring function f(x; θ) that yields a score for each
individual with features x. But now, instead of a decision
made independently for each x, we have a population of n
individuals with a set of feature vectors X = {x1, . . . , xn}.
A natural way to allocate the scarce resource is to rank indi-
viduals by their scores, f(xi; θ), from high to low, and allo-
cate the resource in this order until nothing is left to allocate
(assuming scarcity means that the number of available re-
sources is k < n). In this setting, the efficacy of an individ-
ual i’s feature manipulations δi in obtaining a resource now
depends on the manipulations of all other individuals in the
population X; thus, we have a game. For this game, Prob-
lem (1) is not a particularly good model, and more natural is
a variation in which i’s utility is defined by

ui(δi, X) = I(Ri(f(xi + δi, θ), f(X−i; θ)) ≤ k)− c(δi),

where f(X−i; θ) is a vector of scores for (observed) feature
vectors in X other than i, Ri is a rank of i’s score, and I(·)
is an indicator function (we ignore the issue of tie-breaking
here for simplicity). Note that since any collection of feature
modifications δj for all players j other than i will induce
some modified dataset X−i, this utility definition is general.

As defined above, strategic classification is a game of
complete information. We can also consider an incomplete
information game, where individuals only know the distribu-
tion of feature vectors xi, but not the realization, and perhaps
are even uncertain about the population size n.

While strategic classification has been extensively stud-
ied when there are no resource constraints, there has been
remarkably little work studying the setting with resource
constraints. One of the efforts that considers this setting ex-
plicitly was our work on auditing in the context of strategic
classification (Estornell, Das, and Vorobeychik 2021). The
setting here is as follows. We wish to allocate k units of
a scarce resource based on some ranking criterion, such as
vulnerability or marginal benefit. To this end, we obtain ob-
jective features z, and also elicit important but self-reported
features x, from all individuals, and use these as an input in a
score function f(x, z) just as above, allocating the resource
to those with the k highest scores. This setup creates an in-
centive for individuals to misreport their self-reported fea-
tures x, although note that z potentially constrains the credi-
bility of these misreports. To address the concern about mis-
reporting (and, as a result, misallocation), a decision-maker
has a limited audit budget B which can be used to inspect
self-reported features x, and penalize those who misreport
(which can also involve preventing them from obtaining the
resource). The central object of study in Estornell, Das, and
Vorobeychik (2021) was the computational complexity of
designing audit mechanisms that induce the smallest incen-
tives for individuals to misreport their features, taking this to
be a setting with incomplete information (i.e., individuals do
not know one another’s self-reported features, but only the
distribution of these), as well as the complexity of verifying
the incentives to misreport preferences under a given audit
mechanism.

The question of auditing in the context of scarce resources
is a natural segue into the second issue that seems particular
to strategic classification settings: incentive compatibility.

Incentive Compatible Classification The problem of ro-
bustness in strategic classification quite naturally fits into
the general mechanism design paradigm (Myerson 1989). In
mechanism design, we have a set of n agents I , space of out-
comes O, space of agent types T which index their utility
functions ui(o, t) for outcomes o ∈ O for each agent i ∈ I ,
and a set of actions A for the agents.1 A mechanism f maps
a collection of actions of participating agents, {a1, . . . , an},
ai ∈ A, to an outcome o ∈ O. A direct mechanism is one in
which actions are identical to types, that is, A = T . In a use-
ful restriction of the general problem, the principal incurs a
loss associated with each agent i, l(o, g(ti)), where ti is the
actual type of agent i and g(·) some function, and aims to
minimize the total loss,

∑
i l(o, g(ti)). Thus, implementing

a mechanism f yields the total loss∑
i

l(f(t′1, . . . , t
′
n), g(ti)),

where t′i is the reported (and not necessarily actual) type of
each agent i. Now, suppose that T is the sample space, and
ti = xi—that is, types are feature vectors. Reported types,
in turn, are t′i = x′

i = xi + δi, where δi is the perturbation
implemented by agent i. Finally, let g(·) ≡ f(·), and let
yi = g(ti) = g(xi) ≡ f(xi), where f() is now a classifier.
The designer’s objective then becomes to identify a classifier
f from some hypothesis class so as to minimize∑

i

l(f(x1 + δ1, . . . , xn + δn), yi).

If we treat each agent as independent, this transforms into
empirical risk minimization with strategic agents.

Among the most important results in mechanism design
is the revelation principle; informally, if there are no con-
straints on which type t′i the agent can report in place of its
true type ti, then for any mechanism f there always exists
another f ′ such that f ′ achieves the same outcome as f af-
ter accounting for agent strategic behavior, and f ′ is incen-
tive compatible, that is, all agents maximize their respective
utilities by reporting true types ti. Remarkably, Zhang and
Conitzer (2021) showed that the revelation principle does
not generally obtain in the strategic classification setting. In
fact, they show that the necessary and sufficient condition
for it to hold is that misreporting is transitive: if an agent
can misreport ti to be t′i and t′i to be t′′i , it should also be
able to misreport ti as t′′i . This transitivity fails, for exam-
ple, if we impose an ℓp-norm constraint on the magnitude of
the manipulation cost δ, which is a common AML setting.

The discussion of strategic classification and incentive
compatibility thus far has been the direct counterpart of
decision-time, or adversarial perturbation, attacks in ad-
versarial machine learning (Vorobeychik and Kantarcioglu
2018). I now turn to the problem of strategic regression (in
most cases in the literature, linear regression), which in fact
is the counterpart of poisoning attacks (Chen et al. 2018;
Dekel, Fischer, and Procaccia 2010). The setting here is as
follows. Consider a training dataset D = {(xi, yi)}, but now

1In this, we have assumed for simplicity that all agents have an
identical set of types and actions.
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suppose that instead of the true labels yi, we obtain these
from strategic agents who wish for the regression to be as
accurate as possible on their own datapoint i. To this end,
strategic agents may actually misreport the labels, and the
resulting dataset becomes D̃ = {(xi, ỹi)}, with ỹi the re-
ported labels for the datapoints (which may or may not be
accurate). A linear regression model is then fit to the ob-
tained dataset D̃. Of central interest in this literature has also
been an issue of incentive compatibility, but now it is the
problem of devising a learning algorithm which incentivizes
the agents to provide true labels yi for their datapoints. Un-
like the somewhat negative result in the case of incentive-
compatible strategic classification above, here there are sev-
eral strong positive results, the simplest of which is that l1
loss is group-strategyproof, in that no subset of agents can
gain by jointly misreporting their labels.

While the connection to robust learning in the context
of data poisoning attacks is typically acknowledged in the
strategic regression literature, the intersection of these two
problems seems fruitful to explore further. For example,
strategic regression models assume that every data point
may have been strategically mislabeled, in contrast to ro-
bust learning, in which the set of problems explored is far
more rich, ranging from very small to very high fraction
of data that may have been poisoned (Karmalkar, Klivans,
and Kothari 2019; Kearns and Li 1993; Liu et al. 2017). In
the strategic setting especially, it seems quite reasonable to
suppose that only a small fraction of agents is strategic. In
this case, conventional techniques that identify and remove a
subset of outliers (Klivans, Long, and Servedio 2009) would
perhaps also yield approximate incentive compatibility for a
richer class of loss functions.

5 Algorithmic Recourse
As techniques such as machine learning are increasingly
used in high-impact settings, often involving historically
marginalized populations, concerns about fairness of such
approaches has come to the fore in recent years. An impor-
tant way in which algorithmic fairness connects to adversar-
ial machine learning is through its consideration of algorith-
mic recourse (Karimi, Schölkopf, and Valera 2021; Ustun,
Spangher, and Liu 2019). In algorithmic recourse, one sup-
poses that the classifier f(x; θ) is binary, where class 1 is as-
sociated with “being selected” (for some preferred outcome)
and 0 with not being selected. Then, for an individual x who
is not selected (f(x; θ) = 0), we wish to additionally pro-
vide an actionable alternative x′ = x + δ such that c(δ) is
small and f(x′; θ) = 1. The interpretation is that we wish
to provide individuals the simplest recourse to be selected
(e.g., all you need to do is slightly improve your SAT score
to be accepted to a particular college). Note, however, that
this problem has essentially the identical mathematical form
as the standard AML problem.

A key concept in algorithmic recourse is that it be action-
able, and alternative models propose to formalize recourse
in terms of feasible actions that have causal impact on fea-
tures (Karimi, Schölkopf, and Valera 2021). One may argue
that the constraint that recourse be actionable is a crucial

distinction between this problem and adversarial machine
learning; however, this does not seem convincing, since in
adversarial machine learning also, the stylized problem for-
mulation is a proxy for realizable attacks—that is, attacks
that can be implemented in practice (Tong et al. 2019).

Algorithmic recourse can be viewed as adding a form of
transparency to algorithmic systems. Indeed, it is closely
connected to counterfactual explanations discussed next.

6 Counterfactual Explanations
Ability to explain algorithmic decisions is widely recog-
nized to be a crucial building block of trust. A variety of
concepts and approaches for explaining algorithms and de-
cisions they make have been proposed; of particular inter-
est to us are counterfactual explanations, the goal of which
is to explain a particular algorithmic outcome by present-
ing the closest alternative feature vector input for which the
outcome changes (e.g., to be more favorable to the indi-
vidual) (Verma, Dickerson, and Hines 2020). To this end,
Problem (1) and its natural variations (particularly, where
we minimize distance to change the prediction) are clearly
well-suited, and have indeed been proposed as a way to
generate such explanations. A number of additional varia-
tions exist that aim to ensure that explanations are “natu-
ral”, such as adding regularization to the optimization prob-
lem that penalizes explanations (x′ = x + δ) which are too
dissimilar from the distribution of observed feature vectors
in the training dataset. In their survey, Verma, Dickerson,
and Hines (2020) note the close connection to adversarial
learning, but highlight that explanations have the additional
desiderata of parsimony or sparsity, as well as actionability.
However, these are also common desiderata in adversarial
ML: sparsity is a feature of l1 attacks, studied extensively
in the adversarial ML literature (Vorobeychik and Kantar-
cioglu 2018), and actionability is a central consideration in
realizable adversarial perturbations (Tong et al. 2019; Wu,
Tong, and Vorobeychik 2020).

7 Conclusion
In this paper, I described several variations of the adversarial
machine learning modeling paradigm. Some of these, such
as malware detection, are typically framed as security prob-
lems. Several others, however, have entirely different mo-
tivations, but nevertheless share much of the core mathe-
matical structure. These include strategic classification, al-
gorithmic recourse, and counterfactual explanations. In ad-
dition to describing the formal connections, I attempted to
illustrate some substantive differences, particularly in strate-
gic classification. My overarching goal is to facilitate cross-
pollination of ideas across these research areas, and fur-
ther clarify both the similarities and substantive differences
among them to help stimulate new research directions.
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S. 2020. Adversarial attacks on graph neural networks: Per-
turbations and their patterns. ACM Transactions on Knowl-
edge Discovery from Data, 14(5): 1–31.

15409


