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Abstract

Nowadays, AI-based techniques, such as deep neural net-
works (DNNs), are widely deployed in autonomous sys-
tems for complex mission requirements (e.g., motion plan-
ning in robotics). However, DNNs-based controllers are typi-
cally very complex, and it is very hard to formally verify their
correctness, potentially causing severe risks for safety-critical
autonomous systems. In this paper, we propose a construc-
tion scheme for a so-called Safe-visor architecture to sand-
box DNNs-based controllers. Particularly, we consider the
construction under a stochastic game framework to provide
a system-level safety guarantee which is robust to noises and
disturbances. A supervisor is built to check the control inputs
provided by a DNNs-based controller and decide whether to
accept them. Meanwhile, a safety advisor is running in par-
allel to provide fallback control inputs in case the DNNs-
based controller is rejected. We demonstrate the proposed
approaches on a quadrotor employing an unverified DNNs-
based controller.

1 Introduction
Nowadays, deep neural networks (DNNs) are widely em-
ployed as one of the main components in autonomous
systems for complex tasks, such as autonomous driving
(Bojarski et al. 2016) and human-robot collaboration (El-
Shamouty et al. 2020). In these systems, DNNs can serve
as perception modules for sensing environments (Liu et al.
2020), as motion planers that provide setpoints for low-level
controllers (Aradi 2020), or as low-level controllers that di-
rectly map raw sensor readings to control commands for ac-
tuators (Haarnoja et al. 2019). However, the behaviors of
DNNs are sometimes unpredictable if the deployment set-
tings differ from the training settings (Garcıa and Fernández
2015; Huang et al. 2017), which potentially leads to disas-
trous consequences in safety-critical scenarios (Brunke et al.
2022; Kwiatkowska 2019). This issue motivated researchers
to enter the realm of safe DNNs-enabled systems.

Recent results in (Li and Belta 2019; Lavaei et al. 2020;
Kazemi and Soudjani 2020) consider exploiting safety spec-
ifications in the training procedure to provide probabilistic
safety guarantee for DNNs-based controllers. Concretely,
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the desired safety specifications are encoded in the reward
functions for training DNNs in reinforcement learning set-
tings. However, these results are only applicable when re-
ward functions are easy to be designed, while reward func-
tions for some control tasks are difficult to be obtained
(e.g., (Bıyık et al. 2022)). Additionally, various progresses
has been made for the verification of DNNs. Neverthe-
less, verifying DNNs is very challenging and it is an NP-
complete problem (Katz et al. 2017). Concretely, the chal-
lenges are due to the non-linear activation functions which
makes DNNs non-linear and non-convex (Ehlers 2017; Katz
et al. 2017). Recent satisfiability modulo theory (SMT)-
based approaches (Ehlers 2017; Katz et al. 2017, 2019) and
mixed-integer linear program (MILP) optimizers-based ap-
proaches (Dutta et al. 2018) can be applied to check if adver-
sarial perturbations over the inputs of the DNNs can change
the decisions of the DNNs (Katz et al. 2017). However, these
approaches are typically applied on linearized input sets for
simple DNNs with a few layers and a few hundred neurons
per layer (Ivanov et al. 2019). To reduce the complexities
in verifying larger DNNs, (Elboher, Gottschlich, and Katz
2020; Prabhakar and Rahimi Afzal 2019) propose DNNs
abstraction approaches, with which one can obtain formal
guarantees for the original complex DNNs by verifying the
simplified DNNs using existing verification tools (Katz et al.
2019; Tran et al. 2020). Unfortunately, it is still difficult to
deploy these methods to verify complex DNNs with millions
of parameters and complicated architectures.

Instead of verifying the correctness of DNNs, system-
level correct-by-construction schemes (Clavière et al. 2021;
Xiang et al. 2018) can be deployed to provide safety guar-
antees for DNNs-enabled systems regardless of the concrete
design of the DNNs. In other words, verification of DNNs
is not required under these schemes. For systems with dis-
crete state and input sets, shields are proposed in (Humphrey
et al. 2016; Alshiekh et al. 2018) to correct erroneous control
inputs and enforce safety properties at runtime. As for en-
forcing safety invariance properties over systems with con-
tinuous state sets (i.e. systems are expected to stay within
a fixed safety set), Simplex architecture (Sha 2001; Wang,
Hovakimyan, and Sha 2013; Jagtap et al. 2020) allows the
deployment of unverified controllers for linear control sys-
tems. Model predictive control (MPC)-based approaches are
proposed in (Hewing et al. 2020; Wabersich and Zeilinger
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Figure 1: Safe-visor architecture for sandboxing DNNs-
based controllers. To apply this architecture, one specifies
the minimal desired probability of satisfying the safety spec-
ification, denoted by η. At runtime, the supervisor checks
the inputs from the DNNs-based controller and only accepts
them when η is respected. If the DNNs-based controller
is rejected, the safety advisor provides an advisory control
command, which maximizes the probability of satisfying the
desired safety specification, to actuate the plant.

2018), with which a safety filter is constructed to correct
erroneous control inputs provided by the learning-based
controllers. Reachability analysis-based approaches are pro-
posed in (Fisac et al. 2018; Ivanov et al. 2019), with which
safety guarantees are provided by checking the intersection
between the unsafe sets and reachable sets of the systems.
Recent results in (Zhong, Zamani, and Caccamo 2019) ini-
tialize a system level correct-by-construction architecture,
namely Safe-visor architecture (cf. Figure 1), utilizing the
idea of sandbox that is borrowed from the computer secu-
rity community (Reis, Barth, and Pizano 2009) (see also
the technical appendix). While all results above focus on
safety invariance properties, the results in (Zhong et al.
2021) further reduce the conservatism of the probabilistic
safety guarantees provided in (Zhong, Zamani, and Cac-
camo 2019), and allows complex logical safety specifica-
tions modeled by deterministic finite automata (DFA) (Baier
and Katoen 2008), which are widely used to specify proper-
ties in robotic applications; see (Maierhofer, Moosbrugger,
and Althoff 2022; Yu and Dimarogonas 2022).

In this work, we draw inspiration from (Zhong et al.
2021) and propose an abstraction-based scheme for the con-
struction of Safe-visor architecture to sandbox DNNs-based
controllers. In particular, we focus on logical safety spec-
ifications characterized by DFAs, and we model the sys-
tem as general discrete-time stochastic games (gDTSG),
which cannot be handled by previous results in (Zhong et al.
2021). Note that gDTSG provides a general framework for
modeling various types of systems, including discrete time
stochastic control systems (Lavaei et al. 2022), stochastic
switched systems (Lavaei, Soudjani, and Zamani 2020), and
randomly switched control systems (Patrinos et al. 2014) af-
fected by bounded disturbances. With these settings, we pro-
vide a system-level safety guarantee robust to those noises
and disturbances that often affect the performance of DNNs
in real-life applications. In particular, we propose a generic
construction scheme for a Safe-visor architecture under the

framework of gDTSGs to sandbox DNNs-based controllers,
and provide formal safety guarantees accordingly. More-
over, we demonstrate the effectiveness of the proposed re-
sults by controlling a quadrotor to track a ground vehicle
by employing a DNNs-based agent. This agent is trained
in simulation using deterministic policy gradient algorithm
(DDPG) (Lillicrap et al. 2016) to provide setpoints for the
low-level controllers of the quadrotor. Experiments in sim-
ulations and physical test-bed show that unsafe actions pro-
vided by the DNNs-based agent can be effectively corrected
using the proposed Safe-visor architecture. The technical
appendix of this paper, as well as the code for synthe-
sizing the Safe-visor architecture and training the DNNs-
based agent in the case study, are provided in the GitHub
repository: https://github.com/Bingzhuo-Zhong/Safe-visor-
Stochastic-Game.

2 Preliminaries
2.1 Notations and Concepts
We denote by R and N the sets of real and natural num-
bers, respectively. They are annotated with subscripts to re-
strict them in a usual way, e.g., R≥0 denotes the set of non-
negative real numbers. Given a matrix M , M⊤ denotes the
transpose of M . For a, b ∈ R (resp. a, b ∈ N) with a ≤ b,
the closed, open and half-open intervals in R (resp. N) are
denoted by [a, b], (a, b) ,[a, b) and (a, b], respectively. Given
x ∈ Rn, ∥x∥ denotes the Euclidean norm of x. Given a set
X , XN denotes the Cartesian product among the countable
infinite number of set X . Given sets X , Y , and their Carte-
sian product X×Y , a relation R ⊆X × Y relates x ∈ X
with y ∈ Y if (x, y) ∈ R. Given functions f : X → Y
and g : Y → Z, we denote by g ◦ f : X → Z the com-
position of f and g. Throughout this paper, we assume that
all sets are Borel sets and all functions are measurable. We
refer the interested readers to the technical appendix for de-
tails of these concepts. Here, we prefer to not dive into these
technical assumptions to make the paper more readable.

2.2 Problem Formulation
In this paper, we model the systems as general discrete-time
stochastic games (gDTSG) to provide safety guarantees that
are robust to noises and disturbances. As a key insight, the
stochasticities in the gDTSG model noises. Disturbances are
modeled by an adversarial player in the gDTSG with objec-
tives that are apposed to that of controller inputs. Following
standard conventions, control and adversary inputs are re-
ferred to as Player I and Player II, respectively.

Definition 2.1 A gDTSG is a tuple D = (X,U,W,X0,
T, Y, h), where X ⊆ Rs is the state set; U ⊂ Rm and W ⊂
Rp are input sets of Player I and II, respectively; X0 ⊆ X is
the set of initial states; T : B(X)×X×U×W → [0, 1] is a
conditional stochastic kernel, with which for any x(k) ∈ X ,
u(k) ∈ U , and w(k) ∈ W , and any set Q ⊆ X , one has

P
{
x(k + 1) ∈ Q

∣∣x(k), u(k), w(k)
}
=∫

Q
T (dx(k + 1)|x(k), u(k), w(k)), k ∈ N,
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where P{x(k+1) ∈ Q
∣∣x(k), u(k), w(k)} denotes the prob-

ability of x(k+1) ∈ Q given x(k),u(k), and w(k); Y ⊆ Rq

is the output set; and h : X → Y , with y = h(x), is the
output function. Alternatively, the stochastic kernel T can
be described by: x(k + 1) = f(x(k), u(k), w(k), ς(k)), in
which ς(k), with k ∈ N, being a sequence of independent
and identically distributed (i.i.d.) random variables.

Remark 2.2 To provide formal safety guarantees regard-
less of how Player II chooses adversarial inputs, we de-
sign a Safe-visor architecture over Player I considering that
Player II will select its action after Player I at each time
step and in a rational fashion against the choice of Player I.
Note that such setting is common for robust control prob-
lems. Moreover, we consider that full state information of
the gDTSG is available, and safety properties are defined
over the output of the gDTSG.

In this paper, we focus on regular safety properties, de-
noted by ϕ, over a finite time horizon H ∈ N. Exam-
ples of this class of properties include those expressed by
safe linear temporal logic formulae over finite traces (safe-
LTLF ) (Saha et al. 2014), which are widely deployed to
specify safety specifications for autonomous systems (Faruq
et al. 2018). Throughout this paper, we refer to this class
of properties by tuple (ϕ,H). As explained in (Baier and
Katoen 2008), properties (ϕ,H) admit minimal bad pre-
fixes (Kupferman and Vardi 2001, Section 2.2) (see also the
technical appendix) recognized by deterministic finite au-
tomata (DFA) (Baier and Katoen 2008), as defined below.
Definition 2.3 A DFA is a tuple A = (Q, q0,Π, τ, F ),
where Q is a finite set of states, q0 ∈ Q is the initial state,
Π is a finite set of alphabet, τ : Q × Π → Q is a transition
function, and F ⊆Q is a set of accepting states.
A finite word σ := (σ0, σ1, . . . , σk−1) ∈ Πk is accepted
by A if there exists a finite state run q := (q0, q1, . . . , qk)∈
Qk+1 such that qz+1 = τ(qz, σz), σz ∈ Π for all 0 ≤ z <
k, and qk ∈ F . The set of words accepted by A is called
the language of A and denoted by L(A). Next, we define a
labeling function which connects a gDTSG D to a DFA A.
Definition 2.4 Consider a gDTSG D=(X,U,W,X0, T, Y,
h), a safety property (ϕ,H) with its associated DFA A=(Q,
q0,Π, τ, F ), and a finite output sequence of D defined as

yH := (y(0), y(1), . . . , y(H)) ∈ Y H+1, H∈N. (2.1)

The trace of yH over Π is σ = L̄(yH) = (σ0, . . . , σH), in
which σk = L(y(k)) for all k ∈ [0, H], with labeling func-
tions L : Y → Π and L̄ : Y N → ΠN. Moreover, one has yH
satisfies ϕ, denoted by yH |= ϕ, if L̄(yH) /∈ L(A).
Intuitively, yH |= ϕ indicates that the accepting states of A
are not reached considering the trace of yH . Now, we for-
mulate the main problem we aim to solve in this paper.
Problem 2.5 Consider a gDTSG D as in Definition 2.1,
and a desired safety specification (ϕ,H). Given the mini-
mal desired probability of satisfying (ϕ,H), denoted by η,
design a Safe-visor architecture as in Figure 1 (if existing)
for Player I of D such that inequality

P{yH |= ϕ} ≥ η, (2.2)

holds regardless of how Player II provides adversarial in-
puts, where P{yH |= ϕ} denotes the probability of yH sat-
isfying ϕ, with yH as in (2.1).

3 Construction of Safe-visor Architecture
In general, the construction of a Safe-visor architecture in-
cludes offline computation of a safety advisor enforcing the
desired safety specification, and online implementation of a
supervisor that decides whether to accepts inputs provided
by the DNNs-based controllers. Here, we leverage the re-
sults in (Zhong et al. 2023, Section 5) to synthesize the
safety advisor. Our main contribution is the construction of
a supervisor associated with this safety advisor. To build the
safety advisor and the supervisor, a finite abstraction of the
original gDTSG is required.

Building a finite abstraction. Given a gDTSG D, we first
construct its finite abstraction, denoted by D̂ = (X̂, Û , Ŵ ,

X̂0, T̂ , Y, ĥ), following (Zhong et al. 2023, Section 4.1).
Concretely, we first partition the continuous state and input
sets of D via finite numbers of bounded cells and select rep-
resentative points for these cells to construct the finite state
and input sets of D̂. Then, we compute a matrix T̂ to char-
acterize the transitions among the finite states of D̂. After D̂
is constructed, one needs to check if there exists an (ϵ, δ)-
approximate probabilistic relations (Lavaei, Soudjani, and
Zamani 2021) between D and D̂, as defined below.

Definition 3.1 ((ϵ, δ)-approximate probabilistic relations)
Consider a gDTSG D = (X,U,W,X0, Y, h) and its finite
abstraction D̂=(X̂, Û, Ŵ, X̂0, T̂, Ŷ, ĥ), with Ŷ ⊆Y . Then, D̂
is (ϵ, δ)-stochastically simulated by D, denoted by D̂ ⪯δ

ϵ D,
if there exist relations R ⊆ X × X̂ and Rw ⊆ W × Ŵ s.t.

• (Cond. 1) ∀(x, x̂)∈R, ∥h(x)− ĥ(x̂)∥≤ϵ;
• (Cond. 2) ∀(x, x̂) ∈ R, and ∀û ∈ Û , ∃u ∈ U such

that ∀w ∈ W , ∃ŵ ∈ Ŵ with (w, ŵ) ∈ Rw such that
(x+, x̂+) ∈ R holds with a probability of at least 1− δ,
in which (x, x̂) and (x+, x̂+) are the state pairs at time
instants k and k + 1, respectively, with k ∈ N;

• (Cond.3) ∀x0 ∈ X0, ∃x̂0 ∈ X̂0 such that (x0, x̂0) ∈ R.

Note that one can deploy existing results, such as (Zhong
et al. 2023, Section 4) and (van Huijgevoort and Haesaert
2022), to check if the relation as in Definition 3.1 exists.

Remark 3.2 Consider a controller Ĉ over D̂. (Cond. 2) in-
dicates that if an approximate probabilistic relation exists
between D̂ and D, then for any û ∈ Û , and (x, x̂) ∈ R,
there exists a stochastic kernel LT ((x

+, x̂+)|x, x̂, û, w, ŵ)
and an interface function u := ν(x, x̂, û) ∈ U such that if
one refines Ĉ to D with this function, one has ∥y − ŷ∥ ≤ ϵ
with a probability of at least 1−δ at each time step. Note that
such distance-based relation plays a crucial role to provide
safety guarantees. As a key insight, y is controlled indirectly
by controlling ŷ while keeping y sufficiently closed to ŷ with
some probability.

Construction of the safety advisor. To construct the
safety advisor, we first leverage Definition 3.3, which is
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Figure 2: Safety advisor (yellow region), which is a
controller over D (green region), with augmented state
(x, x̂, q, û, w) (red dashed rectangle).

adopted from (Zhong et al. 2023), to synthesize a controller,
denoted by Ĉ, over D̂.
Definition 3.3 Consider a gDTSG D=(X,U,W,X0, Y, h),
its finite abstraction D̂=(X̂, Û, Ŵ, X̂0, T̂, Y, ĥ) with D̂⪯δ

ϵ D,
and a safety property (ϕ,H) with its associated DFA A =

(Q, q0,Π, τ, F ). A controller Ĉ :N⇒ Û is constructed s.t.

Ĉ(H − n− 1) ∈ argmin
û∈Û

max
ŵ∈Ŵ

(
(1− δ)

×
∑
x̂′∈X̂

V ∗,n(x̂
′, q∗(x̂

′, q))T̂ (x̂′|x̂, û, ŵ) + δ
)
, (3.1)

in which V ∗,n : X̂ ×Q → [0, 1] is a cost-to-go func-
tion initialized as V ∗,n+1(x̂, q) := 1 when q ∈ F , and
V ∗,n+1(x̂, q) := 0 otherwise, and recursively computed as

V ∗,n+1(x̂, q) :=


min
û∈Û

max
ŵ∈Ŵ

(
(1− δ)

∑
x̂′∈X̂

V ∗,n(x̂
′, q∗(x̂

′, q))

× T̂ (x̂′|x̂, û, ŵ) + δ
)
, if q /∈ F ;

1, if q ∈ F,
(3.2)

in which q∗(x̂
′, q) := argmaxq′∈Q′

ϵ(x̂
′) V ∗,n(x̂

′, q′), with
Q′

ϵ(x̂
′) :={q′∈Q |∃x∈X, q′=τ(q, L ◦ h(x)),with h(x) ∈

Nϵ(ĥ(x̂
′))}, and Nϵ(ŷ) := {y ∈ Y | ∥y − ŷ∥ ≤ ϵ}.

Using controller Ĉ, we build the safety advisor C as in Fig-
ure 2. Here, the safety advisor utilizes an augmented state
(x, x̂, q, û, w), which contains states x, x̂, and q of D, D̂,
and A, respectively, the control input û fed to D̂, and the
adversary input w from Player II of D. The running mecha-
nism of C at each time step is summarized in Algorithm 1.

Construction of the supervisor. Next, we discuss the de-
sign of the supervisor, which is the main contribution of this
paper. Given a gDTSG D and a safety specification (ϕ,H)
with its associated DFA A, the design of the supervisor is
depicted in Figure 3. Here, the supervisor consists of a aug-
mented state and a decision maker. The augmented state of

Algorithm 1: Running mechanism of the safety advisor.
Input:A gDTSG D, a safety specification (ϕ,H) with its as-
sociated DFA A = (Q, q0, Π, τ, F ), safety advisor C, with
its associate augmented state (x, x̂, q, û, w), and the current
state x(k) of D.
Output:u(k) for controlling D.

1: if k = 0 then
2: Update x̂(k) such that (x(k), x̂(k)) ∈ R (cf. (Cond.

3) of Definition 3.1).
3: else
4: Update x̂(k) according to x(k), the stochastic kernel

LT , and w(k−1) (cf. (Cond. 2) of Definition 3.1 and
Remark 3.2).

5: end if
6: Update q of A as q(k) = τ(q(k − 1), L ◦ h(x(k))).
7: Compute u(k) by refining ûc, which is offered by Ĉ

based on x̂(k) and q(k), to D with the interface function
ν (cf. Figure2).

8: Updates û(k) as û(k) := ûc.
9: Update w(k) after Player II has made decision.

Figure 3: Supervisor in the architecture (yellow region).

the supervisor, denoted by (x, x̂, q, û, w), is the same as that
of the safety advisor, and we simply say the augmented state
of the Safe-visor architecture in the rest of this paper for the
sake of brevity. At runtime, x, x̂, q, and w in the augmented
states are updated as described in Algorithm 1. Meanwhile,
different from step 8 of Algorithm 1, û here is updated as
û := û′, in which û′ is determined based on the decision of
the supervisor (cf. Definition 3.5, either accepting or reject-
ing the DNNs-based controller). With the augmented state,
the decision maker of the supervisor decides whether or not
to accept the input from the DNNs-based controller at time
instant k, denoted by udnn(k), in the following way:

• Step 1: Assume that udnn(k) is accepted. If the (ϵ,δ)-
approximate probabilistic relation between D and D̂
does not hold any more, reject udnn(k) without going
through Step 2 and feed input from the safety advisor,
denoted by usafe, to D; proceed to Step 2, otherwise;

• Step 2: Estimate the probability of satisfying (ϕ,H), de-
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noted by Epv(k), assuming that udnn(k) is accepted. Ac-
cept udnn(k) if Epv(k)≥η; otherwise, feed usafe to D.

Step 1 aims at maintaining the (ϵ, δ)-approximate probabilis-
tic relation between D and D̂, which is crucial for provid-
ing safety guarantee (cf. Remark 3.2). One can check Step 1
with the following proposition.

Proposition 3.4 Consider a gDTSG D = (X,U,W,X0,

Y, h) and its finite abstraction D̂ = (X̂, Û , Ŵ , X̂0, T̂ , Y, ĥ)

with D̂ ⪯δ
ϵ D with respect to the relation R and Rw as in

Definition 3.1. If the set Uf in (3.3) is not empty, then the
(ϵ,δ)-approximate probabilistic relation can be maintained
between D and D̂ at the time instant k+ 1 when udnn(k) is
applied to D at the time instant k.

For the set Uf defined in (3.3), f and f̂ are defined as in
Definition 2.1, and x(k) ∈ X , x̂(k) ∈ X̂ , ς(k) and ς̂(k)

denote current states of D and D̂, noises affecting D and D̂,
respectively. As a key insight, if Uf ̸= ∅, then, by defini-
tion of Uf , there exists at least one û ∈ Û corresponding to
udnn(k) such that (x(k + 1), x̂(k + 1)) ∈ R holds with the
probability of at least 1− δ, indicating that the approximate
probabilistic relation between D and D̂ is maintained (cf.
(Cond.2) of Definition 3.1). In general, checking the non-
emptiness of Uf depends on the concrete form of f . In Sec-
tion 4, we show how to check whether Uf is empty using
Proposition 3.4 via a case study. With Proposition 3.4, we
present the supervisor for Problem 2.5 as follows.

Definition 3.5 Consider a gDTSG D = (X,U,W,X0,

Y, h) and its finite abstraction D̂ = (X̂, Û , Ŵ , X̂0, T̂ , Y, ĥ)

with D̂ ⪯δ
ϵ D, a safety specification (ϕ,H) with its as-

sociated DFA A = (Q, q0,Π, τ, F ), a labeling function
L : Y → Π associated with A as in Definition 2.4, and
η to be the minimal desired probability of satisfying (ϕ,H).
For all k ∈ [0, H − 1], the validity of an input udnn(k) from
the DNNs-based controller is checked as follows:

(i) Reject udnn(k) if Uf as in (3.3) is empty;
(ii) If Uf is not empty, compute Epv(k) as

Epv(k) := C1(k)C2(k), (3.6)

with C1(k) and C2(k) as in (3.4) and (3.5), respectively,
V ∗,H−k−1 and q̄∗ as in Definition 3.3,

û∗ := arg min
û∈Uf

Epv(k), (3.7)

and X̂ ′
−ϵ(q(z− 1)):=

{
x̂∈X̂

∣∣∀x ∈ X, τ(q(z− 1), L◦
h(x)) /∈F, h(x)∈Nϵ(ĥ(x̂))

}
, in which Nϵ(ĥ(x̂)) is as

in Definition 3.3. If Epv(k)≥η, the supervisor accepts
udnn(k) and update the augmented state with û′ := û∗

(cf. Figure 3), with û∗ being computed as in (3.7); oth-
erwise, it rejects udnn(k) and set û′ as û′ := ûc, with
ûc provided by the safety advisor (cf. Algorithm 1).

By leveraging the supervisor in Definition 3.5, we propose
the main result of this paper.

Theorem 3.6 Consider a gDTSG D = (X,U,W,X0, Y, h)
and a safety specification (ϕ,H). By leveraging the super-
visor in Definition 3.5 at all time k ∈ [0, H − 1] in the Safe-
visor architecture for Player I of D, one has

P{yH |= ϕ} ≥ η, (3.8)

regardless of how Player II provides adversarial inputs, with
yH being output sequences of D as in (2.1).
Detailed proofs of Theorem 3.6 are provided in the techni-
cal appendix, and we are providing here a sketch of proof.
Sketch of Proof of Theorem 3.6 Consider a DFA A =
(Q, q0,Π, τ, F ) associated with (ϕ,H).
• C1(k) denotes the minimal probability of F not being

reached (i.e. yH |= ϕ) over the time horizon [0, k], while
one has (x(z), x̂(z)) ∈ R, ∀z ∈ [0, k]. Considering the
definition of X̂ ′

−ϵ(q(z − 1)) as in Definition 3.5, one can
verify ∀x̂ ∈ X̂ ′

−ϵ(q(z − 1)) with q(z − 1) ∈Q, ∄x with
(x, x̂) ∈ R such that F is reached at time step z. In other
words, if x̂(z) ∈ X̂ ′

−ϵ(q(z−1)), one can ensure that F is
not reached at the time z by ensuring (x(z), x̂(z)) ∈ R.
Hence, given x̂(z − 1), û(z − 1), and q(z − 1),

C′(z) := min
ŵ∈Ŵ

(1−δ)
∑

x̂∈X̂′
−ϵ(q(z−1))

T̂ (x̂
∣∣x̂(z−1), û(z−1), ŵ), (3.9)

denotes the minimal probability of F not being reached
at time z while (x(z), x̂(z)) ∈ R still holds.

• C2(k) is the probability of F not being reached over the
time horizon [k+1, H], while (i) (x(k+1), x̂(k+1)) ∈
R holds, given x̂(k), q(k), and û(k) = û∗; (ii) D is con-
trolled by the safety advisor within [k + 1, H].

Hence, C1(k)C2(k) denotes the lower bound on the proba-
bility of F not being reached over [0, H]. Since (3.7) en-
sures that all û which maintains the (ϵ,δ)-approximate prob-
abilistic relation between D and D̂ would not result in
Epv < η. By accepting udnn(k) at each time instant k where
C1(k)C2(k) ≥ η holds, one can ensure that (3.8) holds. ■

Remark 3.7 By leveraging the results in (Zhong et al. 2023,
Corollary 5.12), one can obtain an upper bound on P{yH |=
ϕ}, denoted by v ∈ [0, 1], when the system starts from the
initial state set X0 and the safety advisor is applied over the
whole time horizon [0, H]. Accordingly, (3.8) is achievable
whenever η ≥ v.
Finally, we summarized in Algorithm 2 the running mech-
anism of the proposed Safe-visor architecture at each time
step k. Moreover, we should add that the number of opera-
tions required for computing Epv(k) in (3.6) is proportional
to cardinality of sets X̂ , Ŵ , and Uf . Concretely,
• C1(k): One can verify that C1(k) = C1(k− 1)C′(k), with
C′(k) as in (3.9). Since C1(k − 1) has already been com-
puted at time step k − 1, one only needs C′(k) to obtain
C1(k) at time k. On the other hand, ∀q ∈ Q, set X̂ ′

−ϵ(q)

can be computed offline, and T̂ is readily computed when
constructing the finite abstraction of the original gDTSG.
Hence, the number of operations required for computing
C1(k) at time instant k is proportional to the cardinality
of the set X̂ ′

−ϵ(q(k − 1)) and Ŵ .
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Uf :=
{
û ∈ Û

∣∣∀(w, ŵ)∈Rw,P
{
(x′, x̂′)∈R

}
≥1−δ holds,with x′=f(x(k), udnn(k), w, ς(k)), x̂′= f̂(x̂(k), û, ŵ, ς̂(k))

}
, (3.3)

C1(k) :=

k∏
z=1

(
(1− δ) min

ŵ∈Ŵ

∑
x̂∈X̂′

−ϵ(q(z−1))

T̂
(
x̂
∣∣ x̂(z − 1), û(z − 1), ŵ

))
, (3.4)

C2(k) := (1− δ)
(
1− max

ŵ∈Ŵ

∑
x̂∈X̂

V ∗,H−k−1

(
x̂, q̄∗(x̂(k), q(k))

)
T̂
(
x̂
∣∣ x̂(k), û∗, ŵ

))
, (3.5)

Algorithm 2: Running mechanism of the Safe-visor.
Input: A gDTSG D, specification (ϕ,H) with its associated
DFA A, safety advisor C as in Figure 2, supervisor as in
Definition 3.5, and udnn(k) from the DNNs-based controller
Output: u(k)for controlling D

1: Compute C1(k) as in (3.4).
2: Update x(k), x̂(k), and q(k) in the augmented state as

in Algorithm 1.
3: Decide whether to accept udnn(k).
4: if udnn(k) is accepted then
5: Set u(k) = udnn(k) and update û(k) in the aug-

mented state as û(k) = û∗ with (3.7).
6: else
7: Obtain usafe(k) and ûc(k) from the safety advisor, set

u(k) = usafe(k), and update û(k) in the augmented
state as û(k) = ûc(k).

8: end if
9: Update w(k) in the augmented state based on the deci-

sion of Player II.

• C2(k): Since V ∗,H−k−1 and T̂ have already been com-
puted when synthesizing the safety advisor, the number
of operations required for computing C2(k) is propor-
tional to the number of elements in sets X̂ , Ŵ , and Uf .

The real-time applicability of the Safe-visor architecture will
be shown in Section 4 via a case study (cf. Table 1).

4 Case Studies
To showcase the proposed construction scheme, we cosider
a case study of controlling a quadrotor using a DNNs-
based agent to track a ground vehicle in 1) simulation with
1.0 × 104 different realization of noise; 2) experiment on
the physical test-bed. The physical test-bed includes: 1) a

Figure 4: Case study for controlling a quadrotor tracking a
ground vehicle.

quadrotor as in Figure 4 (right); 2) Vicon motion capture

system for capturing the position and velocity of the quadro-
tor at runtime; and 3) a ground control station (GCS) with
Ubuntu 20.04 (Intel Core i9-10900K CPU (3.7 GHz) and 32
GB of RAM). The simulations are performed via MATLAB
2019b on the GCS. In the experiment on the physical test-
bed, the safety advisor, the supervisor, and the DNNs-based
controller are running on the GCS. Based on the decision of
the supervisor, the GCS sends desired accelerations (i.e. the
control input, cf. (4)) to the quadrotor at runtime.

q0

q1

p1

p2p1 _ p2

q0 q1 q2 q3

q4

p1_p2_p3p1_p2p1

p2_p3_p4
p1_p2_p3_p4

p1_p2_p3_p4_p5

p5

p5

p3_p4_p5
p4_p5

Figure 5: Left: DFA AE , with accepting state q1, alpha-
bet Π= {p1, p2}, and labeling function L : Y → Π with
L(y) = p1 when y ∈ [−0.5, 0.5], and L(y) = p2 when
y ∈(−∞,−0.5)∪(0.5,+∞). Right: DFA AN , with accept-
ing state q4, alphabet Π = {p1, p2, p3, p4, p5}, and labeling
function L : Y → Π with L(y) = p1 when y ∈ [−0.3, 0.3],
L(y) = p2 when y ∈ [−0.4,−0.3) ∪ (0.3, 0.4], L(y) = p3
when y ∈ [−0.45,−0.4) ∪ (0.4, 0.45], L(y) = p4 when
y ∈ [−0.5,−0.45) ∪ (0.45, 0.5], and L(y) = p5 when
y ∈ (−∞,−0.5) ∪ (0.5,+∞).

Modeling and safety specifications: By employing the
feedback linearization technique in (Ghaffari 2021), the rel-
ative motion between the quadrotor and the ground vehicle
on N and E axes (see Figure 4 (left)) can be modeled as:{
xi(k + 1)=Axi(k) +Bui(k)+Dwi(k) +Rςi(k),
yi(k) = Cxi(k), k ∈ N, i ∈ {N,E}, (4.1)

where A =
[
1 ∆t
0 1

]
, B = [∆t2

2 ; ∆t], D = −B, and
C = [1; 0]⊤, with ∆t = 0.1s being the sampling time,
and R = [ 0.004 0

0 0.045 ] being obtained through experimen-
tal trials on our physical test-bed. Here, for i ∈ {N,E},
xi(k) := [xir(k); vir(k)] with xir(k) and vir(k) being the
relative position and relative velocity between the quadrotor
and the vehicle on i axis, respectively; ui(k) ∈ [−2.5, 2.5]
(m/s2) denotes the acceleration of the quadrotor on i axis
as the control input; wi(k) ∈ [−0.6, 0.6] (m/s2) denotes the
acceleration of the vehicle on i axis as the adversary input;
ςi(k) is a standard Gaussian random variable; and yi(k) is the
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output. Within 1 min (time horizon H = 600), the follow-
ing safety specifications are desired: (1) (ϕE , H): yE should
be within [−0.5, 0.5] (m); (2) (ϕN , H): yN should be within
[−0.5, 0.5] (m); additionally, if yN reaches [−0.3, 0.3] (m)
at any time instant k, then yN should be within [−0.4, 0.4]
(m) at time instant k + 1 and within [−0.45, 0.45] (m) at
time instant k + 2, instead of [−0.5, 0.5] (m). Their asso-
ciated DFAs AE and AN are shown in Figure 5. Next, we
design the Safe-visor architecture with respect to (ϕE , H)
and (ϕN , H), denoted by svaE and svaN , respectively.

Construction of Safe-visor architecture: To construct
the safety advisor as introduced in Section 3, we first build
the finite abstraction of the model as in (4.1) by selecting
X = [−0.5, 0.5]×[−0.4, 0.4] and partition it uniformly with
grid cells whose sizes are (0.02, 0.02). Then, we uniformly
divide the input set [−2.5, 2.5] for the quadrotor and the in-
put set [−0.6, 0.6] for the ground vehicle with 25 and 12
cells, respectively. As a result, we get a finite gDTSG with
2001 states (denoted by X̂), 25 control inputs for Player I
(denoted by Û ′), and 12 adversarial inputs for Player II (de-
noted by Ŵ ). By employing the results in (Zhong et al. 2023,
Section 4.3), the finite abstraction is (ϵ, δ)-stochastically
simulated by the original model with respect to the re-
lation R :=

{
(x, x̂) | (x − x̂)⊤M(x − x̂) ≤ ϵ2

}
, and

Rw :=
{
(w, ŵ)|(w − ŵ)⊤(w − ŵ) ≤ ϵ̃2

}
, with δ = 0,

ϵ = 0.0674, ϵ̃ = 0.05, M = [ 1.4632 0.1757
0.1757 0.0666 ], and a interface

function u := K(x − x̂) + û where K = [−16.66;−4.83]
⊤

(cf. Figure 2), and Û := {û ∈ Û ′|||û|| ≤ 0.12} is used to
build the safety advisor. Having the finite abstraction and the
approximate probabilistic relation, we synthesize the safety
advisors for svaE and svaN as discussed in Section 3. The
total offline computation time1 for svaE and svaN are ap-
proximately 1.2 hours and 5.2 hours, respectively.

After the safety advisors are constructed offline, we im-
plement the supervisors leveraging the results in Theo-
rem 3.6, for which checking the non-emptiness of the set
Uf in (3.3) at runtime is necessary (cf. Proposition 3.4).
Consider the current state x(k) of the original system, x̂(k)
in the current state of the Safe-visor architecture, and input
udnn(k) provided by the DNNs-based controller. The set Uf

is not empty if there exists û ∈ Û such that

∥Ax(k) +Budnn(k) +Dw(k) +Rς(k)−
(Ax̂(k) +Bû+Dŵ(k) +Rς̂(k))∥M ≤ ϵ, (4.2)

holds for all ς ∈ R2, with ∥x̄∥M :=
√
x̄TMx̄. By set-

ting ς̂(k) = ς(k), (4.2) holds if one has ∥φ − Bû∥M ≤
ϵ − γ, with φ := A(x(k) − x̂(k)) + Budnn(k) and γ :=
maxβ∈∆∥β∥M + max(w,ŵ)∈Rw

∥D(w − ŵ)∥M = 0.0152,
where ∆ is the set of all possible quantization errors intro-
duced by discretization of the original state set. Since φ can
readily be computed at runtime, one can find out if there ex-
ists û ∈ Û such that (4.2) holds efficiently.

1The computation of the cost-to-go function V ∗,n+1(x̂, q)

in (3.2) for different (x̂, q) ∈ X̂ × Q are independent from each
other. Therefore, the computation can be done in a parallel fashion,
which is not implemented in the current code.

Figure 6: DNNs-based controller in real-world experiments.

Figure 7: Trajectories of the quadrotor and the ground vehi-
cle in simulation (Left), and real-world experiment(Right).

Experiments and results In the experiments, we consider
using a DNNs-based agent to control the quadrotor to track
the vehicle. The agent is trained as a setpoints provider for
low-level position controller, as depicted in Figure 6, with
K = [1.4781; 1.7309]

⊤. The agent takes the current positions
and velocities of the quadrotor and the ground vehicle as
inputs, and provides the position and velocity setpoints for
the quadrotor. We leverage DDPG algorithm (Lillicrap et al.
2016) to train the agent in simulation, in which the vehicle
follows random trajectories. Here, we refer the readers to the
technical appendix for more training details.

In both simulation and the experiment on the test-bed, the
ground vehicle follows a clover trajectory2, and we initial-
ize the system with xE = xN = [0; 0] and set the mini-
mal desired probability of satisfaction for svaE and svaN as
ηE = ηN = 0.99. The results of the simulation and the ex-
periment on the physical test-bed are summarized in Table 1.
The simulation results show that the desired lower bound
of safety probability specified by ηE and ηN are respected,
while more than 90% of the inputs from the DNNs-based
controllers are accepted. Although the quadrotor tracks the
vehicle very well in the simulation without actually vio-
lating the safety specification, as marked red in the Figure
7(Left), the architecture rejects some potential risky actions
due to the robustness settings as in Remark 2.2. Notably,
as shown in Figure 7(Right), the DNNs-based controller be-
haves worse on the physical test-bed and the safety specifi-
cations are violated when the Safe-visor architecture is not
deployed (see the bottom part of Figure 8, in which yNr

left the region [−0.5, 0.5]), which might be attributed to the
mismatch between the model that is used for training and
the physical system. For instance, the environmental noises
and disturbances are not considered in simulation training,

2It is challenging to design adversarial strategies for the ground
vehicle as in Remark 2.2, while the probabilistic guarantees pro-
vided are valid regardless of how the ground vehicle select inputs.
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Safety specifications Ps (with Safe-visor) Acceptance rate Ps (without Safe-visor) Tavg (ms) Tσ (ms)
(ϕE , H) (Simulation) 100% 92.75% 100% 3.0790 1.3873
(ϕN , H) (Simulation) 100% 92.40% 100% 3.3238 1.3415
(ϕE , H) (Test-bed) 100% 2.50% 0% 4.2301 2.1056
(ϕN , H) (Test-bed) 100% 8.00% 0% 3.3957 2.7630

Table 1: Results of simulation and experiment on the physical test-bed, where Ps denotes the percentage of the outputs satisfying
the desired safety properties; acceptance rate is the percentage of inputs from the DNNs-based controller being accepted among
different runs; Tavg and Tσ are the average and the standard deviation of the execution time, respectively.

Figure 8: Evolution of yE and yN with and without using
the Safe-visor architecture.

as it requires robust training strategies, causing difficulties
in convergence. Meanwhile, by leveraging the Safe-visor
architecture, the desired safey specifications are enforced,
while the DNNs-based controller can still be employed.

5 Conclusions
In this paper, we proposed, for the first time, the construc-
tion of a Safe-visor architecture for sandboxing DNNs-based
controllers in stochastic games with continuous state and in-
put sets. This architecture consists of 1) a supervisor that
checks the inputs provided by the DNNs-based controller
and rejects them whenever they endanger the overall safety
of the systems; 2) a safety advisor that provides inputs maxi-
mizing the probability of satisfying the desired safety speci-
fications if the DNNs-based controller is rejected. Both com-
ponents are built using abstraction-based approaches, and
formal safety guarantees are provided based on the approxi-
mate probabilistic relation between the original game and its
finite abstraction. The compromise between safety and func-
tionality is achieved by setting a minimal desired probabil-
ity of satisfying the safety specification. Finally, the effec-
tiveness of our results is demonstrated via simulations and
experiments on a physical test-bed for a quadrotor.
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