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Abstract

Safe control methods are often designed to behave safely
even in worst-case human uncertainties. Such design can
cause more aggressive human behaviors that exploit its con-
servatism and result in greater risk for everyone. However,
this issue has not been systematically investigated previously.
This paper uses an interaction-based payoff structure from
evolutionary game theory to model humans’ short-sighted,
self-seeking behaviors. The model captures how prior human-
machine interaction experience causes behavioral and strate-
gic changes in humans in the long term. We then show
that deterministic worst-case safe control techniques and
equilibrium-based stochastic methods can have worse safety
and performance trade-offs than a basic method that medi-
ates human strategic changes. This finding suggests an urgent
need to fundamentally rethink the safe control framework
used in human-technology interaction in pursuit of greater
safety for all.

Introduction
This paper focuses on the safety-critical interactions of hu-
man agents and autonomous agents in the mixture of self-
seeking and altruistic behaviors. Many safe control meth-
ods intend to behave safely in worst-case human uncertain-
ties. The uncertainties can be great due to the complexity
and difficulty of modeling human behaviors, which forces
these methods to maintain a large safety margin and behave
conservatively. However, when we assume humans are self-
seeking actors, the standard safe methods might elicit the
opposite effect. For example, when a human driver realizes
that autonomous vehicles (AVs) always yield their right of
way, the driver may cut in and change lanes aggressively to-
ward AVs, which would pose greater risks for everyone. Safe
control technology could be improved by incorporating how
humans behave in response to autonomous systems.

Motivated by this potential, this work investigates how
safe control methods change human behavior and the safety
of the overall system in the long term. The human-machine
interaction is modeled using game and control theory as fol-
lows. The principles of evolutionary games are used to ap-
proximate the causal influence of the machines’ policy on
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Figure 1: Resulting risk (left) and reward (right) when Au-
tonomous Agents use different safe control methods in a
Type A interaction. Types of interactions are defined in the
Problem Statement.

strategic human behaviors, i.e., how rational humans change
their strategy over time based on past experience. Control
theory is used to characterize the impact of such changes
on the performance and safety of the overall human-in-loop
system. We classified diverse scenarios into four qualita-
tively different types and studied when safety is intended
for worst-case human uncertainties, denoted as determinis-
tic worst-case safe control (DWSC), and when equilibrium-
based stochastic strategies, denoted as mixed strategy Nash
equilibrium (MSNE). Surprisingly, the deterministic safe
control discourages collaborative human behaviors, result-
ing in more risky interactions (Lemma 1, Figure 1).

Building on these insights, we then introduce a basic
method that encourages humans to behave in a way that im-
proves the safety of the overall system (Theorem 1, Figure
1, Figure 4). Interestingly, existing safe control methods can
have worse safety and performance levels when compared to
the proposed method that mediates human strategic behavior
(Figure 1, Figure 5). A comparison between risk manage-
ment in existing methods and the proposed method is shown
in Figure 2.

Related Work
Safe Control Many safe control methods exist for the
design of autonomous systems that interact with humans.
Some model human behaviors as uncertainties and noises
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Figure 2: Risk map in a Type A interaction. The blue line
shows the strategies achievable by the proposed method. The
dashed lines are level sets for the risk. The proposed method
results in less risk compared to MSNE and DWSC. Types of
interactions are defined in the Problem Statement.

and use stochastic safe control and multi-agent control (Ah-
madi et al. 2019; Luo, Sun, and Kapoor 2020; Lyu, Luo, and
Dolan 2021; Cheng et al. 2020; Jing and Nakahira 2022).
Others use various human models (Kulic and Croft 2007;
Ding et al. 2011; Kelley et al. 2008; Ravichandar, Kumar,
and Dani 2018; Koppula and Saxena 2015) to design control
policies in a variety of tasks: e.g., robotic swarm control (At-
man et al. 2018; Diaz-Mercado, Lee, and Egerstedt 2017),
manipulation tasks (Erhart and Hirche 2016; Peng, Cara-
bis, and Wen 2018) and autonomous vehicle control (Cum-
mings et al. 2011). These methods are often designed to ac-
commodate human behaviors and act with large safety mar-
gins with the intent to reduce tail (risk) events in the mix-
ture of autonomous and human-driven cars. Since people
use social information about others in coordinated move-
ments (Faria, Krause, and Krause 2010), however, human
drivers can develop risky behavior when they learn their
counterpart is “playing the coward.” In short, the cooperative
policies of autonomous systems can be simply exploited by
non-cooperative people (e.g., the people who pursue self-
interests) (Ishowo-Oloko et al. 2019; Dawes 1980; Shirado
and Christakis 2020) and, as a result, may lead to greater
risks for the entire system. To avoid such unintended con-
sequences and improve the safety of both humans and ma-
chines, we might need to account for social interactions be-
tween them (Chen et al. 2017) in the safe control framework,
which is the focus of this paper.

Human-Machine Cooperation Game theory is one of the
major theoretical frameworks to examine complex social in-
teractions. Using the framework, researchers have studied
how cooperation can emerge from rational actors (Axelrod
1984). Cooperation is actually challenging because it cre-
ates a social dilemma (also known as the free-rider problem)

(Dawes 1980). A group does well if individuals cooperate,
but each individual is tempted to defect (Olson 1965). Even
if one individual cooperates with others, the others could
have an easy life by exploiting the first individual’s benev-
olent effort (Nowak 2006). To overcome such cooperation
dilemmas, a large body of work has explored broader, insti-
tutional approaches, such as punishment (Fehr and Gachter
2002), group dynamics (Shirado et al. 2013), and the estab-
lishment of a central authority (Ostrom 1990).

The cooperation problem also occurs in mixed groups of
humans and machines. For example, Shirado and Christakis
have introduced preprogrammed autonomous agents (bots)
into a network of people to examine which bot strategies can
facilitate cooperation in human groups (Shirado and Chris-
takis 2020). In the study, the bots that always cooperated
with humans were simply exploited by them, and most peo-
ple eventually chose defection with the cooperative bots.
Ishowo-Oloko et al. show that people do not cooperate, es-
pecially when they realize that they are interacting with au-
tonomous systems (Ishowo-Oloko et al. 2019). As theo-
retical and empirical evidence suggests the importance of
accounting for self-seeking behaviors in cooperation, ma-
chines need to consider such human nature to facilitate co-
operative human-machine systems (Paiva, Santos, and San-
tos 2018; Dafoe et al. 2021; Rahwan et al. 2019). This paper
explores this implication in the safe control framework.

Problem Statement
System Model
We apply an interaction model of evolutionary game the-
ory that two types of agents, Human Agents (HAs) and Au-
tonomous Agents (AAs) interact with each other based on
their payoffs for infinite periods (Hofbauer and Sigmund
1998; Nowak 2006). Specifically, the interactions between
HAs and AAs are modeled as follows. We assume the ex-
istence of infinitely many HAs and AAs, and focus on the
interaction between a HA and an AA. Their decision models
are composed of interaction strategy π = (πh, πa) and con-
trol policy ϕ = (ϕh, ϕa). Throughout this paper, we use su-
perscript h to denote HAs and superscript a to denote AAs.

At each interaction of a HA and an AA, their intention I
is decided based on their strategies π as follows:

πh = P(Ih = C) = 1− P(Ih = D), (1)
πa = P(Ia = C) = 1− P(Ia = D). (2)

The intentions can either be conservative (denoted as C for
cooperative) or aggressive (denoted as D for defect), i.e.,
Ih, Ia ∈ {C,D}.

Given the intention, they use the control policy

P(uh
[k]|I

h, x[k]), (3)

P(ua
[k]|I

a, x[k]), (4)

where k ∈ {0, 1, · · · ,K}, to generate the control action
u = (uh, ua) based on the state of both agents. Here,
we use subscript [k] to denote the discrete-time point k∆t,
where ∆t is the sampling interval. Here, u = {u[k] =

[uh
[k], u

a
[k]]

T , k ∈ {0, 1, · · · ,K}} and x = {x[k] =
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[xh
[k], x

a
[k]]

T , k ∈ {0, 1, · · · ,K}} are the control action and
state of the HA and the AA at time k, and {0, 1, · · · ,K} is
the duration of the interaction. We assume the control policy
is identical among the population.

The system dynamics is characterized by the con-
ditional transition probability P(x[k+1]|x[k], u[k]), k ∈
{0, 1, · · · ,K}, which is identical among the population1.
We will quantify the reward of each agent, the performance,
and the safety of interactions as follow. When the states and
control actions end up being x and u, the reward of the HA
and the AA is given by ρh(x, u) and ρa(x, u). Let

Rh = E[ρh(x, u)], (5)
Ra = E[ρa(x, u)], (6)

denote the expected reward received by the HA and the AA.
The expected performance of the interaction is given by

R = Rh +Ra. (7)

In addition to the reward, a latent risk is also present with
the interaction. The risk W is quantified by the probability
of the occurrence of some undesirable risk event denoted as
U , i.e.,

W = E[P(U|x, u)]. (8)

The risks we consider here are the types of risks that are
not the major decision factors of humans, such as the long-
term future risk, which are usually downplayed by hu-
mans against the immediate reward (Shirado, Crawford, and
Christakis 2020). The risks that are major decision factors of
humans are incorporated into the reward.

HAs and AAs use different sets of information about the
outcome of past interactions to change their strategies based
on the outcome. We assume that the strategy update is per-
formed at a sufficient slower timescale than individual in-
teractions, so the strategy update can use accurate statistics
of the outcomes associated with the past and current strat-
egy2. As a result, we use different notations for the inter-
action time and the strategy update time, i.e., subscript [k]
for interaction time and subscript t for strategy update time.
Each agent will have information about the expected reward
they receive under certain intentions. The AAs will have the
information of the total reward R of the system as well. Un-
like reward, only the AAs are able to calculate the latent risk
W . This information asymmetry models the following two
factors: the strategy of an AA can use the aggregate infor-
mation of all other AAs; in contrast, HAs may not have a
good estimate of the rare event probability such as crashes
based on their experience, and HAs who get into accidents
may exit from the population.

1The system dynamics is assumed to be uniform for both the
HA and the AA.

2Here, we assume that humans collect sufficient information
(interaction samples) before they change their behaviors. For ex-
ample, if a HA meets with an AA showing conservative behaviors,
it will not exploit this behavior. However, if the HA meets with the
AA sufficiently many times that it can confirm the AA will always
act conservatively, it will start to exploit the conservativeness with
aggressive behaviors.

We model human behaviors based on the widely accepted
framework of myopic and bounded rationality in a dis-
tributed coordination, where HAs choose whether to coop-
erate based on the expectation of self-interests in the short
term, i.e., the individual reward Rh. In this setting, humans
are well modeled as “conditional cooperators” theoretically
and empirically (Hilbe, Nowak, and Sigmund 2013; Nowak
and Sigmund 2005). In this setting, there exists a few com-
mon ways from existing literature that models the strat-
egy update (dynamics) of HAs in evolutionary game the-
ory (Hofbauer and Sigmund 1998; Nowak 2006). These hu-
man dynamics model the causal relationship between what
humans experience and how they change their strategies or
behaviors. To account for a wide range of possibilities, we
adopt 3 of such models and consider an update rule consist-
ing of a mixture of these models. The human strategy update
rule for each of the models are defined below.
• Replicator Dynamics (Taylor and Jonker 1978).

π̇h
t =πh

t (E[Rh|πh
t = 1, πa

t ]− E[Rh|πh
t , π

a
t ])

:=fr(π
h
t , π

a
t ). (9)

• Brown-Nash-von Neumann Dynamics (Brown and
Von Neumann 1950).

π̇h
t =[E[Rh|πh

t = 1, πa
t ]− E[Rh|πh

t , π
a
t ]]+

− πh
t ([E[Rh|πh

t = 1, πa
t ]− E[Rh|πh

t , π
a
t ]]+

− [E[Rh|πh
t = 0, πa

t ]− E[Rh|πh
t , π

a
t ]]+)

:=fb(π
h
t , π

a
t ). (10)

Here, [q]+ = max(0, q).
• Smith Dynamics (Smith 1984).

π̇h
t =(1− πh

t )[E[Rh|πh
t = 1, πa

t ]− E[Rh|πh
t = 0, πa

t ]]+

− πh
t [E[Rh|πh

t = 0, πa
t ]− E[Rh|πh

t = 1, πa
t ]]+

:=fs(π
h
t , π

a
t ). (11)

Here, [q]+ = max(0, q).
The mixed dynamics update rule is given by

π̇h
t =wrfr(π

h
t , π

a
t ) + wbfb(π

h
t , π

a
t ) + wsfs(π

h
t , π

a
t )

:=fm(πh
t , π

a
t ), (12)

where wr, wb and ws are the weights for Replicator Dynam-
ics, Brown-Nash-von Neumann Dynamics and Smith Dy-
namics, respectively, and

wr + wb + ws = 1. (13)

Here, we make a reasonable assumption that πh
0 ̸= 0 and

πh
0 ̸= 1.
Our objective is to optimize the performance of the in-

teraction while controlling the risk to be within a tolera-
ble range. Toward this goal, we will design the strategy up-
date rules of the AAs, which in turn influence the strategy
of HAs, for optimizing the outcome of the AA-HA interac-
tions, which depends on the strategies of both AAs and HAs.
This objective is formally stated below.

π⋆ = argmax
π∈A

E[R|π] (14)

subject to E[W |π] ≤ ϵ.
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Here, ϵ is the tolerable risk, we assume it is chosen such that
(14) is feasible, and A is the admissible strategy set, which
is defined below.
Definition 1 (Admissible Strategy Set). The admissible
strategy set is the set of all strategies π that make HAs’ strat-
egy remain static, i.e., π̇h = 0.

Here, the admissible strategy is not equivalent to equilib-
rium. In fact, an equilibrium is an admissible strategy, but
not every admissible strategy is an equilibrium. An equilib-
rium is a point where both πh and πa do not move. On the
other hand, an admissible strategy only requires πh to stop
evolving, since πa is something we have control over, it can
be either static or dynamic, and it is decided by any control
policy. As stated in (14), our design objective is to achieve
an optimum policy within the set of admissible strategy. We
consider this limitation because it can be difficult to design
a control policy when HAs are changing strategies. In fact,
most applied control policies are designed based on a train-
ing distribution (i.e., a certain HAs environment).

Reward and Risk Categorization
We use a notation system such that RXY denotes the ex-
pected reward when an agent chooses strategy X and its
confronting agent chooses strategy Y . For simplicity, we
consider a symmetric reward table. Likewise, for risk, we
consider the same notation system. However, unlike reward,
here we have one risk quantity for each interaction. Also, we
require a few reasonable assumptions:

WCD = WDC , (15)
RDD < RCD, (16)
RCC < RDC . (17)

The simplified reward and risk table is given in Table 1.

C D
C (RCC , RCC);WCC (RCD, RDC);WCD

D (RDC , RCD);WCD (RDD, RDD);WDD

Table 1: Reward and risk table.

We typically observe scenarios whose reward and risk are
ordered as follows.

Reward case 1: 2RCC > RCD +RDC > 2RDD. (18)
Reward case 2: RCD +RDC > 2RCC > 2RDD. (19)

Risk case 1: WCC < WCD < WDD. (20)
Risk case 2: WCD < WCC < WDD. (21)

The above cases create qualitatively different types of in-
teractions. To characterize such differences, we classify the
interactions as below, along with example scenarios in au-
tonomous driving.
• Type A: reward case 1 and risk case 1.
• Type B: reward case 1 and risk case 2.
• Type C: reward case 2 and risk case 1.
• Type D: reward case 2 and risk case 2.

Intuitively, when the reward and risk belong to the same
case (both case 1 or both case 2), there exist strategies that si-
multaneously maximize the reward and minimize the risk. In
this scenario, the optimizer of (14) is such a strategy. When
the reward and risk belong to different cases, the two ob-
jectives compete. In this scenario, the optimizer of (14) for
varying risk tolerance ϵ characterizes a set of Pareto-optimal
strategies.

The above model accounts for typical characteristics
in human-machine interactions and has the following dis-
tinct factors from conventional game-theoretic models. First,
there is a safety (or a latent risk) factor in addition to the
rewards. Second, the available information is asymmetric:
HAs can only estimate the expected rewards, while AAs can
estimate both expected rewards and risks. Third, HAs are
self-seeking while AAs are designed to optimize the safety
and reward of the whole system. In the next sections, we
will understand the influence of short-sighted self-seeking
humans, and study how to account for such propensity to
improve the safety and efficacy of collective movements.

Case Studies
Autonomous Driving Simulation
We use some typical autonomous driving settings to study
the types of interactions. Typical scenarios for each type in
the autonomous driving setting are as follows:

• Type A: At a stop-sign controlled intersection, where the
aggressive behavior of one vehicle leads to less total re-
ward (causing havoc in traffic that takes time to be re-
solved) and more risk (crashing into vehicles passing nor-
mally).

• Type B: Driving on a narrow road that constantly poses
hazards to the vehicles on it (e.g., falling rock). The ag-
gressive behavior of one vehicle helps reduce the risk by
deciding the passing order in a time shorter than the time
needed for 2 cooperative vehicles to negotiate the order.

• Type C: In a lane-changing scenario, the aggressive be-
havior of one vehicle creates more risk since it is more
likely to crash by not yielding. On the other hand, it gives
a higher total reward by eliminating its yield time.

• Type D: In a high-speed lane-changing scenario. Differ-
ent from Type C, yielding and reducing speed when many
vehicles are driving at high speed may lead to more like-
lihood of crashing.

We use a narrow road driving example illustrated in Fig-
ure 3 to simulate realistic reward and risk values that rep-
resent all 4 types. The example considers two vehicles, one
is driven by a human and the other is an AV, on a narrow
road with gravel outside of the paved road. When driving
on gravel, the vehicles will have a crash probability. The
AV has the option to act cooperatively by decelerating and
adopting a DWSC approach. This approach keeps a safety
distance whose length depends on the speed of the other ve-
hicle. It also has the option to defect by ignoring the safety
distance. If both vehicles choose to cooperate, they will both
decelerate to a speed ν2 such that they can both drive on a
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Figure 3: Simulated driving scenario.

paved road without violating the safety distance. If the hu-
man driver chooses to defect, continuing driving with speed
ν1 without decelerating, and the AV adopts DWSC, the AV
will be forced onto gravel due to safety distance constraints
and only drive at a much more reduced speed ν3. If both
vehicles choose to defect, they will drive the paved road
with their original speed ν1. The detailed specifications of
the simulation are provided in the extended version of the
paper (Zhang et al. 2022). Table 2 shows the generated re-
wards and risks for all cases.

Type A Type B Type C Type D
RCC 65.51 53.53 60.29 56.13
RCD 17.93 -0.05 40.79 49.87
RDC 96.8 68.7 95.28 88.24
RDD -69.23 -264.59 40.31 43.49
WCC 0.00078 0.00147 0.00058 0.00057
WCD 0.00109 0.00134 0.00073 0.00044
WDD 0.00147 0.00172 0.0015 0.00077

Table 2: Reward and risk values for different types.

Existing Methods
In DWSC, AAs are designed to be always collaborative (i.e.,
they adopt the time-invariant policy πa = 1). The intention
is to make AAs always ready for worst-case scenarios. How-
ever, such designs overlook the fact that in the presence of
self-seeking HAs, the risk of the interaction might be higher
than other not very conservative control policies.

To investigate the safety of DWSC, we need to see the
convergence of HAs’ policy under DWSC.
Lemma 1. Assuming (16) and (17). If HAs are following the
mixed dynamics (12), an AA that will always choose πa = 1

will result in πh
t

t→∞−−−→ 0.
The proof is provided in the extended version of this paper

(Zhang et al. 2022).
Based on Lemma 1, we can calculate the expected risk as

E[W |πt] = WCCπ
h
t π

a
t +WCDπh

t (1− πa
t ) (22)

+WCD(1− πh
t )π

a
t +WDD(1− πh

t )(1− πa
t ).

As t −→∞, we have πa
t = 1 and πh

t = 0. Hence,
E[W |πt] = WCD. (23)

Given the above, we can see that DWSC will always give
E[W |πt] = WCD. However, WCD is not necessarily the
minimum among {WCC , WCD, WDD}. This also can be
seen in the cases simulated in the Autonomous Driving Sim-
ulation. This suggests that DWSC will not provide the safest
behaviors in Type A and Type C interactions in the pres-
ence of strategic HAs’ behaviors. In these types, DWSC
will always start at a certain level of safety (given the un-
derlying HAs cooperation distribution); however, when HAs
start to exploit AAs cooperation, the risk level goes higher.
As shown in Figure 4, in the beginning, DWSC starts at a
certain level of safety but risk increases as HAs coopera-
tion decrease with time (HAs distribution changes toward a
non-favorable manner w.r.t. safety). With this, we see how
DWSC achieves short-sighted safety. Accordingly, people
should be careful about that.

Alternatively, MSNE methods are designed to drive both
AAs’ and HAs’ policies to the Mixed Strategy Nash Equi-
librium (MSNE), which is defined below.
Definition 2 (Mixed Strategy Nash Equilibrium). In an in-
teraction between AAs and HAs, although we have both re-
wards and risks, we define the mixed strategy Nash equilib-
rium (MSNE) only based on rewards as

L =
RDD −RCD

RCC +RDD −RDC −RCD
. (24)

From (16) and (17), we have

L ∈ (0, 1). (25)

In MSNE methods, risks and rewards are restricted to those
that correspond to the equilibrium πa = πh = L. These
methods cannot achieve Pareto-optimality between perfor-
mance and safety because it is restricted to the equilibrium
strategy. Risk resulting from AAs adopting MSNE methods
can be calculated using (22) as

E[W |πt] = L2(WCC +WDD − 2WCD) (26)
+ 2L(WCD −WDD) +WDD.

Hence, no safety guarantee in MSNE methods, as its re-
sulting risks mainly depend on different environmental vari-
ables. Figure 4 shows safety and reward levels for MSNE
methods compared with other methods in a Type A interac-
tion.

Proposed Algorithm
In this section, we present our results and the proposed al-
gorithm with their theoretical guarantees.

Let

A0 = {(πh, πa) : πh = 0, πa ∈ (L, 1]}, (27)

A1 = {(πh, πa) : πh = 1, πa ∈ [0, L)}, (28)

Ad = {(πh, πa) : πh ∈ [0, 1], πa = L}. (29)

The set of admissible strategy A is given by

A = A0 ∪ A1 ∪ Ad. (30)

In Lemma 2, we show that the setA is indeed the admissible
strategy as defined in Definition 1.
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Lemma 2. Consider a system where AAs are adopting a
policy πa

t , HAs are following the mixed dynamics (12). As-
suming (16) and (17), then,

πt := (πh
t , π

a
t ) ∈ A ⇔ π̇h

t = 0. (31)

The proof is provided in the extended version of this paper
(Zhang et al. 2022).

Next, we present our proposed algorithm. Let

B0 =

[
ϵ−WDD

WCD −WDD
,∞

)
, (32)

F0 = {(πh, πa) : πh = 0, πa ∈ (L, 1] ∩ B0}, (33)

B1 =


(
−∞, ϵ−WCD

WCC−WCD

]
, WCC > WCD[

ϵ−WCD

WCC−WCD
,∞

)
, WCC < WCD,

(34)

F1 = {(πh, πa) : πh = 1, πa ∈ [0, L) ∩ B1}, (35)

Bd =



(
−∞, ϵ−WCDL−WDD(1−L)

WCCL+WCD−2WCDL−WDD(1−L)

]
,

WCCL+WCD > 2WCDL+WDD(1− L)[
ϵ−WCDL−WDD(1−L)

WCCL+WCD−2WCDL−WDD(1−L) ,∞
)
,

WCCL+WCD < 2WCDL+WDD(1− L),

(36)

Fd = {(πh, πa) : πh ∈ [0, 1] ∩ Bd, πa = L}. (37)

We define the feasible set of strategies under the constraints
of (14):

F = F0 ∪ F1 ∪ Fd. (38)

Then, the optimal strategy is given by

π⋆ :=(πh⋆, πa⋆) = argmax
(πh,πa)∈F

E[R|πh, πa]. (39)

The proposed policy is given by

πa
t =

{
L−G(πh⋆ − πh

t ), π⋆ ∈ Fd

πa⋆, otherwise
:= fa(πh

t ). (40)

Here, G ∈ R is a strictly positive constant.

Theorem 1. Consider a system where AAs are adopting
the policy defined in (32) to (40), and HAs are following
the mixed dynamics (12). Assuming (16) and (17), then,
(πh

t , π
a
t )

t→∞−−−→ (πh⋆, πa⋆), which is the solution to (14).

The proof is provided in the extended version of this paper
(Zhang et al. 2022).

The proposed algorithm is given in Algorithm 1.

Numerical Simulations
The experiments are divided into two parts. First, we study
the existing methods (DWSC and MSNE) and show that
DWSC is not the safest and can result in riskier situations.
Then, we demonstrate the advantage of the proposed method
and show that it can control risks within a tolerable range in
the long time scale and achieve a better trade-off between
safety and reward than both DWSC and MSNE.

Algorithm 1: Proposed algorithm.
Input: Rewards and risks (Table 1), the tolerable risk ϵ, the
constant G.

1: Compute A using (27) to (30).
2: Compute F using (32) to (38).
3: Compute π⋆ using (39).
4: while t > 0 do
5: Observe HA strategy πh

t .
6: πa

t ← fa(πh
t ).

7: end while

Settings
We perform numerical simulations in Python with both
ODE-based update rules and Monte Carlo-based update
rules. We simulate the evolution of autonomous-human in-
teractions with 4 types of interaction scenarios introduced in
the Reward and Risk Categorization with reward and risk ta-
ble obtained in the Autonomous Driving Simulation. For HA
update rules, we adopt both ODE-based and Monte Carlo-
based versions of 4 dynamics, including Replicator Dynam-
ics, Brown-Nash-von Neumann dynamics, Smith Dynamics,
and a mixture of them. For ODE-based update rules, we up-
date the states based on dynamics of the form (9) to (12) by
the Runge–Kutta method (Runge 1895) over 1 × 105 time
steps. In Monte Carlo simulations, we consider an infinite
population of HAs and an infinite population of AAs inter-
acting with each other. We randomly pick N = 1×103 pairs
and update their intentions over 1×105 time steps. The pro-
portion of cooperators in each sampled population is inter-
preted as the strategy π for that population. Each individual
updates its intention as follows,
• Replicator Dynamics (RD): Each HA i will randomly

pick another HA j with probability 1
N−1 , and change Ihi

to Ihj with a probability proportional to the excess part of
j’s reward over its own.

• Brown-Nash-von Neumann Dynamics (BNN): Each HA
with intention C will switch to D with a probability pro-
portional to the excess part of D’s expected reward over
HAs’ average reward, and vice versa.

• Smith Dynamics (SD): Each HA with intention C will
switch to D with a probability proportional to the excess
part of D’s expected reward over C’s expected reward,
and vice versa.

• Mixed Dynamics: It consists of three HA sub-
populations (RD, BNN, and SD). Each individual
will change their intention following the update rule
of their sub-population but will consider the whole
population when making updates rather than their own
sub-population.

For AAs’ update rules, we compare the proposed method
with DWSC and MSNE approaches. As discussed before,
AAs with DWSC will always be conservative and will al-
ways account for the worst-case, which means πa = 1 for
all time. For MSNE approaches, since AAs aim to drive the
system to equilibrium, we simulate the state of MSNE for
reference.
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Figure 4: Results in a Type A interaction with different AAs-HAs update rules (πh
0 = 0.9, ϵ = 9e− 4, G = 1 and wr = wb =

ws = 1
3 ). In plot (b), HAs’ strategies converge to πh = 0 if AAs take DWSC. Meanwhile, the expected total reward in plot (c)

decreases and the expected risk in plot (d) increases as πh
t → 0. Even though the initial rewards and risks of DWSC are quite

desirable, it cannot remain static and it degrades quickly. In this case, the proposed method achieves the highest reward and
lowest risk at the same time, while both the reward and risk that MSNE and DWSC achieve are sub-optimal.

Results

We first compare the evolutionary trajectories of different
AAs’ update rules against different HAs’ update rules. As
shown in Figure 4, taking DWSC and always being conser-
vative results in relatively safe interactions at the beginning.
Then, HAs’ strategies converge to πh = 0 as time evolves,
which corresponds to Lemma 1. However, as πh → 0, the
expected total reward decreases and the expected risk in-
creases, and it eventually ends up in riskier interactions. That
demonstrates the incapability of DWSC to achieve safety in
the long term.

To have a global view of what each method is able to
achieve, we depict the admissible strategy in (30) and com-
pare that with DWSC and MSNE in Figure 5. Both DWSC
and MSNE show unsatisfactory behaviors in some types of
interactions and cannot guarantee either safety or reward. In
Type A interactions, the plot matches the result in Figure 4.
MSNE can achieve better safety than DWSC while DWSC
generates better reward, but none of these two is optimal
in either safety or reward. In Type B interactions, DWSC
reaches the safest strategy and MSNE will bring a higher re-
ward (less than the proposed method) at the cost of safety.
While MSNE generates the lowest rewards and the highest
risks among all AAs’ update rules in Type C and D inter-
actions, DWSC achieves the highest reward there. However,
for DWSC in Type C, it faces a situation similar to Type A
where DWSC will result in a sub-optimal safety level. All
of these results signify the drawbacks of DWSC techniques
and MSNE methods.

Then, we show that the proposed method can control risks
within a tolerable range in the long time scale and achieve a
better trade-off between safety and reward than DWSC and
MSNE. Figure 6 shows that the proposed method can reach

the entire Pareto frontier between optimal reward and opti-
mal safety in Type B interactions. It also shows that DWSC
and MSNE only form two points on the graph that are not
always optimal in all 4 types. On the other hand, in Type
A interaction, the proposed method outperforms all others,
and can even achieve the optimal strategy with the highest
reward and safety. Moreover, the proposed method reaches a
set of Pareto-optimal strategies, where it can make the trade-
off between safety and rewards in Type B and C interactions.
The comparison of results of different methods is summa-
rized below.
• DWSC: It cannot achieve the safest strategy in Type A

and C, and cannot achieve the highest reward in Type A
and B.

• MSNE: It cannot guarantee reward and safety levels in
all types.

• Proposed method: In Type A and D, it can achieve the
optimal strategy that is both the safest and has the highest
reward. In Type B and C, it can create a trade-off between
the best safety and the highest reward.

Conclusion
Summary We investigated conventional safe control
methods in the presence of self-seeking humans. Our results
showed that such control methods are actually not always the
safest and the ones with the highest performance. Namely,
we proved that when humans exploit the cooperative behav-
ior of autonomous agents originating from conventional safe
control methods, the overall safety of the human-machine
interaction decreases. In addition, we proposed a basic pol-
icy for autonomous agents that can encourage self-seeking
humans to behave in a way that optimizes the safety and
performance of interactions. We have shown that existing
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Figure 5: Illustration of achievable rewards and safety of different methods. The gray area labeled as ‘π Space’ denotes all
possible interaction strategies. Note that the outcome of DWSC and MSNE methods is always achievable by the proposed
method.

safe control techniques can result in worse safety and per-
formance levels compared to the basic policy we proposed.
As a result, we suggest that rethinking the existing safe con-
trol framework used in autonomous agents interacting with
humans is an urgent need.

Limitations and Future Work The main limitations of
our work are as follows. First, we assume that the intentions
of agents do not change within each episode, which is not al-
ways the case. We plan to consider intention changes within
single interaction episodes in the future to further analyze
the safety of interaction and improve our method. Second,
the intention of agents is limited to either cooperate or de-
fect. To extend the applicability of our method to even more
general situations, we will consider other kinds of intentions,
such as some more neutral intentions between the aggressive
intention and conservative intention. Third, it is natural that
the environment changes over time and the rewards and risks

Figure 6: Robustness of the proposed method controlling
risks within a tolerable range against mixed HAs’ update
rules (Left: ODE, Right: Monte Carlo) given different ini-
tial conditions in a Type B interaction (ϵ = 1.4e − 3,
wr = wb = ws =

1
3 and G = 1).

may also change. Therefore, we will investigate how self-
seeking humans affect safety when we have time-varying
interaction environments. Furthermore, our method and
framework mainly focus on the long-term causal effect of
the strategic behaviors of human agents. In some interac-
tions, the short-term effect at the beginning of the dynamic
evolution also has a significant impact on safety. In the fu-
ture, we will quantitatively evaluate the impact of human
agent and autonomous agent strategies on safety for both
the short-term and long-term dynamic evolution. Lastly, it is
worthwhile to mention that in this work, we did not evaluate
the proposed method with low-level human agents and au-
tonomous agents dynamics; however, we presented the pro-
posed method and showed the validity of it using evolution-
ary games principles to highlight the possible room for im-
provement that can be built on top of the existing methods.
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Runge, C. 1895. Über die numerische Auflösung von Dif-
ferentialgleichungen. Mathematische Annalen, 46(2): 167–
178.
Shirado, H.; and Christakis, N. A. 2020. Network Engi-
neering Using Autonomous Agents Increases Cooperation
in Human Groups. iScience, 23(9).
Shirado, H.; Crawford, F. W.; and Christakis, N. A. 2020.
Collective communication and behaviour in response to un-
certain ‘Danger’in network experiments. Proceedings of the
Royal Society A, 476(2237): 20190685.
Shirado, H.; Fu, F.; Fowler, J. H.; and Christakis, N. A. 2013.
Quality versus quantity of social ties in experimental coop-
erative networks. Nature Communications, 4.
Smith, M. J. 1984. The stability of a dynamic model of
traffic assignment—an application of a method of Lyapunov.
Transportation science, 18(3): 245–252.
Taylor, P. D.; and Jonker, L. B. 1978. Evolutionary stable
strategies and game dynamics. Mathematical biosciences,
40(1-2): 145–156.
Zhang, Z.; AL-Sunni, M.; Jing, H.; Shirado, H.; and
Nakahira, Y. 2022. Rethinking Safe Control in the Presence
of Self-Seeking Humans. arXiv:2212.00295.

15339


